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Abstract
Measurement error/misclassification is commonplace in research when variable(s) can notbe
measured accurately. A number of statistical methods have been developed to tackle this
problemin a variety of settings and contexts. However, relatively few methods are available to
handlemisclassified categorical exposure variable(s) in the Cox proportional hazards regression
model. Inthis paper, we aim to review and compare different methods to handle this problem -
naïvemethods, regression calibration, pooled estimation, multiple imputation, corrected score
estimation,and MC-SIMEX - by simulation. These methods are also applied to a life course study
with recalleddata and historical records. In practice, the issue of measurement error/
misclassification should beaccounted for in design and analysis, whenever possible. Also, in the
analysis, it could be moreideal to implement more than one correction method for estimation and
inference, with properunderstanding of underlying assumptions.
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1. Introduction
Measurement error (ME) is common in biomedical and epidemiologic research. When
anexposure variable (or covariate) is analyzed as a categorical variable, the ME is generally
referredto as ‘misclassification’. Currently, a number of methods have been developed
tohandle different types of MEs, study designs and statistical or data settings. Some of these
methodsdeveloped from fundamentally different formulations or paradigms, while others are
major or minorextensions of extant methods. Most currently available methods are suited for
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handling continuouscovariate(s) in generalized linear models (GLMs) (e.g., linear or logistic
regression) (Freedman et al., 2008; Messer andNatarajan, 2008), while there have been
fewer developments for applications with categoricalcovariate and/or censored outcome
data. In this paper, we review and compare available methods bysimulation and data
analysis that could handle misclassified binary exposure variable(s) in the Coxproportional
hazards regression model (Cox, 1972). Weselected five fundamentally different but practical
methods - 1) regression calibration; 2) pooledestimation; 3) multiple imputation; 4)
corrected score estimation; and 5) MC-SIMEX, and comparedthem to naïve methods that do
not account for misclassification properly.

To our knowledge, no prior publication has compared these methods altogether in
anycontext. Based on our review, we found that the most common practice in statistical as
well asapplied research is to implement only one error correction method and to contrast
results before andafter correction. Since the ME correction methods heavily rely on
assumptions (some of which are notempirically verifiable), it may be more reasonable to
explore/implement different methods ratherthan to use a single method, often chosen by
computational convenience or users’familiarity, preference or tradition.

The paper is organized as follows. In Section 2, we briefly review statistical methods.We
summarize simulation results in Section 3 and data analysis in Section 4. Section 5
providesdiscussion and conclusion.

2. Data Settings and Statistical Methods: a Review

We adopt a standard survival analysis setup, denoting the survival timeby  and the time of
right censoring by Ci forith individual (i=1,…,n) and the observed data are the minimum of

thesetwo times,  and the event indicator . Survival and
censoring processes are conditionally independent giventhe covariate process as in classical
survival analysis settings (Kalbfleisch and Prentice, 2002).

The true covariate or gold standard measure is denoted by X. Given that it is oftendifficult or
expensive to measure X accurately, we may measure W as a proxy. For example, X is
thetrue vitamin D intake and W is a proxy for X, based on assessment of vitamin D intake
through a foodfrequency questionnaire or food diary. In the motivating example that we will
analyze later, X isfather’s occupation during childhood and W is recalled data during
adulthood.

Let us suppose that X and W are binary and that the relationship of X and W or
themisclassification pattern can be characterized by sensitivity (Se) and specificity (Sp):

We assume the misclassification pattern is ‘non-differential’ forsurvivors and non-survivors.
This assumption tends to hold in prospective cohort studies, comparedto case-control
studies, where survival analysis is typically conducted (Carroll et al., 1995).

We also use a standard ME setting, where a set of observations{Ti, Δi,Wi}are available in
the full sample (fori=1,…,n), while Xi is additionally available for asubsample (i.e., a
validation sample). In this manuscript, we assume a simple setting with thefollowing
conditions: 1) there is one error-prone covariate; 2) the covariate is time-invariant; and3)
internal validation sample is available, for simpler presentation and comparison. Extensions
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tomore advanced or general settings such as those with time-dependent covariate or multiple
covariateswith or without ME/misclassification could be made for some methods.

