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The study of microbial communities often leads to arguments for the evolution of cooperation due to
group benefits. However, multilevel selection models caution against the uncritical assumption that
group benefits will lead to the evolution of cooperation. We analyze a microbial social trait to
precisely define the conditions favoring cooperation. We combine the multilevel partition of the
Price equation with a laboratory model system: swarming in Pseudomonas aeruginosa. We
parameterize a population dynamics model using competition experiments where we manipulate
expression, and therefore the cost-to-benefit ratio of swarming cooperation. Our analysis shows that
multilevel selection can favor costly swarming cooperation because it causes population expansion.
However, due to high costs and diminishing returns constitutive cooperation can only be favored by
natural selection when relatedness is high. Regulated expression of cooperative genes is a more
robust strategy because it provides the benefits of swarming expansion without the high cost or the
diminishing returns. Our analysis supports the key prediction that strong group selection does not
necessarily mean that microbial cooperation will always emerge.
Molecular Systems Biology 9: 684; published online 20 August 2013; doi:10.1038/msb.2013.42
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Introduction

Over the past decade microbiology has shifted perspective to
acknowledge that bacteria are not solitary organisms but
rather social organisms that rely on a range of population-level
traits, such as biofilms, cell–cell communication and coopera-
tive drug resistance (Kolter and Greenberg, 2006; Greenberg,
2010; Carmona-Fontaine and Xavier, 2012). However, often the
existence of microbial social traits is justified by their group-
level benefits (Costerton et al, 1999; Monds and O’Toole, 2009;
Lee et al, 2010). Social evolution theory predicts that defector
phenotypes (i.e., non-cooperative phenotypes, see Table I for
our definitions) are favored in mixed populations by indivi-
dual-level selection (Brannstrom and Dieckmann, 2005; West
et al, 2006; Nadell et al, 2009). In fact, experiments with
microbes show that a costly cooperative trait may be favored
for its group- or species-level benefits but disfavored in
populations where different strains and species mix
(Strassmann et al, 2000; Griffin et al, 2004; Diggle et al,
2007; Sathe et al, 2010). Understanding how cooperation
evolves and remains stable is a key to understanding social
traits in bacteria and other microbes (e.g., Crespi, 2001;
Fortunato et al, 2003; Rainey and Rainey, 2003; Greig and
Travisano, 2004; Griffin et al, 2004; Fiegna et al, 2006; West
et al, 2006; Diggle et al, 2007; Ross-Gillespie et al, 2007; Nadell
et al, 2009; Ross-Gillespie et al, 2009; Kummerli et al, 2009a, b,
c; Sathe et al, 2010; Smith et al, 2010; Foster, 2011; Koschwanez
et al, 2011, 2013; Strassmann and Queller, 2011; Xavier, 2011a;

Damore and Gore, 2012; Ratcliff et al, 2012; Celiker and Gore,
2012a).

Here, we use a combination of quantitative experiments and
mathematical modeling to analyze a model social trait,
swarming in Pseudomonas aeruginosa, and to determine
conditions favoring cooperation. Swarming is a collective
form of migration that allows colonies to expand over soft
surfaces and thus provides a group benefit. But swarming also
requires that individual bacteria secrete massive amounts of
rhamnolipid biosurfactants to lubricate the surface (Deziel
et al, 2003; Caiazza et al, 2005). The secreted surfactants are a
public good and can be exploited by surfactant-deficient
defectors, which benefit from the surfactants secreted by
others within the colony without producing surfactants
themselves (Xavier et al, 2011). In general, if the production
of a public good is costly, then defectors can outcompete
cooperators within a population and, in the absence of
stabilizing processes such as kin selection or discrimination
(West et al, 2006), eventually drive the cooperative trait to
extinction. Nonetheless, many natural isolates of P. aeruginosa
do secrete rhamnolipids (Deziel et al, 1996), which suggests
that there are mechanisms favoring and stabilizing rhamno-
lipid secretion in the wild. A mechanism found recently
(Xavier et al, 2011) explains that P. aeruginosa regulates the
expression of the rhamnolipid synthesis operon rhlAB using a
combination of quorum sensing (the las/rhl quorum sensing
cascade) and nutrient sensing (Figure 1A). Although not all the
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molecular players in this integration of quorum and nutrient
sensing are known (Boyle et al, 2013), it is clear that such a
combined regulatory mechanism enables bacteria to delay
rhamnolipid production to times when there is excess carbon,
and rhamnolipid synthesis becomes affordable (Figure 1B).
This mechanism, called metabolic prudence, implements a
molecular decision-making circuitry that effectively decreases
the fitness cost of rhamnolipid secretion and prevents
exploitation by rhamnolipid-deficient defectors (Xavier et al,
2011).

