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Abstract
In clinical studies, covariates are often measured with error due to biological fluctuations, device
error and other sources. Summary statistics and regression models that are based on mismeasured
data will differ from the corresponding analysis based on the “true” covariate. Statistical analysis
can be adjusted for measurement error, however various methods exhibit a tradeo between
convenience and performance. Moment Adjusted Imputation (MAI) is method for measurement
error in a scalar latent variable that is easy to implement and performs well in a variety of settings.
In practice, multiple covariates may be similarly influenced by biological fluctuastions, inducing
correlated multivariate measurement error. The extension of MAI to the setting of multivariate
latent variables involves unique challenges. Alternative strategies are described, including a
computationally feasible option that is shown to perform well.
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1. Introduction
The problem of measurement error arises whenever data are measured with greater
variability than the true quantities of interest, X. It can be attributed to sources like device
error, assay error, and biological fluctuations. Summary statistics and regression models
based on mis-measured data, W, may have biased parameter estimators, reduced power and
insu cient confidence interval coverage (Fuller, 1987; Armstrong, 2003; Carroll et al., 2006).

Many strategies to adjust for measurement error have been proposed. Correction for
measurement error in covariates, X, in linear and generalized linear models is commonly
achieved by regression calibration (RC), which substitutes an estimate of the conditional
mean E(X|W) for the unknown X (Carroll and Stefanski, 1990; Gleser, 1990). When
estimation of the density of X is of interest, this is not particularly useful, as E(X|W) is over-
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corrected in terms of having reduced spread (Eddington, 1940; Tukey, 1974). However, the
linear regression based on this substitution estimates the underlying parameters of interest.
RC is also implemented in non-linear models because of its simplicity, but is typically most
effective for general linear models when the measurement error is not large (Rosner,
Spiegelman and Willett, 1989; Carroll et al., 2006). Alternatives for non-linear models are
thoroughly reviewed by Carroll et al. (2006) and include maximum likelihood, conditional
score, SIMEX and Bayesian methods. Density estimation is addressed in a separate
literature, where deconvolution methods are a prominent approach for scalar variables
(Carroll and Hall, 1988; Stefanski and Carroll, 1990). Recent papers add to the theoretical
basis for deconvolution estimators and offer extension to heteroscadastic measurement error
(Carroll and Hall, 2004; Delaigle, 2008; Delaigle, Hall and Meister, 2008; Delaigle and
Meister, 2008).

Despite the variety of available methodology, measurement error correction is rarely
implemented (Jurek, 2004), and when it is, RC remains popular. Convenience may be a
priority for a method to achieve widespread use. The preceding methods target estimation of
parameters in a specific regression context; a different method must be implemented for
every type of regression model in which X is used, and density estimation is treated
separately. An alternative approach is to focus on re-creating the true X from the observed
W, at least approximately, as the primary quantity of interest or as a means to improving
parameter estimation (Louis, 1984; Bay, 1997; Shen and Louis, 1998; Freedman et al.,
2004). Most recently, Thomas, Stefanski, and Davidian (2011) introduce a Moment
Adjusted Imputation (MAI) method that aims to replace scalar, mis-measured data, W, with
estimators, , that have asymptotically the same joint distribution with a response, Y, and
potentially error-free covariates Z, as does the latent variable, X, up to some number of
moments. Originally developed in an unpublished dissertation, (Bay, 1997), MAI extends
the idea of moment reconstruction (MR), which focuses on the first two moments of the
joint distribution (Freedman et al., 2004, 2008). Thomas, Stefanski, and Davidian (2011)
investigate the performance of MAI in logistic regression and demonstrate superior results
to RC and MR when the distribution of X is non-normal. Moreover, the  can be used for
density estimation, with a guarantee of matching the latent variable mean, variance and
potentially higher moments.

Thomas, Stefanski, and Davidian (2011) discuss an important application where
measurement error is likely present in multiple covariates and a scalar adjustment method
would not be adequate. In this example, Gheorgiade et al. (2006) studied blood pressure at
admission in patients hospitalized with acute heart failure using data from the Organized
Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure
(OPTIMIZE-HF) registry. Logistic regression was used to describe the relationship in-
hospital mortality and both systolic and diastolic blood pressure. These variables, when
measured at the same time, are likely to have correlated measurement error due to common
biological fluctuations and measurement facilities. The original analysis by Gheorgiade et al.
(2006) regards both variables as error free. Thomas, Stefanski, and Davidian (2011) revise
the analysis to account for measurement error in systolic blood pressure, which is of primary
interest, but not diastolic blood pressure. Adjustment of both variables could be important.
When multiple covariates are measured with error, one could apply a univariate adjustment
separately. However, this would not account for correlation between the latent variable
measurement errors.

