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Abstract
In this high-resolution magnetic resonance imaging (MRI) study at 17.6 Tesla of a fixed rat brain,
we used the continuous time random walk theory (CTRW) for Brownian motion to characterize
anomalous diffusion. The complex mesoporus structure of biological tissues (membranes,
organelles, and cells) perturbs the motion of the random walker (water molecules in proton MRI)
introducing halts between steps (waiting times) and restrictions on step sizes (jump lengths).
When such waiting times and jump lengths are scaled with probability distributions that follow
simple inverse power laws (t−(1+α), |x|−(1+β)) non-Gaussian motion gives rise to sub- and super-
diffusion. In the CTRW approach, the Fourier transform yields a solution to the generalized
diffusion equation that can be expressed by the Mittag-Leffler function (MLF), Eα (− Dα, β|q|βΔα).
We interrogated both white and gray matter regions in a 1 mm slice of a fixed rat brain (190 μm in
plane resolution) with diffusion weighted MRI experiments using b-values up to 25,000 s/mm2, by
independently varying q and Δ. When fitting these data to our model, the fractional order

parameters, α and β, and the entropy measure, , were found to provide excellent contrast
between white and gray matter and to give results that were sensitive to the type of diffusion
experiment performed.
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1. Introduction
The diagnostic capability of magnetic resonance imaging (MRI) is principally dependent on
the performance of both system hardware (RF coil arrays, faster gradients, and higher static
fields) and software (constrained reconstruction, compressed sampling and fiber tracing).
Often overlooked, however, are the underlying mathematical models of MRI phenomena
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that are the basis of tissue contrast. While the fundamental processes of precession and
relaxation encoded in the Bloch equation are the basis for imaging, there is additional
contrast available through modulating factors such as chemical exchange, local magnetic
field inhomogeneity, and diffusion [1]. In the case of diffusion, where the simplest model
predicts a single exponential signal decay, exp[−(bD)], (where D is the diffusion coefficient
(mm2/sec) and b is a pulse sequence controlled parameter), the restrictions introduced by
cell membranes, extracellular matrix and tissue heterogeneity provide a rich mix of
phenomena that are both anisotropic and complex [2]. Diffusion tensor imaging (DTI), for
example, provides new biomarkers (mean diffusivity and fractional anisotropy) that capture
additional anatomical features in the brain (e.g., white matter connectivity and fiber density)
[3]. Diffusion kurtosis imaging (DKI) is an another example of a diffusion based technique
that is able to characterize the complexity of multiscale neural tissue [4]. Here, we wish to
present a third method – fractional order anomalous diffusion – that describes underlying
tissue complexity through measurements of diffusion signal attenuation at high b-values.

In this paper we consider a probabilistic approach to modeling diffusion attenuation in fixed
brain tissue by generalizing the underlying random walk statistics [5, 6]. The generalization
relaxes the constraint that the diffusing particle (undergoing Browning motion) must take
equal length jumps at regular intervals, by allowing variable increments in both the jump
distance and the waiting times between jumps. We retain the statistical properties of
independent and identical particle behavior to have a stable process, but one that
characterizes the jump lengths and waiting times by probability distributions that fall off
separately in distance and time as inverse power laws (|x|−(1+β), t−(1+α)). In essence, we are
assuming that it is less likely for the particles to take large jumps or for them to experience
long waiting times. This generalization is formally incorporated into the analysis of MRI
diffusion data as the Continuous Time Random Walk (CTRW) model [7]. We will show
below, that this approach provides new biomarkers that encode tissue complexity in the
fractional order of the power law decays, which pass directly over to the fractional order of
the governing partial differential equation for the CTRW statistical process.

2. Theory
In random walk (RW) theory, the Brownian motion of diffusing particles, P(x, t), in
homogeneous and isotropic geometries can be described by the second order partial
differential equation,

(1)

where D is the diffusion coefficient. The solution to Eq. (1) follows as the familiar Gaussian
form of the probability distribution function (pdf),

(2)

However, the motion of diffusing particles is said to be anomalous (non-Gaussian) for
heterogeneous materials with tortuous and porous geometries. As such, the RW formalism
can be extended to the CTRW to account for this anomalous diffusion, and, P(x, t), can be
described with a fractional partial differential equation,
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(3)

where  is the αth (0 < α ≤ 1) fractional order time derivative in the Caputo form, ∂β/∂|x|β

is the βth (0 < α ≤ 2) fractional order space derivative in the Riesz form, and Dα, β is the
effective diffusion coefficient (e.g. mmβ/sβ).