Hamilton’s rule (Hamilton, 1964) explains that cooperation
can evolve when br4c where c is the fitness cost to the actor, b
is the fitness benefit to the recipient and r is the correlation
between the genotypes of actors and recipients, also called
relatedness. Metabolic prudence reduces the costs of coopera-
tion by regulating the expression of the cooperative genes
(Xavier et al, 2011), but cooperation could also be favored by
increasing the benefits or the relatedness (West et al, 2006;
Chuang et al, 2010). Furthermore, this mechanism brings up an

important question. While some genes are constitutively
expressed, many others are conditionally regulated to account
for a fluctuating demand for the gene product (Perkins and
Swain, 2009); is it better to actively regulate a gene versus
constitutively expressing it when the gene regulates a
cooperative trait? This question has previously been addressed
in other systems (Nadell et al, 2008; Kummerli and Brown,
2010; Geisel, 2011) and, for a fixed but arbitrary level, in
P. aeruginosa swarming (Xavier et al, 2011). It remains to be
tested whether P. aeruginosa metabolic prudence is still a
better strategy when constitutive expression of biosurfactants
occurs at an optimum rate, and when selection acts at multiple
levels.

Here, we investigate multilevel selection in swarming when
the expression of cooperative biosurfactant synthesis is kept
constant but at a rate that provides optimal group benefits. We
use an engineered strain of P. aeruginosa that allows us to
control the expression of biosurfactant synthesis genes, and
thus the investment into cooperation by individuals (Figure 1C
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Figure 1 Pseudomonas aeruginosa synthesizes and secretes rhamnolipid biosurfactants required for swarming motility. (A) The wild-type Pseudomonas aeruginosa
regulates the expression of rate-limiting enzyme RhlA using a mechanism called metabolic prudence that integrates nutrient sensing and quorum sensing. (B) Metabolic
prudence ensures that rhamnolipids are secreted only when carbon is in excess and population density is high. (C) In this study, we use a genetically engineered
inducible strain where RhlA expression is under regulation of the L-arabinose inducible promoter PBAD. (D) The inducible construct circumvents metabolic prudence and
provides an experimental handle to modulate biosurfactant synthesis and investigate swarming cooperation thoroughly.

Table I Definition of terms used in this paper

Cooperative trait A trait that confers benefits to a recipient individual. The cooperative trait can be costly to the actor (altruistic trait)
or beneficial to the actor (mutualism) (West et al, 2006)

Cooperator An individual or a strain carrying the cooperative trait, also called the ‘actor’
Defector An individual or a strain lacking a cooperative trait but capable of exploiting the cooperation of others
Metabolic prudence A mechanism of gene expression regulation that allows wild-type Pseudomonas aeruginosa to produce biosurfactants

at no cost to its fitness (Xavier et al, 2011)
Selfishness A defector strategy where individuals lack a costly cooperative trait but exploit the cooperation of others
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and D). We find that costly swarming can indeed be favored
thanks to the large group benefits of population expansion.
Furthermore, because swarming effectively expands the
population carrying capacity it is more robust than alternative
cooperative strategies that improve growth rates but bring only
transient benefits to the population. But we also find, as
predicted by theory (West et al, 2006), that costly swarming
cooperation can only evolve under stringent conditions of high
genetic relatedness. This is the first time that high relatedness
is shown to contribute to the evolution of swarming coopera-
tion and compensate for an unnatural cost non-existing in the
wild-type strain. Nonetheless, our results show that strong
group benefits alone do not necessarily lead to the evolution of
cooperative swarming under multilevel selection, whereas the
native regulation by metabolic prudence greatly expands the
conditions favoring cooperation.

Results and discussion

Swarming is favored by group-level selection but
disfavored by individual-level selection

We use an engineered strain of P. aeruginosa that has been
genetically altered such that the degree of its cooperative effort
can be controlled. This strain (PA14 DrhlA:PBADrhlAB) has the
biosurfactant synthesis genes placed under the regulation of
the promoter PBAD so that their expression can be induced by
adding L-arabinose to the medium (Boles et al, 2005). Previous
experiments have shown that inducing biosurfactant with
L-arabinose at 0.5% (w/v) has a significant cost in liquid
cultures and swarming competitions (Xavier et al, 2011). We
investigated the induction of swarming cooperation more
extensively over a wide range of L-arabinose concentrations
(Figure 2A). The results show that inducing surfactant
secretion increases fitness of a swarming colony by enabling

spreading over the plate (Figure 2B). However, at high
induction levels (L-arabinose40.25%) the metabolic costs of
surfactant over-secretion start outweighing the benefits and
the swarming colonies spread less. The final colony size, and
thus the population fitness, peak at intermediate levels of
induction (0.25% L-arabinose).