We work under the Cox proportional hazards model with the hazard function of

(2.1)

where λ0 (t) is aunspecified baseline hazard function and β is an unknown
regressionparameter of interest. Our goal is to estimate the point and interval estimates of
trueβ with minimal bias.

2.1. Regression calibration
Regression calibration (RC) is a standard method for correcting for bias due to
ME(Armstrong, 1985; Carroll andStefanski, 1990; Fuller, 1987; Gleser, 1990; Rosner et al.,
1989). RCis a simple and general method, which can be potentially applicable to any
regression model. Thebasic idea behind RC is that one replaces X by the regression of X
given W (or given W and othercomplete covariates) as an approximation and then performs
a standard analysis. Thus, this methodrelies on the assumption that this approximation is
sufficiently accurate.

Rosner and colleagues (Rosner et al., 1989)proposed the following simple formulas for the
relative risk model with one covariate:

with

where β̂W is estimated from(2.1) by using W in place of X, andγ̂ is obtained from fitting the
simple linear regression model forX and W:

under constant variance,Var(X|W)=σ2,to the validation sample.

The behavior of bias due to ME in the Cox model has been investigated (Prentice, 1982).
Later, It has been noted that the use of Rosner’sformulas can be justified in the Cox model
when the following assumptions are met: 1) X iscontinuous; 2) the event is rare; 3) relative
risk is small; 3) ME is not severe; 4) ME is additive;and 5) ME is non-differential
(Spiegelman, 1997).Additionally, censoring is assumed to be conditionally independent of
the true exposure X, given themismeasured exposure W, analogous to the conditional
independent censoring assumptions invoked whenstandard survival analysis methods are
used with perfectly measured covariate (Kalbfleisch and Prentice, 2002; Spiegelman,1997).

Yet, since RC is easy to understand and convenient to use, possibly the most popularmethod
in the ME literature, it is commonly considered for handling discrete covariates ornon-
normal data as well (Cole et al., 2006; Dalen et al., 2006).
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2.2. Pooled estimation
A pooled estimator, which combines the RC estimator and an estimator from the
validationdata has been proposed as well (Spiegelman et al., 2001). Thepooled estimator is
formulated as:

where wRC =Vâr(β̂RC)−1[Vâr(β̂RC)−1+Vâr(β̂RC)−1]−1and wV = 1 −wRCVâr(β̂RC)

and the corresponding asymptotic variance is given as:

where β̂RC is the standard RCestimator from Section 2.1 and β̂RC is the slopeestimator
obtained from the validation data alone from the primary regression model (2.1).

This extension leads to increased efficiency compared to the standard RC estimator whenthe
validation sample is large. Selecting an appropriately large validation sample is important
inthe context of the Cox model although it is not always feasible or practical.

Regarding censoring mechanism, the same censoring assumption for RC above is assumed
inthe main study, while censoring in the internal validation sample would be conditionally
independentgiven the true exposure as we just do standard survival data analysis on the true
exposure ignoringthe mismeasured exposure entirely in the internal validation sample.

2.3. Multiple imputation
Multiple imputation (MI) was originally developed to solve missing data problems
instatistics (Little and Rubin, 2002; Rubin, 1976). Yet, considerable similarities in missing
and mismeasured datahave been noted and some methods can handle these two types of
incomplete data together. Among anumber of statistical methods for the analysis of missing
data, MI is popularly employed, partlybecause the operating mechanism is intuitive (e.g.,
filling in the missing data by artificial butplausible data multiple times and combining the
results) and also because it is flexible and easy toimplement for a variety of statistical
models. The use of MI has been suggested as a bias correctionmethod for a binary covariate
subject to misclassification in the Cox model (Cole et al., 2006). We recap the general
algorithm below, which can bemodified to accommodate different models as needed.

Step 1—Fit a logistic regression model that relates X to W in the validation sample:

where f is a function such as identity, log or spline. Then store theresulting parameter
estimates (i.e., α̂0,α̂1, α̂2,α̂3) and covariance matrix (say,Σ̂w,δ,t).

