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Abstract
DNA Copy number variation (CNV) has recently gained considerable interest as a source of
genetic variation that likely influences phenotypic differences. Many statistical and computational
methods have been proposed and applied to detect CNVs based on data that generated by genome
analysis platforms. However, most algorithms are computationally intensive with complexity at
least O(n2), where n is the number of probes in the experiments. Moreover, the theoretical
properties of those existing methods are not well understood. A faster and better characterized
algorithm is desirable for the ultra high throughput data. In this study, we propose the Screening
and Ranking algorithm (SaRa) which can detect CNVs fast and accurately with complexity down
to O(n). In addition, we characterize theoretical properties and present numerical analysis for our
algorithm.
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1. Introduction
The problem of change-points detection has been studied by researchers in various fields
including statisticians, engineers, economists, climatologists and biostatisticians since
1950s. We refer to Bhattacharya (1994) for an overview of this subject. In this paper, we
focus on a high dimensional sparse normal mean model

(1.1)

where Y = (Y1, …, Yn)T is a sequence of random variables, its mean μ = (μ1, …, μn)T is a
piecewise constant vector and the errors εi are i.i.d. ~ N(0,σ2). A change-point in this model
is a position τ such that μτ ≠ μτ+1. Assume that there are J change-points 0 < τ1 < … < τJ <
n. We are interested in the case when n is large, and J is small. The goal is to estimate the
number of change-points, J, and the location vector τ = (τ1, …, τJ)T. Note that all positions
are potential candidates for a change-point, which makes the problem high dimensional and
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hard to solve. However, the small J implies the sparse structure of the model, which we can
utilize to develop fast and efficient algorithms.

1.1. Background
The main motivation of this project is to develop efficient statistical techniques for DNA
copy number variation (CNV) detection, for which model (1.1) plays an important role, for
example, Olshen et al. (2004), Huang et al. (2005), Zhang and Siegmund (2007), Tibshirani
and Wang (2008), among others. The DNA copy number of a region is the number of copies
of the genomic DNA. CNV usually refers to deletion or duplication of a region of DNA
sequences compared to a reference genome assembly. Recent studies in genetics have shown
that CNVs account for a substantial amount of genetic variation and provide new insights in
disease association studies [Freeman et al. (2006), McCarroll and Altshuler (2007)].
Identification of CNVs is essential in the systematic studies of understanding the role of
CNV in human diseases. Over the last decade, efforts have been made to detect DNA copy
number variation with the help of significant advances in DNA array technology, including
array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP)
genotyping platforms, and next-generation sequencing. We refer to Zhang et al. (2009) for a
nice review of these technologies. These various platforms and techniques have provided a
large amount of data that are rich in structure, motivating new statistical methods for their
analysis.

1.2. Current segmentation methods
Historically, the case that there is at most one change-point in model (1.1) has been
intensively studied. See Sen and Srivastava (1975), James, James and Siegmund (1987),
among others. The problem of single change-point detection is equivalent to the following
hypothesis testing problem:

(1.2)

Let Sk be the partial sum of observations . WhenVar(Yi) is known, a commonly used
test statistic is the log likelihood ratio statistic

(1.3)

The log likelihood ratio test is usually satisfactory although the distribution of Tn is quite
complicated. We refer to CsörgŐ and Horváth (1997) for the theoretical analysis of the log
likelihood ratio test.

When there are multiple change-points, the problem is much more complicated. Here we
briefly review several popular approaches, including an exhaustive search with the Schwarz
criterion [Yao (1988), Yao and Au (1989)], the circular binary segmentation method
[Olshen et al. (2004), Venkatraman and Olshen (2007)] and the ℓ1 penalization method
[Huang et al. (2005), Tibshirani et al. (2005), Tibshirani and Wang (2008)].

To estimate J and τ, an exhaustive search among all possibilities  and

 can be applied, theoretically. Let . For each candidate ,

the MLE for the variance, , can be calculated by the least squares method. Yao (1988),
Yao and Au (1989) applied the Schwarz criterion, or the Bayesian Information Criterion
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(BIC), to estimate the number and locations of change-points and showed the consistency of
the estimate. In particular, the number of change-points is estimated as

(1.4)

Once  is determined, the location estimator is defined as

Unfortunately, when n is large, these estimators are not attainable due to the computational
complexity. Braun, Braun and Müller (2000) employed a dynamic programming algorithm
to reduce the computational burden to the order of O(n2). But it is still computationally
expensive for large n.