The solution to Eq. (3) can be expressed in terms of the characteristic function, p(k, t), of the
distribution by taking the Fourier transform of Eq. (3) and solving the resultant fractional
order differential equation in time [5, 6]. The result can be written as,

(4)

where Eα is the single-parameter MLF (defined in [8]). This decay function interpolates
between a stretched exponential and a power law for small and large values of its argument,
respectively, with the conventional single exponential arising for the nominal choice of
parameters: α = 1 and β = 2 (see Fig. 7.3, page 253 in [9]).

A phase diagram of α and β can be constructed from the MLF for p(k, t) to visualize the
regions of sub-, super-, and normal diffusion, as shown in Fig. 1 [7]. Moving left from the
point of Gaussian diffusion (α = 1, β = 2) by fixing α = 1 and decreasing β, the characteristic
form of super-diffusion (Lévy stable process) is given by a stretched exponential function.
Moving down from the point of Gaussian diffusion (α = 1; β = 2) by fixing β = 2 and
decreasing α, the characteristic form of sub-diffusion is given by as a stretched MLF
(fractional Brownian motion). For all other points inside the area bounded by the α = 1
horizontal and β = 2 vertical lines, the characteristic form of anomalous diffusion is given by
Eq. (4).

In spin-echo diffusion MRI experiments, the signal decay, S, is modeled with a mono-
exponential as,

(5)

where b is the product of the q-space and diffusion time terms, b = q2(Δ − δ/3). For brevity,

we will define  as the effective diffusion time. As such, a diffusion experiment

can be constructed with a particular b-value, with arbitrary weighting on the q and 

components. Fig. 2 shows iso-b-value curves plotted as a function of q2 and , such that

either  (moving vertically) or q2 (moving horizontally) can be varied, to achieve an array of
b-values.

In [10], data obtained in fixed , variable q experiments were fit with a stretched-

exponential μ (analogous to our β) parameter and data obtained in fixed q, variable 
experiments were fit with a stretched-exponential α parameter as an approach to
independently interrogate fractional space and fractional time diffusion features described in
[5], respectively. Here we extend this approach in a diffusion MRI experiment to probe the
phase diagram using the MLF to fit the data,

(6)

Magin et al. Page 3

Microporous Mesoporous Mater. Author manuscript; available in PMC 2014 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where β incorporates the square of the q term to operate as 0 < β ≤ 2. The resultant α and β
values are expected to characterize diffusion in each tissue region.

The uncertainty, or information, in a signal can be expressed in terms of the entropy in the
power spectrum of the Fourier transform [11, 12]. Likewise, we can adapt this formalism to

multi-b-value diffusion data acquired as a function of q and ,

(7)

where , is the individual q value's contribution to a normalized power spectrum, and
the term, ln(N) (i.e. discrete uniform distribution of N samples), is a normalization factor

applied to the spectral entropy, , keep its total value between 0 and 1.

Considering Eq. (6) encompasses the phase space of diffusion phenomena as shown in Fig.
1, we can evaluate the entropy, or uncertainty, in Eq. (6) by insertion into Eq. (7). Fig. 3
shows the entropy surface computed against the generalized solution to the diffusion
equation for 0 < α ≤ 2 and 0 < β ≤ 4. Of particular interest is the singular case for Gaussian
diffusion (α = 1, β = 2), in which the entropy settles near the global minimum of the basin.
At points away from Gaussian diffusion, in the sub- (2α/β < 1), super- (2α/β > 1), and even
the effective normal (2α/β = 1) diffusion regimes, the entropy is greater. For further analysis
of this entropy surface, see [13].

In this paper, we investigate the feasibility of using the fractional order parameters α and β

in Eq. (6) and entropy, , defined in Eq. (7) to describe tissue complexity,
heterogeneity, and tortuosity, as observed in diffusion-weighted MRI experiments on a fixed
rat brain.

3. Experimental
The rat brain was excised and fixed in 4% paraformaldehyde. Overnight, prior to imaging
experiments, the rat brain was washed in phosphate buffered saline. During the imaging
experiments the rat brain was immersed in Fluorinert and oriented such that the anterior-
posterior axis of the brain was aligned ~ 30° with respect to the main B0 field. For this
orientation, a central oblique slice was selected to provide a full brain axial image. The axial
slice is defined as the y − z plane with medial-lateral direction along the y-axis and the
anterior-posterior direction along the z-axis. At the Advanced Magnetic Resonance Imaging
and Spectroscopy (AMRIS) Facility (Gainesville, Florida), pulsed gradient stimulated echo
(PGSTE) experiments were performed on a Bruker spectrometer (17.6 Tesla, 750 MHz, 89
mm bore) with the following parameters: TR=2 s, TE=28 ms, b-values up to 25,000 s/mm2,
δ = 3.5 ms, NA = 2, 1 diffusion weighting direction along the y-axis, slice thickness = 1 mm,
FOV=27×18 mm, matrix size 142 × 94, giving an in plane resolution of 190 μm.
Additionally, variable TR data were collected to correct for T1 relaxation effects in the

direction of the diffusion weighting experiment. One constant , variable q experiment was

performed with Δ fixed at 17.5 ms and one constant q, variable  experiment was performed
with gradient strength fixed at 525 mT/m to achieve q-value of 78 mm−1.