[Remark: In this regression, one can add the interaction of w and δ orother observed
covariates, where the interaction term can partly address differentialmisclassification.]
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Step 2—Using the estimated parameters and covariance matrix, draw an estimate of the set
offour coefficients for each imputation k (k=1,…,K) from a multivariate normaldistribution
with mean vector (α̂0,α̂1, α̂2,α̂3) and covariance matrixΣ̂w,δ,t.

Step 3—Let Zk =X wheneverX is available (that is, in the validation sample). If not,
drawZk ~Bernoulli(p̂k,w,d,t),wherep̂k,w,δ,t=1/[1+exp{−(α̂0,k+ α̂1,k w +α̂2,k δ+α̂3,kf(t))}] for
each k=1, …, K. Now K imputed datasetsare ready.

[Remark: If computing resource and time are not a major issue, we suggest amoderate to
large number of imputations (say, K=10–40) as Cole et al. recommendedrather than
traditionally recommended number such as 5 in the missing data literature.]

Step 4—Fit K models separately and then combine the results. Explicitly, fit a Cox
modelλ(t|Zk)=λ0,k (t)exp(βkZk) for k=1 to K. Then the final hazardratio and its variance can
be estimated by the standard combining schemes in MI:

where β̂k is the log hazardratio obtained from the kth imputed dataset in Step 3, and

which combines variability within- and between-imputations.

Currently, many standard statistical software packages (e.g., MI and
MIANALYZEprocedures with CLASS statement in SAS) provide user-friendly commands
for implementing MI. Thereare some conceptual advantages in this method as well: MI uses
true exposure whenever it isavailable, and differential ME (for event vs. non-event) are
typically better handled by missingdata methods than standard ME methods (Carroll, 2005;
White, 2006). Yet, the correct specification of the models iscritical for successful
performance of this method, and MI with censored outcomes is more difficultto implement
than applications without censored data in general (Qiet al., 2010; Van Buuren et al., 1999;
White, 2006).

2.4. Corrected score estimation
The corrected score (CS) estimator was proposed for the Cox model with
misclassifieddiscrete covariates (Zucker and Spiegelman, 2008) byextending the original CS
techniques (Akazawa et al., 1998;Nakamura, 1990). Under the Cox model in (2.1) in the
absence of ME, the partial likelihood score function canbe written as:
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The basic idea is that all terms that include X (i.e., Xi,exp(βXi), Xiexp(βXi)) are replaced by
observable quantities, and theresulting score is called ‘CS function’. For example,
unobservedXi is replaced by observable functiong*(W)=B f(W), where B is a function of the
misclassification matrixΠ, which consists of Se and Sp, and f is some function. Here, the
novel device B is chosento make the key relationship E[g*(W)|X]=g(X) hold. In theabsence
of misclassification, this method reduces to the classical Cox partial likelihood method.
Asandwich formula and bootstrap are suggested for variance estimation.

With this method, instead of using the individual (raw) data from the validation sample,Se
and Sp estimated from this sample are used. This results in some loss of efficiency but
couldaccommodate situations where a validation sample is formed using a nonrandom or
nonrepresentativesubset of study participants (e.g., those who died). Also, CS is a
‘functional’modeling approach unlike RC and MI in the sense that knowledge about the
distribution of Xs isavoided. However, when the risk sets get small, say, in the right tail of
the time axis, somenumerical problems could occur. Generally, administrative truncation
can make risk sets sufficientlylarge enough to resolve this problem, which is not uncommon
in survival analysis (Bang, 2005; Huang and Wang, 2001).Notably, this method allows the
censoring to depend on X but does not allow it to depend on W,differently from other
methods.

2.5. MC-SIMEX
Simulation and extrapolation (SIMEX) is another general method that can deal withadditive
ME in continuous variable (Cook and Stefanski,1995). This method consists of ‘simulation’
and‘extrapolation’ steps, and is particularly useful for complex models with a simpleME
structure. Later, SIMEX has been extended to handle misclassification of categorical
variablesand called the method, MC-SIMEX (Kuchenhoff et al.,2006).

