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Abstract

Background: Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus
pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and
cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in
the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of
arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds
that regulate pulmonary fluid accumulation.
Results: We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and
lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue
influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to
cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease.
Conclusions: Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique
lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing
the severity of HPS disease.

Introduction

The vasculature is constantly exposed to viral path-
ogens yet only a few viruses specifically target the en-

dothelial cell (EC) lining of vessels and cause acute edematous
or hemorrhagic disease. Hantaviruses predominantly infect
the endothelial cell lining of vessels and nonlytically cause
two diseases: hemorrhagic fever with renal syndrome (HFRS)
and hantavirus pulmonary syndrome (HPS).1–13 The mecha-
nisms by which hantaviruses disrupt fluid barrier integrity
and clearance functions of the endothelium are beginning to
be disclosed and appear to involve dysregulating EC func-
tions that normally restrict fluid leakage from vessels and
clear fluid from tissues.6,14–20

Capillaries, veins, and lymphatic vessels are lined by a
single layer of ECs that collectively form one of the largest
tissues of the body.21,22 The endothelium forms a primary
fluid barrier within vessels but serves as more than just a
conduit for blood to reach and return from tissues.21,23 The
endothelium selectively restricts blood and plasma from
entering tissues, regulates immune cell infiltration, and re-

sponds to damage by limiting leakage, repairing vessels, and
directing angiogenesis.21 These ubiquitous functions require
the endothelium to respond to a host of systemic and locally
generated factors that alter inter-endothelial cell adherence
and fluid barrier properties. Consequently, capillary barrier
integrity is redundantly regulated by an array of EC-specific
effectors that coordinately balance vascular fluid containment
with tissue-specific needs, and respond to a host of systemic
and locally generated factors that alter inter-endothelial cell
adherens junctions.21,24–32 ECs respond to activated plate-
lets and immune cells, clotting cascades, chemokines and
cytokines, growth factors, nitric oxide, and hypoxic condi-
tions.21,27,33–35 However, ECs also secrete cytokines, comple-
ment, and growth factors that positively or negatively impact
the adherence and activation of platelets and immune cells,
regulate responses to hypoxia, and restrict fluid accumulation
in tissues.21,23,25,34,36–38 Each of these EC responses is con-
trolled by intertwined sensors and signals aimed at returning
the endothelium to a resting state, countering permeabilizing
effectors, repairing vessel damage, and restoring fluid and
oxygenation levels within tissues.21,24,39–44
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The unique endothelium of capillaries, veins, and lym-
phatic vessels is central to their discrete fluid barrier and
clearance functions.36,45–47 Nonlytic viral infection of micro-
vascular or lymphatic ECs (MECs, LECs) may disengage one
or more fluid barrier regulatory mechanisms, thereby in-
creasing vascular leakage or fluid clearance and as a conse-
quence result in tissue edema.48–52 However, the
accumulation of interstitial fluids can result from either in-
creased endothelial permeability or decreased lymphatic
vessel clearance of tissue fluids. Altering LEC responses re-
sults in decreased lymphatic vessels clearance functions and
lymphedema.36,46,47,53 In the lung, lymphatic vessels clear
fluid influx from interstitial spaces and keep pulmonary al-
veolar spaces relatively dry to permit gas exchange.36,46,47,53

Failure of lymphatic vessels to clear fluids has spawned in-
terest in the role of unique LEC and lymphatic vessel func-
tions and regulation that contribute to edematous disease.

Vascular permeability induced by nonlytic viruses is likely
to be multifactorial in nature, resulting from virally altered EC
responses and signaling pathways, tissue hypoxia, immune cell
and platelet functions, and a collaboration of dysregulated in-
teractions that bypass redundant systems which control nor-
mal fluid barrier functions.14–17,19,54 Failure of the endothelium
to regulate fluid accumulation in tissues has severe pathologic
consequences, and during HPS results in localized vascular
permeability and acute pulmonary edema that contribute to
cardiopulmonary insufficiency and a *40% mortality rate.4–6,9

The mechanisms by which HPS causing hantaviruses induce
vascular permeability and acute edema following infection of
ECs remains be defined. Recent clues to the role of vascular and
lymphatic EC functions suggest potential therapeutic mecha-
nisms that may stabilize the endothelium.