Here, we introduce the extension of MAI to multivariate mis-measured data and provide a
computationally convenient approach to implementation. The result is quite similar to
univariate MAI, but unique challenges are addressed. In Section 2, we define a set of
moments that are feasible for matching with multivariate measurement error and introduce
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the natural extension of the MAI algorithm, used to obtain adjusted data with appropriate
moments. In Section 3, a numerically convenient method for the implementation of
multivariate MAI is proposed. In Section 4, the alternative implementations of multivariate
MAI are evaluated and MAI is compared to other imputation methods via simulation in
applications to density estimation and logistic regression. In Section 5, we revise the
OPTIMIZE-HF analysis to account for measurement error and obtain estimates that describe
the features of “true” diastolic and systolic blood pressure.

2. The Method
Here we introduce notation for the current problem that is similar to Thomas, Stefanski, and
Davidian (2011) but not identical. Let Xi = (Xi1, …, XiG)T be a (G × 1) vector of latent
variables for i = 1, …, n. The observed data are Wi = Xi + Ui where Ui ~ MVN(0, Σui),
MVN(μ, Σ) is the multivariate normal distribution with mean μ and covariance matrix Σ, 0
is a G × 1 vector of zeros, Ui is independent of Xi, and Ui are mutually independent. We
assume that Σui is known. The latent variables Xi may be of particular interest, as in density
estimation or as predictors in a regression model. In the latter case, we also have a response
Yi and potentially a vector of (K − 1) error-free covariates Zi. These additional variables are

collected to create , with components Vik for k = 1, …, K. We make the usual
surrogacy assumption that Yi and Zi are not related to the measurement error in Xi, so that Vi
is conditionally independent of Wi given Xi (Carroll et al., 2006).

The goal is to obtain adjusted versions of the Wi, , whose distribution closely resembles
that of Xi and possibly the joint distribution of Xi and other variables. In terms of moments,

we require that , ,

 for k = 1, …, K, and  for r = 3, …, M,
and the rth power is applied component-wise. This differs from Thomas, Stefanski, and
Davidian (2011) in that only first order cross products between Xi and error free covariates
are matched. Additional moment constraints can be added, but unlike the case of univariate
MAI, estimators for higher order cross products are not straightforward. They are complex
functions of many parameters that each have to be estimated. We therefore favor a reduced
set cross products for parsimony and good performance in simulations.

2.1. Implementation

The first step is to define unbiased estimators for the unknown quantities , (G × 1)

and r = 1, …, M, , (G × G), , (G × 1). Because Wi|Xi ~ MVN(Xi,

Σui), we know that E(Wi) = E{E(Wi|Xi)} = E(Xi) so . Unbiased estimators
for the higher-order moments are defined using the recursion formula H0(z) = 1, H1(z) = z,
Hr(z) = zHr−1(z) − (r − 1)Hr−2(z) for r = 2, 3, … (Cramer, 1957). Stulajter (1978) proved that
if W ~ N(μ, σ2), then E{σrHr(W/σ) = μr (Stefanski, 1989; Cheng and Van Ness, 1999). Let
Wig and Xig denote the gth component of Wi and Xi, respectively, and let Σui,gg′ denote the
element of Σui in the gth row and g′th column. Marginally, Wig|Xig ~ N(Xig, Σui,gg). Letting

Pr(w, σ) = σrHr(w/σ), we have .

The gth component of  is  for r = 1, …, M. In addition,

, so  is unbiased for m*. In some
cases the estimate  may be non-positive definite, corresponding to an invalid moment
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sequence. We only perform adjustment for a valid sequence of moments estimates, as
defined in Section 2.2. Under the surrogacy assumption, E(WiVik) = E{E(WiVik|Xi, Vik)} =

E{VikE(Wi|Xi)} = E(XiVik). Therefore, the estimators  are unbiased for

.