The key idea is that SIMEX estimates are obtained by adding additionalME to the data like
resampling, establishing a trend of ME-induced bias over the variance of theadded ME, and
then extrapolating this trend back to the case of no ME.

For a continuous covariate, SIMEX uses the relationship between the size of the

ME,denoted by  and the bias in the parameter estimator. We may define a function:

where β* is the limit towhich the naïve estimator converges as n → ∞,f(0) = β, the true

parameter, and , the naïve estimator. SIMEX tries to approximate the functionf(·)
by a parametric approach, for example, via linear, quadratic or logfunction. Then extra ME,

, is added to W by ‘simulation’ so that the resulting MEis  and the corresponding

estimator is . Repeating this simulation step for a fixed grid ofλ will generate the

data pairs for ( ) and then we may fit the function f(·), say,by least squares. Finally,
we have the SIMEX estimatorβ̂SIMEX =f ̂(0) whenλ = −1, that is, the approximated function
is‘extrapolated’ back to the hypothetical situation, where there isno ME. A graph is often
drawn with parameter estimate for Y-axis and λ forX-axis (say, for −1< λ <2), where the y-
value forλ = −1 and 0 is the SIMEX estimate and naïveestimate, respectively, and λ >0
corresponds to simulated situationswith increased ME.
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For a binary covariate, the misclassification error can be described by themisclassification

matrix Π instead of . Using a similar logic outlined above, the MC-SIMEX estimator can
bedefined by a parametric approximation of :

where πλ can be expressed asπλ:=EΛλ E−1 via spectraldecomposition, with Λ being the
diagonal matrix of eigenvalues and E the correspondingmatrix of eigenvectors. Then by
performing a similar simulation step (i.e., generate pseudo data andcompute the naïve
estimators for each λ) and extrapolation step(i.e., fit a curve for the relationship of X= λ vs.
Y=f (1 + λ) and find the Y value that corresponds toX = λ =−1 as in the SIMEX), the MC-
SIMEX estimatoris computed as β̂MC–SIMEX =f̂(0).

Three variance estimation methods have been proposed: jackknife, asymptotic andbootstrap
(Kuchenhoff et al., 2007; Kuchenhoff et al., 2006). The SIMEX methods rely on simulation
andextrapolation functions, based on a premise that the effect of ME on an estimator can be
determinedexperimentally via simulation. Thus, they do not necessarily yield a consistent
estimator andextrapolation process could be numerically unstable (Lederer andKuchenhoff,
2006). Kuchenhoff et al. (2006) studiedGLMs but the same logic could be extended to
survival regression (Slate and Bandyopadhyay, 2009).

3. Simulation
We conducted a simulation study for a simple Cox regression model with one covariate.
Weevaluated the performances of two naïve methods (using the observed misclassified
covariate,W, and using the true covariate, X, in the validation sample only) and five
correction methods(denoted by RC, Pooled, MI, CS, and MC-SIMEX), which were
compared to the hypothetical situationwhen X is available for all subjects.

A binary X was generated from a Bernoulli distribution with the prevalence,P(X=1)=0.4 or
0.2. The survival time, T, was generated from a Weibull distributionwith the shape
parameter of 2 and the scale parameter of exp(a-log(1.5)*X) that yields thetrue hazard ratio
(HR) of 2.25, or equivalently, log (HR)=0.81, where a=1.9 was usedfor common event
scenarios and a=1 for rare event scenarios. Censoring time, C, wasgenerated from an
exponential distribution with the mean of 1, independently from all othervariables – we will
discuss the situation when censoring depends on covariate at the end ofthis section. Then,
the follow-up time was defined as the minimum of the survival time and censoringtime. We
created misclassified W from X according to Se and Sp parameters (see Table 1 for
simulation configurations).