Next, we observed that swarming at 0.25% L-arabinose
allows a colony of inducible biosurfactant producers to occupy
a larger area on the plate and ultimately to grow better
compared with colonies of a defector strain lacking biosurfac-
tant secretion. While the swarming colony reaches the edge of
a 9-cm wide Petri dish within 24 h, a colony of surfactant-
deficient defectors cannot swarm and the colony stays
confined to a region of o1 cm wide (Figure 2C). The limiting
factors affecting bacterial growth on a plate have been
extensively studied (Pirt, 1967; Cooper et al, 1968; Hochberg
and Folkman, 1972). Briefly, the prevailing explanation is that
a colony of immotile bacteria, such as our defectors, depletes
local nutrients and a nutrient gradient is created as nutrients
diffuse toward the colony (Nadell et al, 2010). As the region
closest to the colony has the lowest concentration of nutrients,
the growth of the colony is eventually limited by lack of
nutrients. (An alternative mechanism that leads to equivalent
outcomes is that toxic waste products accumulate at the
immediate surroundings of the colony. Waste products diffuse
away from the colony but create a gradient where the
concentration is highest closest to the colony where it inhibits
growth.) Swarming motility enables a colony to expand
beyond the inoculation site, and thus escape the growth-
limiting environment.

Comparing the growth of biosurfactant producers (coopera-
tors) and defectors shows that cooperation has a clear benefit
in single-strain colonies (Figure 2C). However, natural micro-
bial populations are rarely monoclonal. Processes such as
mixing with other strains or species and mutation introduce
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Figure 2 Cooperative swarming allows Pseudomonas aeruginosa colonies to expand over large areas. (A) Swarming requires the secretion of biosurfactants. In
colonies of the inducible cooperator, fitness peaks at L-arabinose 0.25%, a level at which biosurfactant production is high enough for swarming expansion but low enough
that its costs do not overwhelm the benefit of spatial colony expansions. The data point at 0.5% L-arabinose (white bar) comes from a previous study (Xavier, 2011a); all
other data (gray bars) were acquired in the present study. CFU¼ colony forming units. (B) Images of swarming colonies. Dashed line represents the edge of Petri dish
with 9 cm diameter. (C) Cooperators (biosurfactant producers induced by 0.25% L-arabinose) expand over the entire Petri dish. Defectors (rhamnolipid-deficient
knockouts) are incapable of swarming and the colonies grow less.
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genetic variation and influence the evolution of microbial
social traits (West et al, 2006). Therefore, we investigated
whether swarming is still favored when induced cooperators
are mixed with defectors within the same colony. For this
experiment, we used strains labeled with constitutively
expressed fluorescent markers (GFP or DsRed-Express) to
allow strain identification (Xavier et al, 2011). In each
competition, we mixed the two strains at a desired proportion
and inoculated approximately one million cells in a 2-ml
droplet onto soft agar and incubated for 24 h. The plates were
then imaged (Figure 3A) and the final numbers of each strain
were determined. We used the data to calculate the changes in
cooperator proportion (measuring individual-level selection)
and the final colony size (measuring population fitness). As a
control, we compared the relative amounts of rhamnolipid
secreted in liquid medium by the inducible strain when alone
and mixed with 50% defectors to determine whether the
presence of defectors affected biosurfactant production. The
amount of rhamnose produced by the inducible strain alone is
significantly different compared with the strain mixed with
50% defectors. However, when comparing half of the
surfactant production by the inducible strain alone, the results
are not significantly different (see Materials and methods for
statistical analysis) from the rhamnose levels produced by the
inducible strain mixed with 50% defectors, indicating that the
surfactant production by the inducible strain is not affected by
the presence of non-producing defectors (Supplementary
Figure S1).

The mixed-strain competitions show that for every initial
mixing proportion the proportion of cooperators decreased
after competition, revealing that cooperators are disfavored by
individual-level selection (Figure 3B). The change in coopera-
tor proportion as a function of the initial proportion of
cooperators exhibits an inverse bell shape that is typical for a
trait that is disfavored in competition (Chuang et al, 2009). The
population fitness, however, increased with the initial propor-
tion of cooperators, confirming that cooperators benefit the
entire colony (Figure 3C). Also, notable was that fitness
plateaued for high initial cooperator proportions (above 0.5)
indicating diminishing returns (Figure 3C).

Theory for multilevel selection

The swarming competitions using an induced cooperator
(Figure 3) reveal that swarming cooperation benefits the
population and would thus be favored by group-level selection.
However, cooperators are outcompeted within colonies, which
means that swarming is disfavored by individual-level selec-
tion. In nature, selection can occur simultaneously at multiple
levels and the balance between the different levels ultimately
determines the evolutionary fate of social traits (Keller, 1999).
Could there be situations under which multilevel selection
favors costly swarming cooperation?