The adjusted  are obtained by minimizing

(1)

subject to the following constraints on sample moments and cross products:

, , and . This is minimized by taking
the derivative with respect to Xi, and constraints are imposed by Lagrange multipliers.

For example, in the case where there are no error-free covariates, so Vi = Yi, and we are only
interested in matching two moments of Xi, the following objective function is required:

(2)

where  and  are (G × 1) vectors of Lagrange multipliers and  is a vector of length G +
G!/2!(G − 2)!}. Let IG denote the identity matrix of dimension G. Taking the derivative with
respect to Xi gives (Xi − Wi)+ λ1 +({vech−1(λ2)+IG}Xi + λ3Yi = 0, and the solution for Xi is
Xi = A(Wi − λ1 − λ3Yi) where A = {2IGvech−1(λ2) + IG}−1, and vech−1 re-creates a
symmetric matrix from its vech half so that if A = vech(B) for symmetric matrix B, then

vech−1(A) = B. The solution for Xi depends on the unknown , which must be

estimated to obtain . Taking the derivative of Equation 2 with respect to Λ provides
additional equations that we can solve to obtain . In this simple case, a solution can be
obtained analytically, as described in Web Appendix A. More generally, we obtain the
derivatives analytically, set them equal to 0 and solve numerically using the R function
multiroot().

The adjusted data, , depend on estimated moments and are therefore not independent. In

applications where  is substituted for Xi, the usual data, standard errors, which assume
independent should not be used. We recommend that standard errors for analyses involving

 be obtained by bootstrapping.

2.2. Practical Considerations

The estimators ,  and  are not always a valid set of moments in finite samples. This
is primarily a problem if the sample size n is small or the measurement error in Wi is very
large. Before adjusting data, we first check that our estimators represent a valid sample
variance-covariance matrix. When M = 2, our adjustment corresponds to matching the

variance-covariance matrix of . For simplicity, let Xi be (2 × 1) (G = 2), and let
Vi include only the response Yi and a single error free covariate Zi. We check that the
following matrix is positive definite to verify that we are targeting a valid set of moments:
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For M = 4, we match higher-order moments for the G components of Xi. In this case,
additionally check the following determinants

for all g = 1, …, G. The problem of invalid moments is rare under many practical conditions.
However, we expect that an invalid set of estimated moments may occur more frequently as
sources of error in the moment estimation increase, including smaller samples sizes and
larger measurement error. The reliability ratio (RR), defined as Var(X)/Var(W), is
frequently used to quantify the amount of measurement error. In simulations studies, below,
with sample sizes of at least n = 1000 and reliability ratios as low as 0.5, we rarely
encountered an invalid set of estimated moments. In those cases, we reduced the order to M
= 2, and would recommend the same in practice. This always solved the problem.

In general, we do not have an analytical solution for the , and we solve for these
numerically, as described in Section 2.1. Even for a valid sequence of moments, numerical
problems occur for some data sets, and a solution is not obtained. In our simulations this
happens for about 10% of data sets, even when Xi is 2 dimensional. In the following section,
we suggest an alternative method of obtaining adjusted data that generally avoids numerical
problems.

3. Alternative Implementation of Adjustment

Our goal is to obtain adjusted data  that have unbiased moments for the corresponding
moments of Xi. In Section 2.1, we do this by imposing constraints on the moments and

minimizing the “distance” between our observed data Wi and the adjusted data , as
measured by Equation (1). This measure simultaneously incorporates the G components of

 and their cross products and weights the components inversely according to their
measurement error. Equation (1) can be difficult to minimize numerically, since nG adjusted
data points are obtained, and many constraints may be involved. This approach can be
approximated by performing a univariate adjustment sequentially; adjusting (W1g, …, Wng)

for each g = 1, …, G. The estimators , , and  are obtained exactly as in Section 2.1,
based on the distribution Wi|Xi ~ MVN(Xi, Σui). For each g, beginning with g = 1, we obtain

( ) by minimizing  with the following constraints

imposed by Lagrange multipliers: ,  and

 fog g′ < g.
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At each step, a separate objective function is defined, and Newton Raphson is used to solve

for ( ). At the first step, adjusted data are not available, so we can not impose

constraints to match . The second objective function,

where λr and  are Lagrange multipliers. The adjusted data, ( ), can be used to

adjust Wi2 so that ( ) have . The second objective
function, which incorporates this additional constraint, is

where λr,  and  are Lagrange multipliers. This process is continued at each step using

the previously adjusted data. So ( ) have , for g =
1, …, (G − 1). The final objective function is

where, λr,  and  are Lagrange multipliers.