The raw data were fit to the MLF in Eq. (6) using a non-linear least squares fitting algorithm
(Levenberg-Marquardt) in Matlab (Nantick, MA) using procedures described in [14]. The
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values for α and β were determined assuming starting values of α = 1 and β = 2. The
convergence criteria for the fit was 10−6. To estimate the diffusion coefficient, a mono-
exponential function was fit to the first 3 low b-value samples where the semi-log signal
decay is assumed to be linear. After the MLF parameters were determined, the characteristic

decay curve for p(q, ) was constructed using N=1,500 increments arrayed over variable q
or variable  for b-values between 0 and 25,000 s/mm2. Then, the entropy (defined in Eq.

(7)) in the diffusion process as modeled by the MLF was computed as H(q, ).

4. Results
An axial T2 weighted MR image of a 1 mm slice through the central region of the entire rat
brain is shown in Fig. 4. Using this image we selected regions of interest (ROI) in the gray
matter and in the white matter (corpus callosum). In each ROI we then fit the diffusion
attenuation curves (for fixed Δ or q) to our fractional order model and estimated the

parameters α and β, D, and H(q, ). In Table 1 we present the results for Δ = 17.5 ms and q
= 78 mm−1. These data were obtained with the diffusion gradient directed along the y-axis,
which corresponds to the principal fiber direction at the center of the corpus callosum. For
the selected ROI, the α and β determined in the WM were less than those values in the GM,
reflecting the greater WM complexity (porosity, tortuosity). These differences were larger
for the constant Δ experiment than for the constant q experiment. In addition, for the
constant q experiment the fractional order parameters in GM were found to be very close to
the nominal Gaussian values of α = 1 and β = 2, while for the constant Δ experiment, α < 1
and β ~ 2, which is a characteristic of fractional Brownian motion [7]. The computed values
of the diffusion coefficient, D, were also sensitive to the q and Δ weighting, but differed

little between WM and GM. The entropy measure, H(q, ), distinguished between both
experiment and tissue, with higher values (greater microstructural complexity) in the
constant Δ than the constant q experiment.

This analysis was extended to each pixel in the entire slice. The results are displayed as

parameter maps for α and β, D, and H(q, ) in Fig. 5 for the constant Δ experiment, as an
example. The α map shows excellent contrast between WM and GM. In addition, good
contrast is visible for GM within the frontal, parietal and occipital lobes. The β map shows
good contrast between WM and GM only for the region of the central corpus callosum, and
within the occipital lobe of the GM. The D map displays excellent WM/GM contrast

throughout the brain. H(q, ) combines all this information giving an image with excellent
contrast in both the WM and the GM of the whole brain slice. In particular, the central
regions of the brain slice (caudate, putamen, thalamus, etc.) are clearly differentiated from
each other.

5. Discussion
The overall goal in our work is to develop a more thorough basis for the use of power law
models in the description of NMR relaxation and diffusion phenomena. We take inspiration
from the ability of fractal models to provide simple, but complete descriptions of complex
geometric structures, often involving fractional powers, and from `universality' in statistical
mechanics, where the overall dynamics of a complex system - in the scaling limit of a large
number of interacting particles - is independent of the dynamical details, and is simply
expressed as an order parameter (often with a fractional order critical exponent).

In the field of diffusion MRI, Magin et al., proposed a fractional generalization of the Bloch-
Torrey equation where both the space and the time derivatives could in principle be of
fractional order [14]. The solution to this model was demonstrated - under reasonable
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imaging conditions - to be expressed in the form of a stretched exponential function.
Recently, this work was extended and applied in clinical imaging studies of normal human
subjects [15, 16]. In the current paper, we have approached this problem directly from the
diffusion perspective, motivated in part by the recent stretched exponential fits to packed
bead phantom systems by [10] and by the higher-order moment fits to fixed rat brains by
[17]. Here we notice that the dual space-time fractional order diffusion equation has an
analytical solution in the form of the MLF with two fractional order parameters (α, β), where
the first reflects the fractional time derivative (and the order of the single parameter MLF),
and the second the fractional space derivative (and the fractional power of the q). The
physical interpretation of α and β is concisely incorporated in the CTRW model - as
articulated by [5] - through the assumption that the pdf for diffusion is separable into
individual probability distributions of waiting times (water trapping) and distance
increments (jump lengths). This solution reverts, of course, to the normal or Gaussian case
for α = 1 and, β = 2. Since this solution is in the simple form of the characteristic function of
the pdf, entropy can be used as an overall measure of anomalous features in the diffusion
decay dynamics, which differs from the use of entropy to characterize DTI metrics in [18].
The results demonstrate the utility of the fractional order generalization as one that
simplifies complex dynamical relationships, and in addition, appears to encode additional
information (i.e. greater entropy) when the fits diverge from the normal or Gaussian case.