To answer this question, we consider a theoretical scenario
introduced by Hamilton (1975) and more recently applied by
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Figure 3 Individual-level selection disfavors cooperation: induced cooperators increase population size but lose to defectors. (A) Competitions between cooperators
and defectors mixed at varying mixing proportions (L-arabinose 0.25%). Cooperators are labeled with GFP (green) and defectors are labeled with DsRed-Express (red).
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Chuang et al (2009) to investigate cooperation in a synthetic
microbial system. A population of cooperators and defectors
(the global population) is distributed heterogeneously into
colonies (or local subpopulations) of varying mixing propor-
tions. Each colony is allowed to compete and, at the end,
all colonies are pooled together. The change in the total
proportion of cooperators in the global population is given by
the average across all subpopulations (Figure 4). It is
important to note that this average is a weighted average that
takes into account the fitness of each individual colony,
because colonies with greater fitness contribute more to the
global pool.

The approach is based on the multilevel selection frame-
work of the Price equation (Price, 1970). Applied to our
system, the Price equation partitions the global change in the
proportion of cooperators, Dp, into its group-level and
individual-level selection components:

EðwiÞDp ¼ covðpi;wiÞþ EðwiDpiÞ ½1�
Here, wi is the fitness of a colony i and its value is a function

of the proportion at which cooperators are initially mixed with
defectors in that colony (pi). The change in cooperator
proportion within the colony, Dpi, quantifies individual-level
selection. E(wi) is the average fitness across all colonies that
make up the global population. The Price equation highlights
that, assuming that the initial population density is the same in
all subpopulations, we need only to know the following three
quantities to determine whether cooperators are favored by
multilevel selection (Dp40):

1. The change in cooperator proportion in a colony as a
function of the mixing proportion, Dpi(pi).

2. The colony fitness as a function of the mixing proportion,
wi(pi).

3. The distribution of cooperators across all colonies.

Points 1 and 2 are addressed using data from our swarming
competitions (Figure 3B and C). To interpolate the data for the
entire range 0ppip1, we developed a population dynamics
model (see Materials and methods) that we parameterized by
fitting the experimental data (lines in Figure 3B and C).
Although simpler statistical regressions could also be used
to interpolate such data (Smith et al, 2010), a population
dynamics model offers the advantage that the parameters
obtained provide mechanistic insight. We tested the model by
fitting two additional sets of competition experiments carried
out at 0% L-arabinose (low levels of cooperation) and 4% L-
arabinose (high levels of cooperation; Supplementary Figure
S2). The parameters allowed us to calculate relative growth
yields of cooperators and defectors as a function of the level of
biosurfactant induction (Figure 3D). Consistent with induced
surfactant synthesis carrying a metabolic burden (Xavier et al,
2011), the growth yield of cooperators decreased relative to
that of defectors with the increasing level of surfactant
induction. When the mathematical model is suitably para-
meterized (Supplementary Table 1) it provides functions for
Dpi(pi) and wi(pi).

Point 3, the distribution of mixing proportions across all
colonies, is crucial because it sets the genetic relatedness
between the actors and recipients. Relatedness, as defined in
Hamilton’s kin selection (Hamilton, 1964), quantifies the
similarity of actors and recipients at loci relevant to coopera-
tion (Smith et al, 2010). Relatedness is calculated here from the
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distribution of cooperator mixing proportions in the subpo-
pulations using the following expression (Grafen, 1985;
Damore and Gore, 2012):

r ¼ VarðpiÞ
EðpiÞ� EðpiÞ2

½2�

Equation 2 highlights the importance of the mean, E(pi), and
variance, Var(pi), of the mixing proportions seeding the
colonies. In the absence of any process generating variance,
all colonies will be founded with the same proportion as the
global population, E(pi)¼ p. In this situation, relatedness is
null (r¼ 0), individual-level selection prevails and costly
cooperation is disfavored. When variance is extremely high
and the two strains segregate entirely, for example if a single
cell seeds each colony, relatedness is maximal (r¼ 1) and
group-level selection prevails. In real systems, relatedness may
have intermediate values and be generated by different
processes such as population bottlenecks (Chuang et al,
2009; Nadell et al, 2010), by cooperators physically sticking
to each other (Smukalla et al, 2008) or other sources of
population viscosity (Queller, 1994). Here, we keep our
analysis general by using a statistical model based on a log-
normal distribution for the ratio of cooperators to defectors
(the logarithm of the cooperator-to-defector ratio follows a
normal distribution with mean m and standard deviation s; see
Materials and methods). Defined this way, the probability
density function for mixing proportions, named f(pi), has the
convenient feature that it transits gradually from a unimodal
distribution (which corresponds to low segregation) to a
bimodal distribution (strong segregation) by increasing a
single parameter, s (Figure 5A). The variance is a mono-
tonically increasing function of s (see Materials and methods)
and, consequently, relatedness increases with s (Equation 2,
note that E(pi)¼ pE1/(1þ10� m)). This model of population
structure allows simulating scenarios where the mean fraction
of cooperators varies while s remains constant. We would
expect s to remain constant whenever there is a fixed
population viscosity at small-length scales that is negligible
for within-colony cooperation but high enough to influence
seeding of the next round of competitions.