Multiple considerations suggest that the order of sequential adjustment may be important.
Firstly, the joint distance measure, defined by Equation 1, puts greater weight on adjusting
the elements with largest measurement error. This is not possible where the g elements of Xi
are adjusted separately, although sequential minimization does incorporate weighting to
account for unique measurement error on individual subjects. An additional feature of the
sequential approach, is that the full set of constraints is not implemented simultaneously, but
more constraints are added at each step. We recommend that Wig be adjusted in the order of
least measurement error to greatest measurement error. This may achieve a similar end to
joint minimization, in that variables with greatest measurement error are subject to the most
constraints and adjusted most. This topic is explored by simulation below.

The sequential approach imposes the same moment constraints defined in Section 2. Both
minimization strategies use an unbiased estimator of cross products between two mis-
measured variables, that appropriately accounts for correlation in the measurement errors.
The adjusted data are constrained to have the same unbiased moments and to stay “close” to
the original data. A primary difference is in the definition of “close”. Joint minimization has
a distance measure based on the weighted cross product between multiple mis-measured
variables. Adjusted data points are encouraged to stay close to their original value and
products of adjusted variables are encouraged to stay close to the corresponding multiple of
raw data. The sequential minimization measures only the distance between adjusted data and
their original value. The simpler measure may be su cient, for as long as the adjusted data
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stay close to their original value, other relationships may also be preserved. Moreover, to the
extent that certain analyses, such as regression, depend on the moments of the data, results
may be insensitive to the particular value of each data point. These considerations led us to
expect that the computationally simpler, sequential approach, might still perform well.

4. Simulations
In this section we address two distinct objectives. First, we verify that the sequential
approach to adjustment, described in Section 3, performs similarly to the full joint
minimization of Equation (1). Joint minimization is excessively slow for simulation and
prone to numerical problems so we evaluate results in individual simulated data sets.
Fortunately, this seems adequate, as we observe nearly identical results for the two
approaches. Subsequently, we focus on the sequential approach and implement a full
simulation study to evaluate its performance relative to other methods. We address the dual
objectives of density estimation and logistic regression.

Variations of the following basic scenario are considered. The latent data, X = (X1, X2), are
either standard multivariate normal or each element has a chi-square distribution with four
degrees of freedom, standardized to have mean zero and variance one, with Corr(X1, X2) ≈
ρ. A response Y is observed with probability P(Y = 1|X1, X2) = F(β0 + β1X1 + β2X2), where
F(v) = 1 + exp(−v)−1. Thomas, Stefanski, and Davidian (2011) considered two sets of
coefficients for this model, representing stronger and weaker associations of the covariates
with Y. In preliminary simulations MAI performed more favorably compared to RC and MR
with larger coefficients and a more non-linear model. Here, we compromise between the two
and select moderate values. The coefficients β =(β0, β1, β2) are (1.5, 0.5, 0.5). In place of Xi,

we observe , U = (U1, U2)T ~ MVN(0, Σu), Σu = vech{1, ρ(0.3)1/2,
0.3 with ρ representing the measurement error correlation, and two levels of replication: ri =
r = 1 or ri = 1, 2, 3, 4 or 5 with equal probability. The off-diagonal of Σu includes a positive
correlation in measurement errors of ρ, as would likely be induced by common sources of
error in the measurement process, such as biological fluctuations. The measurement error in
X1 is large and, without replication, corresponds to a reliability ratio of 0.5. The
measurement error in X2 is smaller with a reliability ratio of 0.76. When the amount of
replication is varied, some subjects have substantially reduced measurement error where
others do not. The observed data are Yi, Wi, for i = 1, …, n.

4.1. Comparison of sequential and joint minimization
We compare sequential and joint minimization in single data sets, and emphasize a case
most likely to favor joint minimization, where the latent variables are correlated chi-square
(ρ = 0.5) with heteroskedastic measurement error between the g elements of X, as above.