An alternative approach is through the binary segmentation method, which applies the single
change-point test recursively to determine all the change-points. As pointed out in Olshen et
al. (2004), one of the drawbacks is that the binary segmentation can hardly detect small
segments buried in larger ones. To overcome this problem, Olshen et al. (2004) introduced a
Circular Binary Segmentation (CBS) method and applied it for CNV detection. Lai et al.
(2005) compared 11 algorithms on the segmentation in array CGH data and reported that
CBS is one of the best. However, they found that CBS was also one of the slowest
algorithms. The computational complexity of these recursive algorithms are at least O(n2).
Venkatraman and Olshen (2007) proposed a faster CBS algorithm by setting an early
stopping rule. The improved algorithm works much faster in practice without loss of much
accuracy.

Another alternative to exhaustive searching is the ℓ1 penalization approach. Huang et al.
(2005) studied the change-points detection problem via the following optimization problem:

(1.5)

Tibshirani and Wang (2008) applied the fused lasso [Tibshirani et al. (2005)] for change-
points detection, which

They added one more constraint since they assume that μ itself is a sparse vector.

In fact, the simpler one of the above two, that is, (1.5), is equivalent to the lasso after a
reparametrization ξj = μj+1 − μj, j = 1, …, n − 1. The complexity of the fastest algorithm to
solve the lasso is at least O(n2) [Friedman et al. (2007)]. See also recent developments on
the fused lasso [Rinaldo (2009), Hoefling (2010), Zhang et al. (2010), Tibshirani and Taylor
(2011)].

We consider all aforementioned methods as global methods, in the sense that they use all
data points repeatedly in the process of determining change-points. Consequently, the
algorithms are usually computationally expensive. To the best of our knowledge, the
algorithms for the change-point detection that possess consistency properties have the
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computational complexities in the order of O(n2) or higher, although there are other
algorithms that are shown to be fast numerically but whose theoretical properties in
consistency and computational complexities are not well understood. As pointed out in
Braun, Braun and Müller (2000), the construction of efficient O(n) algorithms which scale
up to large sequences remains to be an important research topic.

Last but not least, it is worth mentioning that the PennCNV [Wang et al. (2007)] is a fast
and efficient algorithm to detect CNVs, although it is based on a different model from (1.1).

1.3. An approach via local information
To detect the change-points, we need to examine the sequence both globally and locally.
Heuristically, there should exist a neighborhood around a change-point that contains
sufficient information to detect the change-point. For instance, it is unlikely for the value of
Y10,000 to contribute much information for detecting a change-point around the position 100.
Therefore, global methods mentioned in the last subsection may not be efficient. By
focusing on a local region, we can reduce the computational burden, especially when the
data set is huge. Based on this philosophy, we propose the Screening and Ranking algorithm
(SaRa), which is a powerful change-point detection tool with computational complexity
down to O(n).

Roughly speaking, the idea is to find a locally defined diagnostic measure D to reflect the
probability of a position being a change-point. By calculating the measure D for all
positions, which we call the screening step, and then ranking, we can quickly find a list of
candidates that are most likely to be the change-points. In fact, such diagnostic measures
have been proposed and used in related literature, for example, Yin (1988), Gijbels, Hall and
Kneip (1999). For example, at a point of interest x, a simple diagnostic function is the
difference of the average among observations on the left-hand side and the right-hand side,

that is, . The larger |D(x)| is, the more likely that x is a
change-point. Note that, to calculate D(x), we need only the data points near the position x.
Therefore, the strategy through a local statistic can save a lot of time, compared to global
methods. Moreover, we will show that this fast algorithm is also accurate by theoretical and
numerical studies. In particular, the SaRa satisfies the sure coverage property, which is
slightly stronger than model consistency.

To summarize, the local methods are usually more efficient than global ones to solve the
change-points problem for high-throughput sequencing data, and it is feasible to evaluate
their computational and asymptotic properties. With these merits, we believe the local
methods have been under utilized and deserve more attention and development in solving
change-points problems.

This paper is organized as follows. In Section 2 we introduce the screening and ranking
algorithm to solve the change-points problem (1.1). In Section 3 we study the theoretical
properties of the SaRa and show that it satisfies the sure coverage property. Numerical
studies are illustrated in Section 4. Proofs of theorems and lemmas are presented in the
supplementary material [Niu and Zhang (2012)].

2. The screening and ranking algorithm
2.1. model (1.1) revisited

In model (1.1), assume the mean of each variable in the j th segment is βj, that is, μi = βj, for
all integers i ∈ (τj, τj+1. For clarity, the errors εi are assumed to be i.i.d. N(0,σ2) as before,
although the normality may be relaxed. Note that in some of the existing work, the step
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function μ is defined as a left-continuous function on unit interval [0, 1], and change-points
0 < t1 < … < tJ < 1 are discontinuities of μ(x). Two notations are consistent with convention

 and tj = τj/n.