With the three tools in hand, Dpi(pi), wi(pi) and f(pi), we
investigated multilevel selection computationally in the
following way: for a given proportion of cooperators in the
global population, p, we generate subpopulations according
to f(pi). We then use Dpi(pi) and wi(pi) to calculate the
competition outcome in each subpopulation. Finally, we
calculate the change in the global proportion of cooperators,
Dp, using Price equation. Again, the final cooperator propor-
tion corresponds to a simple calculation of the weighted
average of pi across all subpopulations using the normalized
colony fitness, wi/E(wi), as the weight parameter (equation 1).

Multilevel selection requires high relatedness to
favor costly swarming

To understand whether multilevel selection can favor swarm-
ing cooperation, we first investigated a population with a
global proportion of cooperators equal to 0.5 (Figure 5B).
Multilevel selection simulations showed, as expected, that
cooperators are outcompeted when the variance across all
colonies is low (low s, corresponding to a low relatedness).
Keeping the global proportion fixed at 0.5 but increasing the
variance increases cooperation advantage progressively: with
higher variance, it is more likely to have colonies seeded with
large proportions of cooperators, which favors cooperation.
Cooperators are eventually favored when s41 (r40.53).

We tested the simulation results with direct calculations
from experimental data. These calculations did not rely on the
mathematical model but were rather carried out by re-
sampling the swarming competition data (Figure 3B and C)
to re-create global populations with cooperator proportions of
0.5 and four different relatedness values (see Materials and
methods). The calculations confirmed our simulation results
(Figure 5B, data points).

Finally, we simulated multilevel selection for the full range
of global cooperator proportions (Figure 5C). The simulations
revealed that, because of the diminishing returns noted earlier
(Figure 3C), intermediate values of s produce an evolutionary
equilibrium where cooperators and defectors coexist
(Supplementary Figure S3B). The diminishing returns make
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it particularly difficult for cooperation to spread beyond the
fraction at which the diminishing returns set in and, therefore,
cooperators only reach fixation (Dp40 for all values of p)
when s44.2 (Supplementary Figure S3C). The corresponding
value of relatedness is r40.84 (calculated for p¼ 0.5), which
is a very high value. Intuitively, this means that if the process
generating relatedness were stochastic sampling of a diluted
population (Chuang et al, 2009) then subpopulations would
have to be inoculated with an average of 0.65 cells/colony, an
extremely low number. Swarming colonies inoculated by
extremely low numbers of cells could potentially lead to very
different results (a subject that we will address in a future
study). The requirement for high relatedness is due to a
combination of strong individual-level selection against
cooperation (Figure 3B) and diminishing returns in the
group-level benefits (Figure 3C; Supplementary Figure S3B).
Consequently, costly swarming cooperation can be favored by
multilevel selection to the point of reaching fixation but only
when the genetic relatedness is very high.

Expansion-driven versus growth-driven
cooperation

The calibrated multilevel selection model was also used to
test new hypotheses computationally by simulating new

competitions beyond the experimental conditions. We asked
whether swarming cooperation could still be favored when
subpopulations competed for longer periods. Simulations
predict that longer competitions would not affect the outcome
and that after 48-h competitions cooperators could still reach
fixation for s44.2 (Supplementary Figure S4). We compared
these simulations with a different cooperative scenario inspired
by the study by Chuang et al (2009): growth-driven coopera-
tion. In that system, a costly extracellular signal induces
antibiotic resistance in its recipients. Such a trait boosts the
population growth rate but does not cause population expan-
sion. Therefore, as Chuang et al (2009) noted, the benefits are
only felt if the competitions end during the limited time span of
exponential growth. Whereas the benefits of swarming
cooperation can last beyond the exponential growth phase,
the population benefits of growth-driven cooperation should be
transient (Figure 6A, see Materials and methods for model
implementation).

Our simulations of growth-driven cooperation showed
indeed that when growth-driven subpopulations are allowed
to reach carrying capacity, such as in 48-h long simulations,
the benefits of cooperation are lost and the cooperator strain
loses globally irrespective of the relatedness value (Figure 6C).
In summary, purely growth-driven cooperation, which
does not increase carrying capacity, is likely to be disfavored
when competitions are long enough. In contrast, swarming
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cooperation is robust to longer competitions because spatial
expansion increases population carrying capacity, thus bene-
fiting the colony in a time-independent way.