To summarize briefly, we used 40% and 20% for prevalence of the trueexposure, 2000 and
1000 for the sample size, n, of the full sample, approximately 20% and5% for the event rate,
and (0.9, 0.7), (0.9, 0.9) and (0.7, 0.9) for (Se, Sp). Out of allpossible combinations, we
reported in Table 1 the 10scenarios that were deemed to be most important in practice. We
also added one additional simulationscenario that closely characterizes our example (that is,
16% of the exposure prevalence,n=5000, the event rate of 7%, Se=0.55 and Sp=0.80). For
allsimulations, 10% subsample was randomly selected for the purpose of validation.

Simulation was repeated 1000 times and results were summarized in terms of 1) mean
of(absolute) bias estimates in log(HR); 2) sample standard error (SSE); 3) mean of standard
errorestimates (SEE); 4) mean squared error (MSE); and 5) coverage probability (CP). Of
note, 20imputation datasets were generated for MI and 100 simulations with quadratic
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extrapolation functionwere used for MC-SIMEX. Also, we used the Poisson approximation
of the Cox model in theimplementation of MC-SIMEX as the current method and software
are not directly applicable to the Coxmodel (Lindsey, 1995; Loomiset al., 2005).

We repeated the same set of simulations with a more modest but protective effect
size(HR=0.84) and presented the results in Table 2.[Remarks: We used n≥1000 because ME
correction is generally applied to largeepidemiologic studies and statistical power is
governed by the number of the events in survivalanalysis. In small or moderate size studies
(say, N<500), particularly with rare events, where itis likely that only few people in the
validation sample might have the event, the ME correction maynot be feasible or reliable for
the Cox model. Also, we chose 10% for validation datasampling, which is typical in many
studies (due to cost or feasibility issues). Of note, we did notinclude a scenario where both
Se and Sp are low, as it may suggest that W is not valid or usefulmeasurement so that ME
correction with any method based on these data should beavoided.]

As anticipated, when X is available for all subjects, the results are virtually unbiased(of 0–
0.01 bias) and the smallest MSE (of 0.01–0.1) in the log(HR) with accurate CP(0.94–0.96
for almost all scenarios). When we used W for all subjects, the well-known‘attenuation’ or
‘bias toward the null’ phenomenon in the MEliterature with incorrect CP was uniformly
observed. When we analyzed the validation sample with Xonly, bias was small (<0.1) but
SE and MSE were large due to small sample size. These twonaïve analyses are generally not
recommended in practice.

Now we report the performances of different correction methods. MI tended to exhibit
thelargest variability among all methods we compared. MI is destined to be unstable when
the validationstudy estimator is unstable, e.g., when the size of the validation sample (or the
number of events)is too small to result in a reliable imputation model. Overall, RC and
Pooled performed comparably,although Pooled was slightly more efficient (i.e., with smaller
variance). However, as theorypredicts, when n was large (e.g., n=5000 here), the efficiency
gain in Pooled over standardRC was more pronounced (e.g., SSE=0.33 to 0.27). The bias of
RC was not systematicallydifferent for common vs. rare events, suggesting that it may be
quite robust to the violation of the‘rare event’ assumption. Some portion of bias may have
occurred because RC andPooled were originally developed for GLMs (vs. Cox models) with
continuous covariates (vs. binarycovariates). Overall, CS tended to provide the smallest bias
and the most accurate CP, while RC andPooled tended to provide the smallest MSE. Since
CS does not use validation data directly, theresulting estimator was less efficient than RC
and Pooled. MC-SIMEX also performed reasonably welland the bias incurred was
somewhat comparable to that from RC. It is interesting to note that whenthe true HR was
small (i.e., near the null value 1, HR=0.84 in our study), the CP was notextremely low even
when W was used for all subjects. When event rate is low (5% here) insmaller total sample
size (n=1000), validation sample had only about 5 events so unstableestimation frequently
occurred.