For 0 ≤ J < ∞, we refer to the Gaussian model (1.1) with J change-points as . After a

reparameterization of , that is, δj = βj − βj−1, J = 1, …, J, model  has
parameters

to be determined. Let τ = (τ1,…, τn) and = δ = (δ1,…, δn) be the change-points location
vector jump-size vector, respectively. The purpose is to estimate J as well as the model
parameter vector θ. Since n is large and J ≪ n, the variance σ2, or an upper bound of σ2, can
be easily estimated. Once J and τ are well estimated, β0 and δ can be estimated by the least
squares method. In short, the main task is to estimate the number of change-points J and the
location vector τ.

Roughly speaking, to detect the change-points in model (1.1), the SaRa proceeds as follows.
In the screening step, we calculate at each point x a local diagnostic function D(x) which
depends only on the observations in a small neighborhood [x − h, x + h]. In the ranking step,

we rank the local maximum of the function |D(x)| and the top  points  will be the
estimated change-points, where  can be determined by a thresholding rule or Bayesian
information criterion.

In the following subsections, we describe the SaRa in detail.

2.2. Local diagnostic functions
We begin with the local diagnostic function which is crucial in the SaRa. Roughly speaking,
an ideal local diagnostic statistic at a position, say, x, is a statistic whose value directly
related to the possibility that x is a change-point. For model (1.1), we first introduce two
simple examples of a local diagnostic statistic.

An obvious choice is , for a fixed integer h [Yin
(1988)]. It is simply the difference between averages of h data points on the left side and
right side of x. Heuristically, consider the noiseless case in which Y = μ is a piecewise
constant vector. D(x) is simply a piecewise linear function, whose local optimizers
correspond to the true change-points. Obviously, the quantity of D(x) reflects the probability
that x is, or is near to, a change-point.

An alternative choice is the “local linear estimator of the first derivative,” studied in Gijbels,
Hall and Kneip (1999). Intuitively, if we use a smooth curve to approximate the true step
function μ, the first derivative or slope of the approximation curve should be large around a
change-point and near zero elsewhere. The approximation curve as well as its first derivative
can be calculated easily by local polynomial techniques. Therefore, a local linear estimator
of the first derivative is a reasonable choice for the local diagnostic statistic.

In both examples above, the local diagnostic statistics are calculated as linear
transformations of data points around the position of interest. We may consider a more
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general form of local diagnostic functions, which is the weighted average of Yi's near the
point of interest x,

where the weight function wi(x) = 0 when |i − x| > h.

In the first example, we have

(2.1)

To present the weight vector in a kernel, K(u), the weight can be chosen as

, where Kh(u) = h−1 K(u/h). The equal-weight case (2.1) is a

special case corresponding to the uniform kernel .

For the second example, at the point of interest x, the local linear estimator of the first
derivative is

, where , and

. Note that this is simply the local linear estimator for
the first derivative with kernel K(u) and bandwidth h. See Fan and Gijbels (1996) or Gijbels,
Hall and Kneip (1999). In the supplementary material [Niu and Zhang (2012)], a class of
more general local diagnostic statistics is introduced.

In all numerical studies within this paper, we use only the equal-weight diagnostic function
(2.1) for properly chosen h, because of the piecewise constant structure of the mean μ. In
Section 2.5 we discuss the choices of weight and bandwidth in detail. From now on, we
denote the diagnostic function by D(x, h) when h is specified. When the context is clear, we
may simply use D(x).

2.3. The screening and ranking algorithm
Given an integer h, the local diagnostic function D(x, h) can be calculated easily. Obviously,
a large value of |D(x, h)| implies a high probability of x being or neighboring a change-point.
Therefore, it is reasonable to find and rank the local maximizers of |D(x, h)|. To be precise,
we first define the h-local maximizer of a function as follows.

DEFINITION. For any number x, the interval (x − h, x + h) is called the h-neighborhood of x.
And, x is an h-local maximizer of function f(·) if f reaches the maximum at x within the h-
neighborhood of x. In other words,
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.

Since we always consider the h-local maximizer of |D(x, h)|, we may omit h when the
context is clear. Let  be the set of all local maximizers of the function |D(x, h)|. We

select a subset  by a thresholding rule

(2.2)

.

The index set, , and  are the SaRa estimators for the locations and the number of
change-points, respectively. A choice of the threshold λ by asymptotic analysis is given in
Section 3. An alternative way to determine  is by a Bayesian-type information criterion
[Yao (1988), Zhang and Siegmund (2007)]. By ranking local maximizers of |D(x)|, we get a
sequence x1, x2,… with |D(x1)| > |D(x2)| > … Plugging the first  xi's into

, where  is the MLE of the variance assuming  are change-points. Then

 is the estimate for the number of change-points and

 is the estimate for the location vector, where x(·) are the order
statistics of . The procedure for the modified BIC, proposed in Zhang and
Siegmund (2007), is the same as the BIC except using

, where .