Hantavirus Infection and Disease

Hantaviruses are enveloped, tripartite, negative-sense
RNA viruses and the only members of the Bunyaviridae that
are directly transmitted to humans by mammalian
hosts.13,55,56 The hantavirus genome consists of three seg-
ments denoted S, M, and L, based on the length of their RNA
segments, respectively.13 The L segment encodes the 250 kDa
RNA dependent RNA polymerase.13,55 The S segment en-
codes a 48 kDa nucleocapsid (N) protein, which is the most
abundant hantavirus antigen present in infected cells.13 The M
segment encodes two viral surface glycoproteins Gn (64 kDa)
and Gc (54 kDa) that are co-translationally cleaved and tar-
geted to the ER/cis-Golgi.13,57 Hantaviruses bud internally
into the lumen of the cis-Golgi and exit cells via a secretory
mechanism consistent with aberrant vesicular trafficking.13

Hantaviruses are both released from ECs and remain cell-
associated through interactions with cell surface recep-
tors.14,54,58 GnGc heterodimers on the virion surface are
presumed to bind cellular receptors and mediate viral entry
into cells.13,14,19,57–64

In vitro, hantaviruses replicate to low titers, with initial viral
progeny emerging from infected ECs 18–24 hours post in-
fection (hpi), and *5 · 106 maximal titers days after infec-
tion.13 Infection of ECs is nonlytic and the permeability of
infected EC monolayers is not increased by infection
alone.13,15,65 Prototypic HPS (SNV, ANDV, NY-1V), HFRS
(Hantaan virus-HTNV),3,5,10,66,67 and nonpathogenic (Tula
virus-TULV and Prospect Hill virus-PHV)68–70 hantaviruses

all infect human ECs regardless of their ability to cause dis-
ease, suggesting that EC entry alone is not a cause of patho-
genesis.12,15,71 At least two requirements for hantaviruses to
be pathogenic have been determined thus far, the ability of
hantaviruses to regulate early interferon responses and the
use of specific integrins by pathogenic (ANDV, SNV, NY-1V,
PUUV, SEOV, HTNV) but not nonpathogenic (PHV, TULV)
hantaviruses.19,61,62,64,72–75

At least 17 hantaviruses cause HPS, also termed hantavirus
cardiopulmonary syndrome (HCPS). Sin Nombre (SNV) in
North America and Andes (ANDV) in South America4–9,76–79

are prototype HPS viruses that cause acute pulmonary
edema, cardiopulmonary insufficiency, and *35%–40%
mortality rates.4–9,76–78,80–84 One to two weeks after infection,
rapid onset of pulmonary edema and hypoxia occurs 6–12
hours after cough and rapidly progresses in severity.4–6

Bilateral pulmonary infiltrates may be interstitial or alveo-
lar with large pleural effusions of 2–8 liters at necropsy
resulting from pulmonary edema fluid accumulating at up to
1 liter per hour in SNV patients.44–6,8,9

Hantaviruses are one of only a few viruses that primarily
infect the EC lining of the vasculature.8,9,12,71,85 Hantavirus
antigen is found predominately in vast pulmonary capillary
EC beds but is present in ECs within lymph nodes and
throughout the body.8,9,85 However, cytopathic effects are not
evident following hantavirus infection of ECs in vitro or
in vivo.9,15,65 Histologically, the heart, kidneys, brain, and
adrenals are grossly normal, with pulmonary alveoli filled
with acellular proteinaceous fluid, yet the alveolar epithelium
remains intact.4–6,8,9 The most striking HPS findings are
edematous lungs with up to 8 liters of pleural edema.5,6,8,9

Pulmonary edema fluid contains few leukocytes, is largely
serous in nature, and is consistent with the nearly complete
loss of an alveolar capillary fluid barrier.4–6,9 The absence of
disrupted endothelium during HPS is similar to edematous
pulmonary responses observed in patients with high altitude
induced pulmonary edema (HAPE).49,86 The long prodrome
and rapid onset of edematous symptoms late after hantavirus
infection6 suggests the importance of targeting vessel stability
in regulating HPS edema.