Prudent cooperation is widely favored by
multilevel selection

Our multilevel selection analysis shows that swarming
cooperation by a constitutive cooperator can be favored to
fixation even when it is costly, but only when relatedness is
high (Figure 5C). In the absence of an active mechanism to
increase relatedness such as kin recognition or high popula-
tion viscosity, the dependence on high relatedness is a
stringent constraint that makes costly swarming unlikely in
natural populations where strains and species mix (West
et al, 2006). We therefore investigated the effect of multi-
level selection on metabolic prudence, the native regulatory
mechanism of rhamnolipid secretion in P. aeruginosa
(Figure 1A). We carried out experimental competitions at a
range of mixing proportions between the wild-type and the

defector strain and, as we had done before for the inducible
cooperator, we measured changes in wild-type proportion and
colony fitnesses. The examination of a wide range of mixing
proportions revealed that, in contrast to induced cooperators
(Figure 3B and C), prudent wild-type cooperators were not
disfavored by individual-level selection but actually had a
marginal advantage (Figure 7A). Moreover, colony fitness
increases steadily with the initial proportion of cooperators,
showing comparatively little signs of diminishing returns
(Figure 7B). We parameterized our dynamic model of
swarming competitions for the wild type (Figure 7A and B,
lines). In support of previous results (Xavier et al, 2011), the
growth yields obtained from model fitting showed that, unlike
induced cooperation, metabolic prudence can increase colony
fitness without a detriment to cooperator yields (Figure 7C).
We then analyzed multilevel selection. As expected from the
marginal advantage in individual-level selection and the
absence of diminishing returns, multilevel selection favored
wild-type cooperators at all levels of variance in subpopulation
mixing proportions. We also investigated whether the
small advantage is essential for the success for wild-type
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cooperators. The results show that even if wild-type cells had
no advantage at the individual level and had the same yield as
defectors, the wild-type strain would still be favored after
multi-level selection thanks to the absence of diminishing
returns (Supplementary Figure S5). Furthermore, increasing
colony variance (higher relatedness) enhances the advantage
of prudent cooperators both in the original scenario
where wild-type cells have an individual-level advantage and
in the neutral theoretical case (Figure 7D and Supplementary
Figure S5, respectively).

Conclusion

The evolution of cooperative traits is a central problem in
biology (Pennisi, 2005). What are the evolutionary mechan-
isms favoring cooperation when costly cooperative traits that
benefit other individuals cannot be favored by selection acting
at the individual level alone? Microbial systems are becoming
increasingly popular as models to address this question
experimentally and in a quantitative way thanks to large
population sizes, short generation times and the ability to
manipulate traits genetically (West et al, 2006; Xavier, 2011b;
Damore and Gore, 2012; Celiker and Gore, 2012a).

But while social evolution is learning considerably from the
interface with microbiology the reverse may not be true. In the
microbiology literature, social traits are often explained using
group-selection arguments (Costerton et al, 1999; Monds and
O’Toole, 2009; Lee et al, 2010). This logic, sometimes referred
in the evolutionary literature as the original or ‘old’ type of
group selection (West et al, 2007), was introduced by Wynne-
Edwards in the 1960s and argues that cooperation is favored
because groups of cooperative individuals are fitter than
groups of selfish individuals (Wynne-Edwards, 1963). How-
ever, the same logic neglects that traits that are costly to
individuals would be outcompeted within group selection
(West et al, 2006; Foster and Bell, 2012). The solution to this
problem comes from recognizing that natural selection acts at
multiple levels of biological organization, an idea first
introduced in Hamilton’s kin selection (Hamilton, 1964), and
‘modern’ forms of group selection (Traulsen and Nowak,
2006) are equivalent (Lehmann et al, 2007). The Price
equation (Equation 1) is one generalization of this idea that,
as we illustrate here, is particularly suited for the quantitative
analysis of microbial social traits. Recognizing that selection
acts at multiple levels is key to analyzing microbial social
traits (West et al, 2006) can help reveal novel mechanisms
stabilizing cooperation (e.g., Foster et al, 2004; Xavier and
Foster, 2007; Ostrowski et al, 2008; Nadell et al, 2010; Nadell
and Bassler, 2011; Xavier et al, 2011; Dandekar et al, 2012;
Celiker and Gore, 2012b; Koschwanez et al, 2013), and can
eventually inspire therapeutic strategies against pathogens
(Foster, 2005; Brown et al, 2009; Boyle et al, 2013).