2.4. Computational complexity
One of the advantages of the SaRa is its computational efficiency. To calculate the SaRa
estimator, there are three steps: calculate local diagnostic function D, find its local
maximizers, and rank the local maximizers. For the equal-weight case, it takes O(n)
operations to calculate D, thanks to the recursive formula

. Moreover, 2n comparisons are sufficient to find local maximizers of D. Note that there are

at most n/h of h-local maximizers by definition, which implies that only 
operations are needed to rank these local maximizers. As h is suggested to be O(log n) by

asymptotic analysis, . In fact, by the thresholding rule, we may not have to
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rank all the local maximizers, which can save more time. Altogether, it takes O(n)
operations to calculate the SaRa estimator.

For the general case, the computational complexity is O(nh) = O(n log n). Therefore, the
SaRa is more efficient than the O(n2) algorithms.

2.5. The multi-bandwidth SaRa
In the SaRa procedure, involved are several parameters such as bandwidth h, weight w and
threshold λ. Although we give an asymptotic order of these quantities in Section 3, it is
desirable to develop a data adaptive technique to determine their values.

Similar to other kernel-based methodologies, the choice of the kernel function, or the
weight, is not as crucial as the bandwidth. In this paper, since we consider model (1.1) with
piecewise constant mean μ, the equal-weight (2.1) performs well. In some potential
applications, when the mean μ is piecewise smooth, the local linear estimator of the first
derivative is more appropriate.

Choosing the optimal bandwidth is usually tricky for algorithms involving bandwidths. To
better understand the bandwidth selection problem, let us look at the local diagnostic
statistic D(x) more carefully. In fact, D(x) is just a statistic used to test the hypothesis

H0 : there is no change at x vs H1 : there is a change at x. Consider the simplest case when
there is no other change-point nearby. We have

(2.3)

, where δ is the difference between the means on the left and right of x. Obviously, the larger
the h is, the more powerful the test is. Therefore, when applying the SaRa to detect change-
points, we prefer to use long bandwidth for a change-point at which the mean function
jumps only slightly. However, when using a large bandwidth, there might be other change-
points in the interval (x − h, x + h). Then (2.3) does not hold anymore. To lower this risk, we
prefer small bandwidth, especially at a point where the jump size is large. In summary, the
bandwidth is of less concern when the change-points are far away from each other and the
mean shifts greatly at each change-point. Otherwise, we need to choose the bandwidth
carefully. Moreover, the optimal bandwidths for various positions may be different. It is not
an easy task to determine the optimal bandwidth for each position when we do not have any
prior knowledge of change-points.

The choice of the threshold λ is easy if we know in advance that the jump sizes are more
than a constant c for all change-points or we target on only the change-points where the
mean shifts tremendously. Otherwise, the choice can be tricky. If we do not use a uniform
bandwidth for all points, we may have to use different thresholding rules for different
positions.

From the discussion above, we see that it is necessary to develop a data-adaptive method for
parameter selection to enhance the power of the SaRa. Here we propose the multi-bandwidth
SaRa, which can choose the bandwidth and threshold implicitly and data-adaptively for each
change-point. The procedure of multi-bandwidth SaRa is as follows. In Step 1, we select
several bandwidths, say, h1, …, hK, and run the SaRa for each of these bandwidths. We can

use a conservative threshold, say,  with C = 2 or 3. Note that |D(x, hk)|, k = 1,
…, K, typically have different local maximizers, especially when the signal-to-noise ratio is
small. We collect these SaRa estimators which constitute a candidate pool with a moderate
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size. In Step 2, we may apply the best subset selection with a BIC-type criterion [Yao
(1988), Zhang and Siegmund (2007)] to the candidate pool. For example, (1.4) can be used
to estimate the number and locations of change-points. That is, the candidate pool has a
much smaller size than n and can cover the true change-points in the sense of Theorem 1 in
Section 3. In practice, we recommend a forward stepwise selection or backward stepwise
deletion instead of the best subset selection when the candidate pool is still big. For instance,
to employ the backward stepwise deletion method, we delete the elements one by one from
the candidate pool. At each step, we delete the one which leads to the least increase for  in

(1.4). The procedure stops if  log n stops decreasing, where J is the of the
remaining candidate pool.