Vascular and Lymphatic Endothelium:
Control of Vascular Fluid Barrier Functions

The endothelium is a remarkable tissue that functions to
meet tissue needs, repair vascular damage, and restrict in-
fection. The endothelium lines a series of discrete vessel types
that conduct fluids to and from tissues, direct the transfer of
nutrients, wastes, and oxygen, and coordinate tissue re-
sponses to changing conditions and pathogens.21,47,52,87–89

Vascular ECs serve mainly as a conduit in the lining of high
pressure arteries but take on a variety of fluid and cellular
barrier functions in low pressure veins and capillaries that
innervate organs and tissues.47 Lymphatic vessels have a
primary role in draining fluid, proteins, and immune cells
from tissues and returning these components to the venous
circulation.36,45–47 Depending on their location, lymphatic
vessels serve discrete fluid barrier and regulatory functions,
keeping pulmonary alveolar spaces dry and clearing fluid
influx from the lungs.47,90,91 These diverse EC settings require
discrete EC functions to effect exchange within large capillary
beds of the kidney, liver, and lung.47
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The endothelial fluid barrier is primarily derived from
unique adherens junctions (AJs) composed of an EC-specific
vascular-endothelial cadherin (VE-cadherin).24,28,38,89.92–94 EC
barrier functions are increased by the presence of cell surface
presented VE-cadherin and reduced by the dissociation and
internalization of VE-cadherin.24,28,89 Phosphorylated VE-
cadherin is internalized by its interaction with intracellular
actin complexes, and this process is regulated by a variety of
cellular receptors and intracellular signaling pathways. VE-
cadherin phosphorylation is downregulated by an EC-specific
phosphatase (VE-phosphatase) and several pathways that
either directly or indirectly induce AJ assembly and EC in-
tegrity by returning VE-cadherin to an unphosphorylated
resting state.24,89 Chemokines, cytokines, and growth factors
indirectly act on EC adherens junctions to increase vascular
permeability and thus have the potential to contribute to
pathogenic vascular leakage.27,92

Unique VEGF Receptors Regulate Capillary
and Lymphatic Function

Vessel-specific ECs contain unique VEGF receptors 1/2/3
(VEGFR1/2/3) that respond to novel forms of VEGF (VEGF
A-E) and positively or negatively impact AJ stability and
vascular integrity.91,92,95 VEGF-A binds to EC-specific
VEGFR2 receptors and activates a Src-Rac-Pak-VE-cadherin
pathway resulting in AJ disassembly and vascular perme-
ability.24,28,89 LECs uniquely express VEGFR3 on their sur-
faces and respond to VEGF-C/D, but also co-express VEGF-
A-responsive VEGFR2 receptors and are further regulated by
the formation of VEGFR2/3 heterodimers.33,36,46

A second EC-specific growth factor, angiopoietin-1 (Ang-1),
binds to Tie-2 receptors and transdominantly blocks VEGF-A
directed permeability. Ang-1 activates an alternate signaling
pathway that inhibits VEGFR2 directed Src pathway responses
and stabilizes VE-cadherin assembly into AJs. Sphingosine-1-
phosphate is a lipid mediator produced by platelets that also
stabilizes vessels by engaging Edg-1 receptors on ECs and
blocks VEGF-A-directed permeability.15,31,39,43,136,139

VEGF-A was originally discovered as a potent vascular
permeability factor that induces acute edema.27,96 VEGF-A
reportedly acts within 0.5 mm of its release,97 and circulating
soluble VEGFRs prevent VEGF-A from systemically per-
meabilizing vessels.33,96 VEGF-A is induced by hypoxia, and
reduced oxygen levels cause HAPE.34,98,99 This results from
activating the hypoxia-induced transcription factor-1a
(HIF-1a), which senses oxygen levels and transcriptionally
induces VEGF-A.52,100–102 VEGF-A further upregulates HIF-
1a, forming an autocrine loop which amplifies hypoxia-
mediated VEGF- responses and EC permeability during
HAPE.52,86,98,103 Although this response fosters increased gas
exchange, in continued low oxygen environments, these cel-
lular responses instead cause pulmonary edema and respi-
ratory distress.98,101 These findings indicate that EC responses
control capillary leakage through interconnected mechanisms
and suggest that altering any number of orchestrated EC
barrier functions can result in edema.