In Figure 1 we illustrate the results of marginal density estimation on X1 and X2. Both
approaches match a single cross product with response in addition to marginal moments.
Although this is not required for marginal density estimation, we subsequently find that
there is no harm in doing so. There is virtually no difference in the densities depending on
whether the sequential or joint minimization was performed. Additional examples in Web
Appendix B show similar results.

In the same data set we compare the logistic parameter estimates corresponding to each
analytical method. Our goal is obtain a coefficient estimate that is close to the estimate
based on the latent variable, shown in the first row. There is substantial improvement, in the
first decimal place, when any adjustment strategy is used (Table 1). The difference is less,
but still noticeable, when two or four moments are matched. However, a difference between
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joint and sequential minimization strategies is only present in the second or third decimal
place. This is consistent with every data set that we have observed (Web Appendix B). The
gains from joint minimization are not promising, in light of substantial numerical
challenges. It appears that the impact of adjustment on logistic model parameter estimation
comes primarily from the moment constraints rather than from differences in these
minimization strategies.

In these comparisons, we implement sequential adjustment in order of least to greatest
measurement error. In Web Appendix B, we address the impact of adjustment order. In the
cases that we considered, the order of adjustment had a negligible impact on density
estimation and logistic regression parameter estimation. The sequential approach, as
opposed to joint minimization runs more quickly and encounters fewer numerical problems.
We favor this approach and further investigate its performance in subsequent simulations
under the title multivariate MAI.

4.2. Histogram and Kernel Density Estimation
Thomas, Stefanski, and Davidian (2011) show that MAI can improve histogram and kernel
density estimation (KDE) for a scalar latent variable, relative to the naive approach that uses
mis-measured data and relative to other imputation methods such as RC and MR. Even
when multiple variables are measured with error, researchers typically focus on the marginal
distributions, which are easier to visualize. For this purpose we can apply the method of
Thomas, Stefanski, and Davidian (2011) to each variable separately and ignore the
multivariate nature of the mis-measured data. We will refer to this approach as univariate
adjustment. Some additional gains in precision may be achieved by matching cross products,
with all correlated variables, mismeasured and error-free. Via simulation we evaluate
whether there are any practical differences in the two approaches to density estimation;
univariate and multivariate adjustment. Additionally, we compare to the multivariate

versions of RC and MR. For RC,  is the best estimated linear unbiased estimator of E(X|
W). We use the multivariate version of MR described by Freedman et al. (2004) so that

, where . MAI refers to the

sequential approach, matching either 2 or 4 marginal moments: E(X1), E(X2), , ,

E(X1Y), E(X2Y), E(X1X2) or additionally , ,  and .

The data were generated as described previously, under a range of scenarios:

1. Distribution of X: multivariate normal, standardized chi-square df=4.

2. Level of correlation between the latent variables: ρ = 0.5, 0.7.

3. Sample size: n = 1000, 2000.

4. Replication: ri = 1 or varies between 1 and 5.

5. Two levels of measurement error: X1 and X2 have reliability ratios of 0.5 and 0.76.

The sample sizes 1000 and 2000 are typical for measurement error applications (Stefanski
and Carroll, 1985; Freedman et al., 2004). Though the OPTIMZE-HF data is even larger,
simulations for this application were too slow for large n.

Each , is evaluated according to closeness to the underlying Xg as measured by

 over B simulated data sets and additionally, by
computing the integrated squared error between the empirical distribution functions, given
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by , where , −∞ < t < 1.

 measures the proximity between the distribution of mis-measured or adjusted data

and the latent distribution of interest.  measures the average distance between
individual mis-measured or adjusted data points and their corresponding true value. We

report an MSE ratio, , and an ISE ratio,  so that larger
ratios indicate a greater reduction in error. Standard errors for these ratios are obtained by
the delta method and are reported as a “coefficient of variation,” which is the ratio standard
error divided by the ratio itself.

Table 2 includes results for the case of chi-square latent variables with no replication, ri = 1.
Other results are presented in Web Appendix C. We see that the reduction in MSE provided
by multivariate MAI is markedly better than univariate MAI when the measurement error is
large. In fact, when four moments are matched, multivariate MAI is nearly as good as RC in
terms of MSE for the variable measured with large error, and slightly better for the variable
measured with less error. Consistent with Thomas, Stefanski, and Davidian (2011) we see
that MAI can be far superior to RC and MR at estimating the latent variable density,
reflected in large ISE ratios. Its superiority increases with larger sample size, presumably
because the precision in estimation of higher-order moments improves. In terms of ISE
ratios, we see little difference between multivariate and univariate MAI. Clearly, when
multivariate adjustment is preferred, the adjusted data can also be used for marginal density
estimation. Additional simulations in Web Appendix C are consistent with these
conclusions.