We may consider that the multi-bandwidth SaRa is a combination of local and global
methods. In the first step, the fast local method is employed to reduce the dimensionality. In
the second step, the global method is applied for accurate model selection. Moreover, the
second step also serves as a parameter selection tool for the SaRa. For example, imagine the
case that j = 100 is a change-point, and the SaRa with bandwidths h = 10, 15 and 20
suggests 97, 99 and 105 as the estimates of the change-point, respectively. The second step
of the multi-bandwidth SaRa, that is, the subset selection procedure with the BIC-type
criterion, might suggest 99 as the change-point. In this case, the bandwidth is selected
implicitly as 15. As a result, the multi-bandwidth SaRa behaves like the SaRa with the
optimal bandwidth at each change-point, which is also verified by the numerical studies.
Note that we can use the strategy of the multi-bandwidth SaRa for a single bandwidth h,
which usually improves the performance. The reason is that the SaRa arranges the location
estimators in the order of magnitudes of the local diagnostic functions, while the multi-
bandwidth SaRa can rearrange the order using the best subset selection by making use of
global information, and, hence, the multi-bandwidth SaRa is more reasonable in most cases.
In this procedure, the threshold parameter is selected implicitly for each position by the
subset selection procedure.

The computation cost of Step 2 in the multi-bandwidth SaRa depends on the size of the
candidate pool, which is highly related to the true number of change-points J. With J ≪ n,
the size of the candidate pool can be well controlled by setting appropriate threshold λk.
Thanks to the sequential structure of observations, the backward stepwise selection can be
employed for subset selection efficiently. In applications when n is large, Step 2 will not
increase the computation time significantly.

In practice, we still have to choose bandwidths h1, …, hK for the multi-bandwidth SaRa,
although their values are not as crucial as the one in the original SaRa. The choice of these
bandwidths should depend on the applications, in which certain information may be
available. If not, a default setting of K = 3, h1 = logn, h2 = 2 logn andh3 = 3 log n is
recommended.

3. Sure coverage property
The main purpose of this section is to show that the SaRa satisfies the sure coverage

property. In other words, the union of intervals  selected by the SaRa includes all
change-points with probability tending to one as n goes to infinity. The nonasymptotic
probability bound is shown as well. It will also be clear that the sure coverage property
implies model consistency of the SaRa.

Let J = J(n) be the number of change-points in model (1.1). We denote the set of all change-

points by . We assume τ0 = 0 and τJ+1 = n for notational convenience.
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For simplicity, we assume that the noises are i.i.d. Gaussian with variance σ2. We will use
the equally weighted diagnostic function (2.1) with bandwidth h in this section, but all
theorems can be easily extended for all weights in the family , defined in the

supplementary material [Niu and Zhang (2012)]. We write , defined by the
thresholding rule (2.2), which depends on the choices of the bandwidth h and the threshold
λ.

Define δ = min1≤j≤J |δj|, L = min1≤j≤J+1(τj − τj−1. Intuitively, when δ and L too small, no
methods can detect all change-points. A key quantity for detecting change-points is S2 =
δ2L/σ2. We assume

(3.1)

THEOREM 1. Under Assumption (3.1), there exist h = h(n) and λ = λ(n) such that

 satisfies

(3.2)

where by  we mean  for all j ∈ {1, …, J}. In particular,
taking h = L/2 and λ = δ/2, we have

(3.3)

REMARK 1. We believe Theorem 1 can be generalized to the non-Gaussian case, although we
may need a stronger condition than (3.1) in order to bound the tail probability by Bernstein's
inequality. However, the theoretical results are likely to be more complicated.

REMARK 2. We take h = L/2, λ = δ/2 and constant 32 in Assumption (3.1) for clearer
demonstration of our proof. Obviously the optimal constant in Assumption (3.1) to make
(3.2) hold depends on the choice bandwidth h, threshold λ as well as the usually unknown
true data generating process.

REMARK 3. If L = o(n) [e.g., in Assumption (3.1), δ and σ are constants, L is of order log n], by
Theorem 1, with probability tending to 1, we have  and . In particular,

, which implies consistency [in the sense of Yin (1988), Yao and Au
(1989)] of the SaRa. In fact, the conclusion of Theorem 1 is slightly stronger than model
consistency since it shows  uniformly with an explicit rate. Moreover, in the
conventional asymptotic analysis, it is usually assumed that J is fixed and τi/n → ti is
constant for each i, as n goes to infinity, which implies L/n → constant. Our asymptotic
setting (3.1) is more challenging but it incorporates L, δ and n better.

4. Numerical results
4.1. Simulation I: Detecting for a single change-point

Although the SaRa, as a change-point detecting tool, is designed for large data sets with
multiple change-points, we may also compare its power with classical methods in the
conventional setting. In this subsection, we consider the hypothesis testing problem (1.2)
(with a known variance) and compare the SaRa with the likelihood ratio test (1.3).
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We assume Yi ~ N(μi, σ2) with known σ2 in hypothesis testing problem (1.2). Let n = 100.
The maximum of the diagnostic function max1≤x≤99 |D(x, h)| can serve as a test statistic and
can be viewed as the simplest version of SaRa. We consider only the equal weight case (2.1)
for simplicity. We compare three test statistics, the log likelihood ratio test statistic (1.3) and
the SaRa with bandwidths h = 10 and h = 15. We run 10,000 replications to get distributions
of the three test statistics under the null hypothesis. We control the type I error to the levels
α = 0.05 and 0.01, respectively, and examine the powers of the three tests when the change-
point locations are 10, 30, 50 and uniformly distributed, respectively.