Pathogenic Hantavirus Binding to Inactive avb3

Integrins Regulates EC Permeability

Several studies demonstrate that monolayers of hantavirus-
infected ECs are not permeabilized by infection alone14,15,65

and instead indicate that pathogenic hantavirus infected ECs
are hyperpermeabilized by VEGF-A.15 The cellular entry of
pathogenic hantaviruses is dependent on the presence of avb3

integrins on human ECs, while nonpathogenic hantaviruses
PHV and TULV use a5b1 integrins.61,62 Pathogenic hanta-
viruses bind to inactive basal conformations of avb3 integrin
receptors on ECs while nonpathogenic hantaviruses interact
with discrete integrins.61,62,64 Receptor binding directs viral
entry, but at late times post-infection cell-associated hanta-
viruses also negatively impact avb3 integrin functions.14–17,19,54

Days after infection, cell-associated pathogenic hantaviruses
block avb3 integrin directed EC migration and direct the
binding of quiescent platelets to the EC surface.14,54

Curiously, avb3 integrins present on ECs normally regulate
vascular permeability. Ectodomains of avb3 and VEGFR2
form complexes that direct EC migration, a process that re-
quires AJ disassembly, yet need to limit VEGF-A induced
permeability.92,104 Knocking out b3 integrins or antagonizing
avb3 results in enhanced VEGF-A directed permeability of
capillaries in vivo and in vitro.105–107 Inhibiting b3 integrin
functions causes vascular permeability disorders.92,107–110

Similar to antagonizing or knocking out avb3 integrins,92,107

pathogenic hantavirus infection sensitizes ECs to the permea-
bilizing effects of VEGF-A.15,16 SNV-, ANDV-, and HTNV-
infected ECs, but not nonpathogenic PHV or TULV-infected
ECs, are hyperresponsive to the permeabilizing effects of
VEGF-A,15 and VEGFR2 is hyperphosphorylated following
pathogenic hantavirus infection.14,17 Enhanced permeability
of infected ECs only occurs days after infection when cell-
associated hantaviruses coat the EC surface and inactivate
avb3 integrins.14–16,19,58 These findings, in the context of hyp-
oxic HPS patients, suggest that hantavirus binding to inactive
avb3 integrins contributes to capillary permeability in HPS.
These results further suggest a mechanism for hantavirus-
enhanced EC permeability that stems from disrupting normal
avb3-VEGFR2 interactions and enhanced VEGFR2-Src-VE-
cadherin signaling responses that dissociate VE-cadherin
from AJs.14–16,19,24,92 Collectively, these findings demonstrate
that cell surface hantaviruses alter normal EC functions that
control VEGF-A directed vascular permeability.14–17,54,111

Hantavirus–Endothelial Edemagenic Mechanisms

Prominent pulmonary dysfunction is a component of HPS
disease and likely stems from hantavirus infection of ECs that
line vast alveolar and renal capillary beds.4–6,8,9,112,113 Acute
pulmonary edema is a hallmark of HPS, and HPS patients
arrive at hospitals in acute respiratory distress.4 During HPS,
bilateral pulmonary fluid infiltrates accumulate at up to a liter
per hour, resulting in respiratory insufficiency and patient
hypoxia during a critical phase of the disease.4,6,8,9 The cause
of acute edema following hantavirus infection is likely to re-
volve around the ability of the hantaviruses to infect ECs
within alveolar capillary beds that normally regulate edema
and gas exchange within the lung. Pathogenic mechanisms
accounting for this extraordinary rate of pulmonary fluid
accumulation have yet to be defined, but are likely to be
multifactorial and require both capillary leakage and decreased
pulmonary fluid clearance by lymphatic vessels.6,15,16,114–116