We combined quantitative experiments with mathematical
modeling to identify conditions favoring costly cooperative
swarming P. aeruginosa (Figure 3B and C). Using an
engineered strain enabled us to manipulate cooperation and
to show that in spite of individual-level costs, costly swarming
can still be favored under specific conditions. However, the
conditions allowing the spread of constitutive cooperation are

limited. This is in part due to high costs of cooperation but
also, to large extent, due to strong diminishing returns
(Figure 3C), a feature that is likely to be common in
cooperative systems (Foster, 2004). Because population-level
benefits of constitutive cooperation level off when the
cooperator proportion is p40.5, it is difficult for cooperation
to spread beyond this value (Supplementary Figure S3B). As a
consequence, the evolution of constitutive cooperation can
require extremely high relatedness, which is unlikely in
natural populations where strains and species mix. We also
show that metabolic prudence, the native mechanism to
regulate rhamnolipid synthesis in P. aeruginosa (Xavier et al,
2011), is particularly advantageous because it provides a small
direct benefit to cooperators (Figure 7A) and lacks the strong
diminishing returns (Figure 7B). The marginal benefit of
metabolic prudence in within-colony competitions is amplified
by multilevel selection (Figure 7D), and greatly expands the
conditions favoring swarming cooperation.

In our multilevel selection simulations, we assumed that the
subdivision of the global population into subpopulations
follows a distribution with the same variance at every round.
This is a common assumption in social evolution models that
can be plausible under certain conditions, for example, limited
dispersal. It is also possible, however, that the variance in
the formation of subpopulations would change from one
competition round to the next, causing the distribution of
subpopulations to fluctuate in time. In this scenario, we expect
that the evolution of the wild-type strain would be favored
even more compared with the inducible cooperator strain,
because the wild type is able to win in each competition
against defectors irrespective of how the global population is
sampled.

A notable conclusion from our study is that the spatial
expansion caused by swarming provides persistent benefits to
a population (Figure 6C; Supplementary Figure S4). Popula-
tion growth is always limited by a carrying capacity (e.g.,
Brown et al, 2004). Cooperative traits that, unlike swarming,
boost growth rate without expanding carrying capacity can
only have transient benefits, and therefore are less likely to be
favored by multilevel selection when competitions are long
(Figure 6A). In fact, Chuang et al (2009) had noted that, in their
synthetic system, cooperators were favored by multilevel
selection only if the subpopulations were sampled during the
exponential growth phase; once the populations reached
stationary phase the cooperative benefits would disappear.
These results also relate to the long-studied differences
between r and K selection, where r refers to the maximal
intrinsic growth rate and K refers to carrying capacity (Pianka,
1970; MacArthur and Wilson, 2001). An r-strategy depends on
traits associated with rapid growth (high fecundity, early
maturity and short generation times) and is suitable for
primary colonizers of new environments (Loya, 1976).
However, in stable environments, quality overcomes quantity
and K-strategies that grow slower but have larger carrying
capacity have the competitive advantage and can displace r-
selected species (Pianka, 1970). In the case of social traits, a
cooperative trait that only increases growth rate is comparable
to an r-strategy as its benefits are transient. Meanwhile, a
cooperative trait that benefits the population by allowing it
to grow to a larger carrying capacity is comparable to a
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K-strategy. Our work is also consistent with theory (Lehmann
et al, 2006; Alizon et al, 2008; Houchmandzadeh and Vallade,
2012) and recent experimental studies (Datta et al, 2013; Van
Dyken et al, 2013) showing that population range expansion
can be a key factor in stabilizing the evolution of cooperation.

There are many examples of microbial social traits that
expand carrying capacity even without explicit spatial expan-
sion. Sharing of iron scavenging molecules (West et al, 2006)
and digestive enzymes (Greig and Travisano, 2004; Griffin
et al, 2004; Gore et al, 2009) can expand the achievable size of
a nutrient limited population in shaken test tubes. Similarly,
high-yield metabolic pathways allow a population to make
more efficient use of nutrients and thus to achieve higher
numbers in spite of slower growth (Pfeiffer et al, 2001; Kreft,
2004; Frank, 2010). Expansion of carrying capacity can thus be
achieved by many different means in addition to spatial
spreading. We therefore expect that cooperation by prudent
expansion of carrying capacity, rather than fast growth, is
more stable and more commonly found in nature.

Materials and methods

Bacterial strains and swarming assays

The construction of the Pseudomonas aeruginosa strains and their GFP
and DsRed-Express varieties was described previously (Xavier et al,
2011). All bacteria were cultured in LB (Lysogeny Broth) liquid
medium overnight, followed by triple washing 1 ml with saline buffer.
Labeled strains were mixed at different ratios to inoculate in Petri
dishes with soft agar (0.5% agar). Minimum medium for soft agar
plates was prepared as described previously (Xavier et al, 2011) with
the addition of L-arabinose when needed. Serial dilutions were done
for each of the cell mixes and CFUs (colony forming units) were
also counted out as previously described (Xavier et al, 2011). All
incubations were at 371C. Fluorescently labeled strains were counted
from plates imaged with fluorescent scanner Amershan Typhoon 9400
(GE Healthcare). Color pictures of swarming colonies were obtained
using the same fluorescent scanner.