In Figure 1, we see that the power increases as the Jump size to Standard deviation Ratio
(JSR) increases. The likelihood ratio test is more powerful when the change-point location is
near the middle and less powerful otherwise. The tests using the SaRa are robust with
respect to the location since the diagnostic function is locally defined. It is not surprising
that the likelihood ratio test performs better overall since the SaRa-based tests use
information only within a small neighborhood. However, we see that the SaRa-based tests
perform well when the JSR is greater than 1.5, and the SaRa with h = 15 outplays the
likelihood ratio test when the locations are far from the middle or random.

4.2. Simulation II: Sure coverage property
In this subsection we test the SaRa on a simple but challenging example. Consider the
situation when there is a small CNV with length L buried in a very large segment with
length n, where L = O(log n). Explicitly, we assume the true mean vector μ = E(Y)
satisfying μi = 0 + δ · I{n/2<i≤n/2+L}. In other words, among all n positions, there are two
change-points located on the position n/2 and n/2 + L with jump sized δ and −δ. The
locations and the number of aberrations do not influence our method. We set (n, L) = (400,
12), (3000, 16), (20,000, 20) and (160,000, 24), which satisfy approximately L ≈ 2 log n.

We fix the jump size δ = 1 and assume that the noises are i.i.d.  with σ = 0.5 and
0.25, so S2 ≈ 8 log n and 32 log n respectively. We run the SaRa with the thresholding rule

(2.2), taking  and . We list the simulation results in Table 1, based on the 1000
replications. We see that the SaRa can estimate the number of change-points as well as their
locations accurately in the less noisy case. The two change-points can be detected with very
high probabilities and the estimated errors are very small with the average below one and
median at zero. Even in the noisy case, the two points can be detected with very high
probabilities, and the number of the false discovered change-points is very small, at most 1
in most cases. The simulation results match our theory perfectly.

4.3. Simulation III: An example in Olshen et al. (2004)
This simulation example, adapted from [Olshen et al. (2004)], is more complex and realistic.
The true data generating process is as follows:

(4.1)

where the error term ε follows Gaussian distribution N(0,σ2). The total number of markers n
equals 497. There are six change-points along μ with position τ =
(137,224,241,298,307,331), μ0 =−0.18, and δ = (0.26,0.99,−1.6,0.69,−0.85,0.53). A
sinusoidal trend was added to mimic the periodic trend found in the a-CGH data. The noise
parameter σ was set to be one of 0.1 or 0.2, and the trend parameter a ε{0,0.01,0.025}
corresponds to none, long and short trends, respectively. A simulated data set with σ = 0.2
and a = 0 is illustrated in Figure 2. Among the six change-points, the ones at 137, 298 and
307 are more difficult to detect, since the jump size at 137 is small, and the length of CNV
between 298 and 307 is quite short.
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We applied a few methods to the 1000 simulated data sets of 497 points. The first method is
the fast CBS algorithm by package DNAcopy [Venkatraman and Olshen (2007)]. Since CBS
is quite sensitive and may lead to many false positives, we also tried the two-stage procedure
CBS-SS, which employs subset selection (SS) with modified BIC [Zhang and Siegmund
(2007)] to delete false positives. The second method is the SaRa. We tried a few different
bandwidths (h = 9, 15 and 21) to test its performance. The model size was determined by the
modified BIC, described at the end of Section 2.3. We also applied the multi-bandwidth
SaRa (m-SaRa). For the m-Sara,we first used three bandwidths h = 9, 15 and 21 and chose

the threshold for each h to select candidates.Then we applied the backward
stepwise deletion to get our final estimate from the set of candidates. (Applying the best
subset selection would be better but a little slower. There are about 20 candidates.) The
results for the noisy case (σ = 0.2) are illustrated in Table 2, which lists the number of
change-points detected by these methods under different trends. We did not assume the
noise variance is known, so all the variances in different scenarios were estimated. To
estimate the variance, we first estimated the mean μi for each point using a local constant
regression. Then the variance can be estimated by the residual sum of squares divided by n.
We omitted the less noisy case σ = 0.1 since all methods performed well except the fast
CBS, which produced a few false positives. For σ = 0.2, the SaRa may underestimate the
number of change-points when the bandwidth is too large or too small. The SaRa with
bandwidth h = 15 is better than CBS. h = 9 or h = 21 is not optimal since it is hard to detect
the first change-point with small bandwidth and it is difficult to detect the CNV between 298
and 307 with too large bandwidth. However, large bandwidth helps a lot for the first change-
point and small bandwidth gives a more accurate estimate for the fourth and fifth change-
points. It is not surprising that the multi-bandwidth SaRa, which combines the power of all
bandwidths, performs best in this complex and noisy example. We also observed that the
two-stage procedure CBS-SS can improve the CBS by deleting false positives. The
performances of CBS-SS and m-SaRa are comparable.