Clues to the mechanism of hantavirus-induced edema
come from disparate findings on the role of hypoxia in acute
pulmonary edema, the role of avb3 and VEGFR2 EC responses
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described above. Recent studies of ANDV-infected LECs
further demonstrate that normal EC VEGFR2/3 signaling
responses are impaired by pathogenic hantaviruses.6,14,15,19,114

Hypoxia is a prominent component of HPS patients which
directs VEGF-A secretion.5,6,8,9 Hypoxia-induced VEGF-A
leading to acute pulmonary edema may contribute to both
vascular leakage and reduced lymphatic vessel fluid clear-
ance.116 In fact, HPS patient VEGF-A levels were markedly
elevated in pulmonary edema fluid and PBMCs in acute early
phases of HPS.114 Although a demonstrated role for hypoxia
in hantavirus-induced permeability has yet to be conclusively
defined, the ability of extracorporal membrane oxygenation
(ECMO) to reduce HPS patient mortality4,6 strongly suggests
a role for hypoxia and VEGF-A in the acute pulmonary edema
of HPS patients.

Potential Role of Hantavirus-Infected LECs
in HPS Edema

Pulmonary lymphatic vessels are responsible for clearing
fluid from alveoli and providing a semi-dry state that permits
gas exchange.45,47 Failure of lymphatic vessels to clear fluids
results in lymphedema and suggests an additional mecha-
nism for hantavirus-infected LECs to contribute to acute
pulmonary edema during HPS.36,46,47 Analysis of pathology
samples from HPS patients indicates that hantavirus antigen
is present in LECs of patient lymph nodes.8,9,85 Although less
is known about LECs, as described above, LECs express un-
ique cell surface receptors and their integrity is regulated by
both VEGF-A and VEGF-C.36,46,47,53 Interestingly, LEC
VEGFR3 receptors respond to VEGF-C and are associated
with reduced tissue edema,36,53 while inhibiting VEGFR3
signaling results in lymphedema.36

Our recent study indicates that ANDV infects LECs, alters
LEC barrier functions, and causes the formation of giant LECs
that are likely to alter lymphatic vessel functions.116 However,
the role of lymphatic vessels and LEC responses remains to be
investigated in HPS patients. ANDV infection of LECs could
alter lymphatic vessel responses to VEGF-A/C that contribute
to pulmonary edema and HPS. Consistent with this, ANDV-
infected LECs resulted in their hyperpermeability in response
to VEGF-A that is blocked by VEGF-C. Unexpectedly, it was
also found that *70% of ANDV-infected LECs were giant
cells (viable, 4–5 · normal size). Giant cells are caused by
mutations in tuberous sclerosis complex (TSC1/2) proteins
resulting in activation of mTOR (mammalian target of rapa-
mycin).117–126 Further, VEGFR2 responses activate mTOR,
while rapamycin inhibits giant cell and VEGF-A permeability
responses.117,119,120,127,128

Following ANDV infection of LECs, both giant cell and
permeability responses were inhibited by rapamycin or
VEGF-C, suggesting that ANDV alters normal hypoxia-
VEGFR2-mTOR signaling pathways of LECs.116 Hypoxia in-
duces VEGF-A/Akt/mTOR signaling but these responses are
offset by hypoxia-induced REDD1 expression and the ability
of REDD1 to stabilize TSC1/TSC2 complexes and block
mTOR activation.117,120,122,124,129–132 These findings suggest
that ANDV selectively disengages normal hypoxia–VEGF-A
responses that control mTOR activation, and instead activate
mTOR signaling responses causing giant LECs and LEC
dysfunction that contributes to HPS. These findings suggest
the potential for targeting pathway specific LEC responses

using VEGF-C or rapamycin as a means to regulate ANDV-
induced lymphatic dysfunction and reduce pulmonary
edema during HPS. The ability of rapamycin and VEGF-C to
regulate VEGF-A directed lymphatic vessel responses sug-
gests their potential as HPS therapeutics that may be appli-
cable to additional causes of acute pulmonary edema.