Mathematical modeling

We model swarming competitions as two strains, cooperators (C) and
defectors (D), competing for a finite nutrient source (N) in a closed
system representing the Petri dish. The model consists of three simple
ordinary differential equations:

dC
dt ¼ qYC

N
N þKn

C

dD
dt ¼ qYD

N
N þKn

D

dN
dt ¼ � q N

N þKn
ðCþDÞ

½3�

which implement Monod growth kinetics with Kn as the half-
saturation constant (Monod, 1949). Both competing strains consume
nutrients at the same rate, q, but cooperators may have a lower growth
yield than defectors, YCoYD, if biosurfactant production is costly. If we
now consider that Kn�N0 for Na0:

dC
dt ¼ qYCC

dD
dt ¼ qYDD

dN
dt ¼ � qðCþDÞ

½4�

if N¼ 0, then growth halts and dC
dt ¼ 0, dD

dt ¼ 0, dN
dt ¼ 0. Therefore, both

strains grow exponentially while nutrients are available but stop
growing once nutrients run out (zeroth order kinetics). We assume that
the maximum amount of nutrients a colony will have access to (N0) is
determined at the very beginning of the competition by the proportion
of cooperators in the initial mixing of the two competing strains,

pi¼C0=ðC0þD0Þ. We observed empirically that when pip0.5, the
achieved population size, and therefore N0, increases quickly with
small pi increments, however saturates for piX0.5 (Figure 3b).
Therefore, we describe N0 as a sigmoidal function that captures our
empirical observation of diminishing returns:

N0ðpiÞ ¼
NmaxNminegpi

NmaxþNminðegpi � 1Þ ½5�

Nmin represents the amount of nutrients that a non-swarming
population (pi¼ 0) can take up. Nmax represents the maximum amount
of nutrients that a swarming colony composed entirely of cooperators
(pi¼ 1) can consume. The coefficient g is the rate by which available
nutrients increase as a function of pi. To simulate growth-driven
cooperation (Figure 4), we used a modified version of our model such
that the growth rates, not the available nutrients, increase in the
presence of cooperators. N0 is constant and the rate of nutrient uptake
q is a function of pi:

qðpiÞ ¼ qDþðqC � qDÞpi ½6�

qD and qC are defined as the rate at which a population of only defectors
or only cooperators takes up nutrients, respectively. In the simulations
of growth-driven cooperation, we set qD¼ 0.5 and qC¼ 1 as a
population of pure cooperators has a higher growth rate than a
population of pure defectors. All simulations and parameter fitting
(see supporting Table I) were carried out in Matlab (R2011a, the
Mathworks).

Probability density function

The probability density function f(pi) is defined such that that the ratio
of cooperators to defectors, C/D, follows a log-normal distribution.
The random variable X¼ log10(C/D) is therefore normally distributed
(XBN(m,s)); and random variable pi¼C/(CþD), the proportion of
cooperators in the population, is a function of X such that pi¼
g(X)¼ (1þ10�X)� 1. The variance and mean of pi were approximated
through the Delta method using first-order Taylor expansions of g(x)
around X¼ m. E(pi)E(1þ10� m)� 1 and Var(pi)Eg0(m)2s2. The prob-
ability density function of pi has the analytical expression:

fðpiÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp � 1

2

log10 pi=ð1� piÞð Þ� m
s

� �2
 !

� 1

lnð10Þðpi� p2
i Þ

����
����
½7�

Direct calculations of multilevel selection

To confirm the prediction from multilevel selection (Figure 5B), we re-
sampled experimental data by selecting equal number of data points
with initial cooperator proportion (pi) of 17 and 83% to generate a
global population with initial p¼ 0.5. The final proportion of
cooperators was used to calculate the global Dp as well and the
relatedness value corresponding to s. The same was done using the
data points from initial local cooperator proportions (pi) of 1 and 99%.
The data corresponding to initial pi¼ 0 and pi¼ 1 were used to
determine the asymptotic value of Dp for r¼ 1.

Surfactant quantification

The relative amount of rhamnolipids produced by the inducible strain
in the absence and presence of defectors was quantified using an
anthrone assay (Xavier et al, 2011) to assess rhamnose production in
the defector, the wild-type and the inducible strains alone, as well as in
a mix between the inducible strainþ 50% defectors in a liquid medium
with the same composition of the swarming media. The rhamnose
levels were normalized by subtracting the average amount detected
from the defector strain (background) and dividing by the average
amount produced by the wild-type strain. We used a Wilcoxon rank-
sum test to evaluate whether rhamnolipid production by the inducible
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strain alone was significantly different from production in a mix with
50% defectors. The significance test showed that the inducible strain’s
rhamnolipid production is different from the inducibleþ 50% defector
strain with P-value¼ 0.028. We also found that when comparing half
of the amount of secreted rhamnose by the inducible strain with that of
the mix with 50% defectors, there was no significant difference with a
P-value of 0.382.

Supplementary information

Supplementary Information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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