4.3. Simulations in Logistic Regression
Thomas, Stefanski, and Davidian (2011) observed less bias in logistic regression parameter
estimation when MAI was compared to RC or MR for the case of non-normal latent
variables, but nearly equivalent performance for normal latent variables. We confirm these
results in the multivariate case using the range of conditions outlined in Section 4.2, and the
additional sample size, n = 9000.

Boxplots of the estimated coefficients  from B = 250 simulations are displayed in Figure 2
for the case where X has chi-square elements, ri = 1 and ρ = 0.5. The naive estimator for 1 is
more biased than for 2, as this corresponds to the variable measured with greatest error. RC
and MR substantially reduce the bias in both coefficients, though MAI, matching 4
moments, virtually eliminates the bias. There is some tradeo in variability, with the latter
approach having greatest variance. The variance in MAI decreases when the sample size is
increased so that even the most outlying values are a great improvement over the naive
method and are generally better than other approaches.

Results for multivariate normal latent variables, reported in Web Appendix D, are consistent
with scalar case (Thomas, Stefanski, and Davidian, 2011). All three adjustment methods
nearly eliminate bias and have similar variance. RC appears to have slightly lower
variability and small bias. There is clear benefit to matching 4 moments rather than 2. The
results are consistent across the various latent variable correlations and samples sizes
considered.

MAI appears to be an attractive strategy for measurement error adjustment in logistic
regression, with the computationally feasible multivariate extension performing very well.
As we observed in the scalar case, matching four moments is important when the
distribution of X is not multivariate normal.
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5. Application to OPTIMIZE-HF
We carry out the OPTIMIZE-HF analyses performed by Gheorgiade et al. (2006) accounting
for measurement error in various measures of blood pressure. The data set consists of n =
48, 612 subjects, aged 18 or older, with heart failure. We focus on the logistic regression
model for in-hospital mortality reported by Gheorgiade et al. (2006), which includes linear
splines and truncation that account for non-linearity in continuous covariates. Their model
can be written as

(3)

where Z includes error-free covariates listed in Web Appendix E, Table 7; S is a truncated
version of true systolic blood pressure at baseline, X1, in 10-mm Hg units, i.e. S = −{X1I(X1
< 160) + 160I(X1 ≥ 160)}; D is a truncated version of true diastolic blood pressure at
baseline, X2, i.e. D=−{X2I(X2 < 100) + 100I(X2 ≥ 100). Gheorgiade et al. (2006) fit these
models using observed blood pressure measurements, W=(W1, W2) in place of X=(X1, X2).
We adjust the mismeasured W by matching four moments, cross-products with response and
baseline history of hypertension, and impute  in place of X.

This analysis differs from Thomas, Stefanski, and Davidian (2011), in that we address
measurement error in multiple related measures of blood pressure, beyond the primary
measure of interest, systolic blood pressure (SBP). The measurement error due to biological
fluctuations, or device error in these variables is likely correlated, suggesting the need for
multivariable adjustment. Any adjustment requires that the measurement error variance-
covariance matrix, u, be known. In practice, it would be best to estimate u from replicate
measures of systolic and diastolic blood pressure. Replicate measures were not available in
the OPTIMIZE-HF data set; however, variability in blood pressure has been extensively
studied. One source is the Framingham data set (Carroll et al., 2006), which includes four
measurements of blood pressure, two taken at the first exam and two taken at a second
exam. The average standard deviation in four measurements is 9 mm Hg, which corresponds
to a reliability ratio of about 0.75. Based on the information from other external studies, the
measurement error may actually be larger (Marshall, 2008). Here, we conservatively assume
a reliability ratio of 0.75 for both systolic and diastolic blood pressure and postulate a
correlation of .50 between the measurement errors in these variables. In practice it is very
important to obtain replicate data or consider a range of possible values for Σu in a
sensitivity analysis.