In Table 3 we report the detection rate and average falsely discovered count for the CBS-SS
and m-SaRa. We use an aggressive criterion which considers the change-point undetected if
the estimation error is above 5. A location estimator is falsely discovered if there is no true
change-point within distance of 5. The detection rates of two methods are similar. In the
cases with trends, the multi-bandwidth SaRa is slightly better.

4.4. Application to Coriel data
To test the performance of our algorithm, we apply it to the Coriel data set which was
originally studied by Snijders et al. (2001).This is a typical aCGH data set, which consists of
the log-ratios of normalized intensities from the disease vs control samples, indexed by the
physical location of the probes on the genome. The goal is to identify segments of
concentrated high or low log-ratios. This well-known data set has been widely used to
evaluate CNV detection algorithms; see Olshen et al. (2004), Fridlyand et al. (2004), Huang
et al. (2005), Yin and Li (2010), among others. The Coriel data set consists of 15 fibroblast
cell lines. Each array contains measurements for 2275 BACs spotted in triplicates. There are
8 whole chromosomal alterations and 15 chromosomes with partial alterations. All of these
aberrations but one (Chromosome 15 on GM07801) were confirmed by spectral
karyotyping.

The outcome variable used for the SaRa algorithm was the normalized average of the log2
ratio of test over reference. Note that in this data set there are only three possible mean
values corresponding to loss (monosomy), neutral and gain (trisomy). However, we did not
assume we know this fact in advance. We applied the multi-bandwidth SaRa with h = 9, 15
and 21 directly to the data set, and used the backward stepwise deletion with modified BIC
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to select change-points from all candidates suggested by the SaRa. As a result, the multi-
bandwidth SaRa identified all but two alterations (Chromosome 12 on GM01535 and
Chromosome 15 on GM07081). For Chromosome 12 on GM01535, the region of alteration
is represented by only one point and was hence difficult to detect. For Chromosome 15 on
GM07081, our result agrees with Snijders et al. (2001) that there is no evidence of an
alteration from the data set. Our method also found a few alterations that were not detected
by spectral karyotyping. The multi-bandwidth SaRa suggests that there might be CNVs on
chromosomes 7, 11, 21 for GM00143, chromosome 8 for GM03134, chromosomes 7, 21 for
GM02948, and chromosome 11 for GM10315 (see Figure 3). And most of these additional
CNVs are short aberrations. They may be false positives or true ones that cannot be
confirmed by spectral karyotyping due to its low resolution. We also tried fast CBS to
analyze this data set and found that CBS selected more than 100 change-points. The result
has been listed in Yin and Li (2010), so we omit it here.

4.5. Application to SNP genotyping data
Due to the low resolution, aCGH techniques are effective to detect only long CNVs of tens
or hundreds of kilobases. By recent studies [Conrad et al. (2006), McCarroll et al. (2006)], it
has been shown that short CNVs are common in the human genome. The genome-wide SNP
genotyping arrays, which are able to assay half a million SNPs, improve the resolution
greatly and offer a more sensitive approach to CNV detection.

We illustrate the SaRa using SNP genotying data for a father–mother-offspring trio
produced by the Illumina 550K platform. The data set can be downloaded along with the
PennCNV package. The data consist of the measurements of a normalized total signal
intensity ratio called the Log R ratio, that is, calculated by log2(Robs/Rexp), where Robs is the
observed total intensity of the two alleles for a given SNP, and Rexp is the expected intensity
computed from linear interpolation of the observed allelic ratio with respect to the canonical
genotype clusters [Peiffer et al. (2006)]. For each subject, the Log R ratios along
Chromosomes 3, 11 and 20 are included in the data set. There are 37,768, 27,272 and 14,296
SNPs in Chromosomes 3, 11 and 20, respectively. Similar to the aCGH data, the segments
with concentrated high or low Log R ratios correspond to gains or losses of copy numbers.

We employed the SaRa, multi-bandwidth SaRa, CBS, the fused lasso (FL) and PennCNV to
detect CNVs in this data set. We used R packages DNAcopy (version 1.14.0), cghFLasso
(version 0.2–1) and free software PennCNV for the last three algorithms. The SaRa and m-
SaRa were implemented by the R program. For the SaRa, we took h = 10 and

. For the m-SaRa, we used three bandwidths h = 10, 20 and 30 and the

threshold  in the first step. The backward stepwise selection with modified BIC
was employed in the second step.