Animal HPS Model

Only ANDV infection of Syrian hamsters (Mesocricetus
auratus) serves as a model of hantavirus pathogenesis that
mimics human HPS in onset symptoms and lethal acute re-
spiratory disease.18,133,134 Inoculation of Syrian hamsters with
ANDV, but not SNV or other HPS causing hantaviruses, in-
duces pathology approximating human disease. ANDV cau-
ses a fatal infection of Syrian hamsters with an LD50 of 8
plaque-forming units. The disease is characterized by large
pleural effusions, congested lungs, and interstitial pneumo-
nitis in the absence of disrupted endothelium.18,133,134 The
onset of pulmonary edema coincides with a rapid increase in
viremia on day 6, and large inclusion bodies and vacuoles in
ultrastructural studies of infected pulmonary ECs.133,134 Viral
antigen was localized to capillary ECs, alveolar macrophages,
and splenic follicular marginal zones populated by dendritic
cells. Interestingly, depletion of CD4 and CD8 T-cells had no
effect on the onset, course, symptoms, or outcome of ANDV
infection and indicates the absence of T-cell responses.18

Consistent with the potential involvement of b3 integrins and
VEGF-A in this process, ANDV binds to conserved residues
within PSI domains of both human and hamster b3 in-
tegrins.19,64 The role of lymphatic ECs and responses remain
unstudied in the animal model or in HPS patient tissues but
may be keys to resolving and reducing the severity of HPS
disease. Thus, the mechanism of pathogenesis caused by
ANDV is consistent with hypoxia–VEGF-A directed acute
pulmonary edema that occurs in the absence of T-cell medi-
ated pathology and may include lymphatic vessel dysfunc-
tion.18 Studies in Syrian hamsters provide a means of defining
determinants of ANDV pathogenesis and the evaluation of
therapeutics that target barrier functions of the vascular and
lymphatic endothelium.

Targeted Therapeutic Approaches
for Stabilizing the Endothelium

Currently there are no effective therapeutics for hantavirus
infections or disease. Antiviral effects of interferon or the
nucleoside analog ribavirin are only effective prophylactically
or at very early times post-infection.13,135 They appear to
target early viral replication but neither is effective 1–2 weeks
post-infection after the onset of HPS symptoms.4–6,135 An al-
ternative approach against viruses with a long disease onset
may be to target the acute pathologic response therapeutically
instead of viral replication. Since hantaviruses infect and alter
fluid barrier functions of the endothelium, targeting EC re-
sponses that transiently stabilize the vasculature has the po-
tential to reduce the severity and mortality of HPS.43,136,137

This approach also has the advantage of being implemented
at the onset of symptoms where antiviral approaches appear
to be ineffective.135

Antibody to VEGFR2 reportedly suppresses VEGF-A in-
duced pulmonary edema and suggests the potential of ther-
apeutically antagonizing VEGFR2-Src-VE-cadherin signaling
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pathways as a means of reducing acute pulmonary edema
during HPS.17,24,43 Several well-studied VEGFR2 and Src in-
hibitors are in human clinical trials or are used therapeutically
to treat human cancers and have the potential to reduce the
severity of viral permeability based diseases.17,36,43 In vitro,
angiopoietin-1 (Ang-1), sphingosine-1-phosphate (S1P), pa-
zopanib, and dasatinib inhibited EC permeability directed by
pathogenic hantaviruses.15,17 VEGFR2-Src signaling inhibi-
tors as well as the S1P analog FTY720 are already in clinical
trials or used clinically for other purposes.31,139 The ability of
rapamycin to block VEGF-A induced microvascular perme-
ability further suggests its potential as an HPS inhibitor
through changes induced in both capillaries and lymphatic
vessels.122,128,140 VEGF-C may similarly be used along or in
conjunction with other inhibitors to target lymphatic EC dys-
function and enhance fluid clearance from HPS patient tissues.

Targeting EC responses provides a potential means of
stabilizing HPS patient vessels and reducing edema. En-
dothelial cells present a plethora of targets that may regulate
virally induced vascular permeability and lymphatic func-
tions. Many compounds targeting pathways which stabilize
interendothelial cell adherens junctions are already clinically
approved for other indications. Targeting vascular and lym-
phatic endothelial responses may also be broadly applicable
to reducing the severity of a wide range of viral infections that
impact the endothelium and cause edematous diseases.
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