In Table 3 we compare the MAI odds ratios to those obtained by Gheorgiade et al. (2006)
and Thomas, Stefanski, and Davidian (2011). We report odds and hazard ratios per 10-mm
Hg units. Ninety-five percent Wald confidence intervals for the odds ratios are based on
standard errors obtained from 1000 bootstrap samples. The adjusted estimates indicate a
stronger effect of SBP. Univariate MAI, applied to SBP only, results in larger coefficients
for SBP and the effect of DBP is completely attenuated. Multivariate MAI, applied to both
variables, has a relatively modest impact on the coefficient for SBP and DBP remains
important. Conclusions about the importance of blood pressure differ when we take into
account the variability in measurement of each.

6. Discussion
The OPTIMIZE-HF study of systolic blood pressure of Gheorgiade et al. (2006) is
illustrative of a typical data analysis. The mis-measured variable is included in descriptive
analyses and in complex models involving splines to account for non-linearity. Interest is
focused on a particular covariate and measurement error in this variable is likely correlated
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with that of related variables. Multivariate MAI can address such measurement error and is
particularly attractive for moderate to large data sets such as OPTIMIZE-HF. The adjusted
data are useful for univariate descriptive purposes like density estimation and as predictors
in a logistic regression model and therefore provides a more comprehensive solution than
other approaches. Similar to Thomas, Stefanski, and Davidian (2011), we find that MAI
performs well under the general recommendation of matching four moments. This
recommendation may be limited to moderately large samples, such as those considered here,
where higher order moments can be estimated with good precision. For density estimation,
the multivariate adjusted data are potentially better than univariate adjusted data and MAI is
superior to convenient alternatives. In simulations of logistic regression, the method is
similar to MR and RC when the latent variable is normally distributed, but is a superior
imputation method when the latent variable is chi-square.

Thomas, Stefanski, and Davidian (2011) noted that MAI was not generally superior to RC
when accounting for measurement error in a predictor of time-to-event outcomes, modeled
by Cox proportional hazards regression. We observed similar results in preliminary
simulations involving multivariate measurement error data. MAI typically provided
substantial improvement over the naive method, but RC was frequently superior. This is not
entirely surprising, since MAI is based on recreating the joint distribution of latent
covariates and response. In the presence of censoring for time-to-event data the appropriate
definition of “response” is unclear. More effort is needed to explore various options.
Presently, we would recommend other approaches for survival analysis.

We observe relatively little difference between the sequential and joint minimization
approaches to calculating adjusted data. The various implementations of MAI could differ in
situations that we did not consider. Joint minimization has the benefit of accounting for
differential measurement error between the latent variables and could be explored in future
research using alternative software or programming methods. We have developed MAI for
the case of multivariate normal measurement error. We find many applications where this is
a reasonable assumption. However, the method depends on correct specification of the
measurement error distribution. Extensions to other measurement error distributions are
reported elsewhere.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Kernel density estimation (KDE) for the marginal densities of X1 and X2 from a single
simulated data set. Reliability ratios for X1 and X2 are 0.50 and 0.75, respectively, ρ = 0.5
and n = 1000: solid-dark line: KDE of  for sequential MAI matching 4 moments, solid-
light line: KDE of  for joint minimization, Equation (1), matching 4 moments.
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Figure 2.

Boxplots of  from B = 250 simulated data sets, for chi-square X1 and X2 and P(Y = 1|X1,
X2) = F(β0 + β1X1 + β2X2), with true values β=(β0, β1, β2) =(1.5, 0.5, 0.5) denoted by a
horizontal line. Reliability ratios for X1 and X2 are 0.50 and 0.75, respectively, ρ = 0.50 and
n = 1000 or n = 9000. Method: W, naive; M2 and M4, multivariate MAI with M=2 and 4,
respectively; RC, regression calibration; MR, moment reconstruction.
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Table 1

Coefficient estimates from a single simulated data set. Reliability ratios for X1 and X2 are 0.50 and 0.75,
respectively, ρ = 0.5 and n = 1000. Methods: X, true covariates; W, mis-measured covariates; M2 and M4,
multivariate MAI with M=2 and 4; J-2 and J-4, joint minimization, Equation (1), with M=2 and 4.

Method β̂0 β̂1 β̂2

X 1.175 0.371 0.743

W 1.050 0.076 0.516

M2 1.074 0.243 0.611

J-2 1.076 0.247 0.614

M4 1.102 0.283 0.688

J-4 1.108 0.318 0.688
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