The result for the offspring is listed in Table 4. The fused lasso and CBS detected too many
change-points, most of which are most likely to be false positives. The performance of the
SaRa and PennCNV are similar. In particular, the SaRa can identify all 4 CNVs found by
PennCNV as well as an additional one on Chromosome 20 from position 5,851,323 to
5,863,922 kilobase. It seems that the m-SaRa did not perform as well as the SaRa in this
example. The reason is two-fold. First of all, the signal to noise ratio (i.e., jump size to
standard deviation ratio) is large for this data set. Therefore, the simple SaRa works very
well. Second, in the second step of the m-SaRa, the modified BIC was employed for model
selection. The modified BIC assumes a uniform prior over the parameter space [Zhang and
Siegmund (2007)], which may not be satisfied since the CNVs are very short in this
example.
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All computations were done on a 3.33 GHz Intel(R) Core(TM)2 Duo PC running the
Windows XP operating system. It took about 16 s for the PennCNV to show the result for all
3 subjects. So the computation time for each subject is about 5 s. All other algorithms were
operated in R software. The computation time for each algorithm is listed in Table 5. All
algorithms are fast and practical. In particular, the SaRa is one of the fastest. Moreover, we
observed that the computation time for the SaRa increases linearly with the sample size.

Overall, the SaRa and PennCNV are the best among all algorithms. The fused lasso and
CBS mainly target on the aCGH data and may not be suitable for the SNP genotyping data.
The m-SaRa equipped with a proper Bayesian-type information criterion is potentially
useful. In the SaRa, we used h = 10 since it is known that the CNVs are quite short. The
thresholds were chosen by asymptotic analysis of the extremal values of D(x). In fact, it was
quite obvious when the local maximizers were ranked. For the offspring, there were only 10
local maximizers at which the values of |D(x)| were larger than 0.57. The values of |D(x)| at
other local maximizers were less than 0.26.

It is surprising that the SaRa and PennCNV can give similar results since they are based on
different models. The advantage of PennCNV is that it can utilize more information, that is,
the finite states of copy numbers and the B Allele Frequency (BAF) besides the Log R ratio.
The value of the SaRa is its simplicity and generality. The SaRa can be implemented easily
and is potentially useful in other multiple change-points problems.

5. Discussion
Motivated by copy number variation detection, many multiple change-point detection tools
have been invented and developed recently. However, faster and more efficient tools are
needed to deal with the high dimensionality of modern data sets. Different from other
approaches, we propose a screening and ranking algorithm, which focuses on the local
information. It is an extremely efficient method with computational complexity down to
O(n) and suitable for huge data sets. Moreover, it is very accurate and satisfies the sure
coverage property. Note that, as far as we know, very few theoretical results have been
developed for multiple change-points detection tools. Besides the efficiency and accuracy,
the SaRa is easily implementable and extendable. For example, since only local information
is involved in the computation, it is easy to extend it to an on-line version, which may be
useful for financial data. In addition, we may use the SaRa for the heteroscedastic Gaussian
model when the variance is not constant. We can estimate the variance using local
information and take it into account when calculating local statistics D(x, h). We should
note, however, that both the implementation and theory for the heteroscedastic variances
will be more complicated and will require further extensive effort. In the SaRa procedure,
the choices of bandwidth h and threshold λ are important. In applications, optimal choices of
these parameters may depend on the positions and jump-sizes of change-points. In this case,
the multi-bandwidth SaRa, which selects parameter implicitly and data-adaptively, is
practically useful. Knowledge about the data can be particularly useful in determining
reasonable or meaningful gaps between change-points and and jump-sizes at change points,
which can prevent us from using poor choices of bandwidth h and threshold λ.

The SaRa is a useful method for solving change-points problems for a high dimensional
sparse model such as (1.1) and can be generalized to solve more general change-point
problems. However, we should point out that the SaRa can be improved for CNV detection
since model (1.1) may not capture all the characteristics of the CNV problem. For example,
CNVs can be short. Then, it is better to modify the SaRa accordingly to improve its power.
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Fig. 1.
Power comparison of the three tests under different Jump size to Standard deviation Ratios
(JSR), change-point locations (Lo) and type I errors (α). Black solid, red dashed and blue
dotted lines correspond to the likelihood ratio test, and SaRa with bandwidths 10 and 15,
respectively. The results are based on 10,000 replications.
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Fig. 2.
Above: example of one Monte Carlo sample of simulation model (4.1) with σ = 0.2, a = 0;
bottom: the local diagnostic functions with bandwidth h = 9, with noise (blue dashed line)
and without noise (red solid line).
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Fig. 3.
Estimated mean functions by the multi-bandwidth SaRa on four cell lines.
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