Lastly, an important strength of the Cox model is that it can also handle censoringwhich
depends on the covariates in the model. Therefore, we repeated the entire simulation under
thefollowing setting. We generated time of censoring, Cnew=I(X=1)*C*0.5+I(X=0)*C*1.5
as a function oftrue covariate X, and Cnew=I(W=1)*C*0.5+I(W=0)*C*1.5 as a function
ofobserved covariate W, where C, X and W were generated as described earlier. For
concisepresentation, we reported the results for selected scenarios (i.e., #1, 2, 9, 10, 11 from
Table 1) in Table 3.Most interestingly, we observed when censoring time depends on X, RC
performed poorly but whencensoring time depends on W, RC performed much better. In
contrast, the performance of CS was theopposite, as the theories predicted. Pooled had
reduced bias compared to RC in all scenarios. Inthese particular simulations, MI and MC-
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SIMEX did not show any noticeable, systematic behaviors.Overall, the performances of the
ME correction methods tended to diverge when the censoring was notcompletely random.

4. Application to a Life Course Study with Recalled Childhood SES
In the life course literature, researchers are interested in understanding the potentialeffects of
early life experiences on health in later life. While associations between adultsocioeconomic
status (SES) and many chronic diseases are well established, the literature on thecontribution
of early life SES to the development of chronic diseases in adulthood is lessconclusive.
While early life SES is often ascertained via self-report from adults, historicalrecords are
regarded as more accurate or objective data sources (Galobardes et al., 2004; Kauhanen et
al., 2006).

The Atherosclerosis Risk in Communities (ARIC) study is a prospective study
ofcardiovascular disease in a cohort of 15,792 participants from four communities in the
US.Recruitment started in 1987–1989 from individuals 45–64 years old. Details aboutthis
study have been documented; see http://www.cscc.unc.edu/aric/ and reference(ARIC, 1989).
The Life Course SES (LC-SES) study was conductedas an ancillary to ascertain early life
SES among over 12,700 ARIC study participants who werecontacted during annual follow-
up by telephone in 2001–2002. Details about this study arealso available at http://
www.lifecourseepi.info/ and references (Patel etal., 2012; Rose et al., 2008; Rose et al.,
2004). Recently, we obtained childhood SES from historicalrecords (e.g., census records)
among a sample of participants with the goal of assessing the qualityof recalled early life
SES and the impact of the recall error on the association between early lifeSES and adult
health outcomes. Specifically, we used the two sources of data (recalled vs.historical) to
study the direction and magnitude of the bias in the association of childhood SES andthe two
outcomes, mortality and incident coronary heart disease. As a childhood SES measure, we
usedfather’s occupation and dichotomized non-manual (e.g., professional or managerial)
vs.manual occupation groups, which represent ‘high SES’ vs. ‘low SES’,respectively. This
dichotomization is widely accepted in social, epidemiological and clinicalresearch. In our
analysis, 11,264 participants in the original LC-SES study with complete (i.e.,non-missing)
recalled SES data and outcomes were included.

Typically, a validation subsample is selected randomly from a full cohort. However,
ourvalidation sample was limited to study decedents, as the historical records of interest
were onlyaccessible among decedents due to privacy and other administrative reasons. Yet,
we do not suspectthat the key assumption of ‘non-differential error’ was meaningfully
violated withthis approach, as there is no data or strong reasons to indicate that decedents
would be more orless likely to over- or under-report parental SES than persons who were
still alive. Nonetheless,the pooled estimator could be numerically unstable as our validation
sample that mostly comprisedevents cannot provide a valid or numerically stable estimate of
the HR.

Approximately 16% of the participants had high SES and 6–7% ofthe participants had
events. The validation sample showed 54% sensitivity and 86%specificity between recalled
data (W) and historical records (X). We found that over-reporting ofSES was more common
than under-reporting, which may be interpreted as socially desirable behavior insurveys
(Burris et al., 2003). For statistical illustration,we fitted two regression models, a simple
regression with the SES variable as a single covariate anda multiple regression adjusting
other covariates, where all covariates are time-invariant. Althoughadjusting for intermediate
covariates is controversial in life course studies, unadjusted andadjusted models may be
justified depending on the goal (Hernandez-Diaz et al., 2006; Oakes and Kaufman,2006).
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Table 4 summarizes the regression analyses(i.e., log of HR estimate, SE, and p-value) along
with some details about the data and models wefitted.