Many groups are now investigating ways to extract meaningful biomarkers from the
observed decay of high b-value diffusion data [15, 19, 20]. Using a wide variety of fitting
methods (and underlying mathematical models) fractional order fits are obtained that
highlight significant spatial heterogeneity and directional dependence. These data, of course,
are just reflecting the underlying porosity and tortuosity within the imaging voxels. In this
feasibility study, we have examined diffusion in only one direction. Investigations of the
directional dependence of the fractional order parameters, and of the entropy, which can in
principle – like diffusion – be described by a tensor, are works in progress.

6. Conclusions
The probabilistic perspective of the continuous time random walk (CTRW) theory of
Brownian motion provides a convenient framework for analyzing the variety of behaviors
observed when diffusion weighted MR imaging is applied to biological tissues. Three
aspects of this perspective are perhaps worthy of note. First, the underlying idea of hindered
or restricted diffusion in complex, heterogeneous, and multi-scale tissue is encapsulated by
α and β directly in the CTRW idea that the diffusing particle is sometimes trapped and
sometimes free to jump. This idea simply links the decreasing (power law) likelihood of
such events with the fractional order differential operators of the generalized diffusion
equation. Second, the resulting anomalous diffusion process, as expressed though α and β in
the MLF, identifies specific forms of sub- or even super-diffusion as natural simplifications
of the model, not as an added complexity. Hence, one can more clearly identify the effects
on image contrast of changing the direction of the applied diffusion gradients or of keeping
either q or Δ fixed when spanning a selected range of b-values. Third, the estimation of the
entropy as a measure of system complexity introduces a new way to view the fractional
diffusion phase diagram through a surface of growing randomness (increasing complexity)
as the fractional order parameters deviate from the trough near α=1 and β=2 in Fig. 3.
Individual cuts of this surface describe specific features of the system behavior, and can be
used to guide more efficient/effective diffusion acquisition schemes, via, what we call,

“phase slice tuning”. Although this study suggests the constant  experiment is able to
identify more anomalous and directionally dependent diffusion phenomena (i.e. greater
entropy) compared to the constant q experiment, each approach remains important to pursue
for further investigation as they appear to encode different information about the diffusion
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process. As such, degeneration, plasticity, and therapeutic response in neural tissue may be
probed with the method that best interrogates changes in the relevant anatomical
morphology. Further work is underway to extend these techniques to an examination of
fixed tissue with known pathologies, to imaging applications in vivo, and to identify the
histological basis for the directional dependence of the fractional order fits.
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Figure 1.
Diffusion phase diagram with respect to the order of the fractional derivative in space, β, and
the order of the fractional derivative in time, α (adapted from [5, 7]).
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Figure 2.

Iso-b-value phase diagram of  vs. q2 for five b-values (5, 000 – 25, 000s/mm2).
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Figure 3.

The representative entropy, H(q, ) superimposed on the phase diagram of the diffusion
process as represented by the MLF as the characteristic function.
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Figure 4.
T2-weighted image of an axial slice through a fixed, whole rat brain with gray matter (GM)
and white matter (WM) ROIs.
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Figure 5.
MLF, diffusion coefficient and entropy parameter maps for constant Δ = 17.5 ms experiment
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Table 1

MLF parameter and entropy values for white and gray matter ROIs in the constant Δ = 17.5 ms and q = 78
mm−1 experiments.

parameter ROI Δ = 17.5 ms q = 78 mm−1

GM 0.76 ± 0.05 0.95 ± 0.01

α WM 0.42 ± 0.04 0.69 ± 0.05

GM 1.95 ± 0.06 1.91 ± 0.03

β WM 1.15 ± 0.13 1.85 ± 0.07

D(×10−3mm2/s) GM 0.32 ± 0.01 0.29 ± 0.01

WM 0.36 ± 0.04 0.25 ± 0.02

GM 0.82 ± 0.01 0.78 ± 0.01

WM 0.93 ± 0.01 0.88 ± 0.02
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