First, it is noteworthy that de-attenuation by correction methods was not alwaysobserved.
For example, MI yielded smaller effect estimates than the naïve estimator in somecases.
Moreover, the estimates from MI varied considerably in both magnitude and direction.
Ouranalysis highlights that model specifications, which are not always straightforward,
especially incomplex real world settings, can be critical for the validity of MI. We observed
that RC, CS andMC-SIMEX yielded de-attenuated estimates in all cases; however there was
sizable variation in themagnitude. In general, the point estimates from RC and CS were
comparable, while those from MC-SIMEXwere closer to the naïve estimates. Overall, CS
provided the largest SE, while Pooledprovided the smallest SE. Since the validation data
was limited to decedents, our data may not bewell suited for Pooled as mentioned
previously. We observed that statistical significance alsovaried across analyses, which may
lead to different conclusions. Even within the same method, e.g.,MC-SIMEX, p-value
changed somewhat meaningfully depending on the approach used to estimate variance(e.g.,
asymptotic vs. jackknife method). It is interesting that the effect estimate tended toincrease
after ME correction, while the p-value remained similar or increased (Greenland and
Gustafson, 2006).

It is important to keep in mind that we intended to deal with onestatistical problem, ME
correction, in this illustrative application. More rigorous investigationsthat address various
different issues and aspects of the data are warranted for answering a complexcausal
question (Bang, 2010; Greenland, 1980; Greenland and Robins, 1985; Liao et al., 2011;
Oakes andKaufman, 2006; Seppa and Hakulinen, 2009).

5. Discussion
In this paper, we compared correction methods for misclassified covariates in the Coxmodel
by simulation and data analysis. Our work may be viewed as a natural extension of
previouswork in this field (Freedman et al., 2008; Messer and Natarajan, 2008). Exposure
ME is highly common as many noted, butfrequently ignored when analyzing epidemiologic
data and interpreting the study results (Jurek et al., 2006). In applied research, many do not
statisticallyassess or adjust for potential bias in the presence of mismeasured covariates/risk
factors.Moreover, if adjustment is attempted, only one method is typically implemented,
with the methodoften chosen based on the researchers’ familiarity with the method,
convention in theirfield or training, and/or the availability of software. However, there are
several fundamentallydifferent and computationally feasible methods available. Therefore,
we strongly recommend thecorrection of ME should be attempted, whenever justifiable and
possible. In our study, we usedpublicly available software or computing programs that
required generally minoradaptation/modifications. Although currently available programs
are written for different platforms(e.g., SAS, R and Fortran), the absence of universally
accepted methods and computational issuesshould not be major barriers in applications.
Ideally, a statistical model should not be chosenbased on software availability, simplicity of
implementation, or tradition. Also, mechanicalapplication of a method, without proper
understanding of important issues and the specific contextcould lead us to erroneous
analyses or the same repeated mistake. In general, the choice of the MEshould be guided by:
type of variables (e.g., continuous vs. categorical covariates, ME in responseor covariate or
both), model (e.g., Cox vs. logistic vs. linear regression), and capabilities of thesoftware, in
addition to other fundamental issues such as underlying assumptions and modelsrequired,
although some methods seem to be robust to some violations.
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As we observed, the attenuation of the regression coefficient for the parameter ofinterest is
common when the covariate is misclassified but it is not always the case (Yanez et al.,
2002). Not only point estimates but also standarderror estimates should be corrected, which
have impacts on confidence interval, hypothesis testing,statistical significance, and power/
sample size estimation. We must emphasize that the quality ofthe validation sample seems
to be an essential component. Validation data should provide reliableand precise estimates
of sensitivity and specificity for all methods and be large enough for mostmethods. We also
found that different ME correction methods need different assumptions and couldlead to
meaningfully different results. For example, RC method assumes censoring could depend on
W,while CS method assumes censoring could depend on X. In practice, it is generally not
easy to figureout the true censoring mechanism. Therefore, it may be reasonable and
practical for researchers toimplement more than one correction method whenever they can,
preferably with some sensitivityanalyses and careful examination of the assumptions
entailed, in order to more fully understand theimpact of systematic error. Also, inconsistent
results could be better than one incorrectresult.
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