1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

NATIG,

o
HE

s sy,
Y

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Curr Opin Cell Biol. 2013 October ; 25(5): 600-612. doi:10.1016/j.ceb.2013.06.008.

Networking galore: Intermediate filaments and cell migration

Byung-Min Chung?, Jeremy D. Rottyl# and Pierre A. Coulombel.2.3##

1Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins
University, Baltimore, MD, USA

2Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore,
MD, USA

SDepartment of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA

Abstract

Intermediate filaments (IFs) are assembled from a diverse group of evolutionarily conserved
proteins and are specified in a tissue-, cell type-, and context-dependent fashion in the body. IFs
are involved in multiple cellular processes that are crucial for the maintenance of cell and tissue
integrity and the response and adaptation to various stresses, as conveyed by the broad array of
crippling clinical disorders caused by inherited mutations in IF coding sequences. Accordingly,
the expression, assembly and organization of IFs are tightly regulated. Migration is a fitting
example of a cell-based phenomenon in which IFs participate as both effectors and regulators.
With a particular focus on vimentin and keratin, we here review how the contributions of IFs to
the cell’s mechanical properties, to cytoarchitecture and adhesion, and to regulatory pathways
collectively exert a significant impact on cell migration.

Ten nanometer wide intermediate filaments (IFs), first described as such in muscle by
Holtzer and colleagues [1], are assembled from the most diverse and heterogeneous group of
proteins among intracellular cytoskeletal fibers. There are ~70 genes that code for IF-
forming proteins in the human genome, with 54 of them coding for keratin proteins that
occur primarily in epithelia [2,3]. IFs can be partitioned into six major subtypes based on
gene substructure or sequence homology within their signature central rod domain (Figure
1A). All IF proteins share the property of self-assembly into ~10-nm wide filaments (Figure
1B), which they do as obligatory or facultative heteropolymers, along with a defining
tripartite domain structure consisting of a central a-helical rod domain featuring long range,
coiled-coil forming heptad repeats that is flanked by variable end domains located at their
N- and C-termini (Figure 1C). Collectively, IF proteins exhibit pronounced heterogeneity —
for instance, their molecular mass ranges from 40 kDa (type | keratin 19) to 240 kDa (type
IV nestin) — though individually their primary structure is evolutionarily well-conserved. IF
systems are present across multi-cellular eukaryotes [4]. The evidence in hand suggests that
they appeared as nuclear proteins related to the current-day lamins in lower eukaryotes such
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as Dictyostelium [5]. The presence of the IF-like crescentin in Caulobacter crescenti[6]
raises the intriguing prospect that IFs might have been born earlier, in prokaryotes.

Another remarkable signature feature of the IF superfamily of genes and proteins is the
tissue type-, differentiation program-, and context-dependent nature of their regulation
(Figure 1A). Consistent with this, the list of functions fulfilled by IFs in their natural
biological setting is growing rapidly - by now all major facets of cell biology, including cell
motility, have been linked to IFs and their associated elements (see [3,7,8]). Given their
status as abundant fibrous elements within cells, IFs can impact cellular migration from
mechanical and cytoarchitectural perspectives. IFs also impact migration from a regulatory
perspective, owing to their ability to interact with and regulate various cellular effectors
including signaling molecules [3].

As should become clear from this text, there are IF proteins, e.g., vimentin (Figure 2B), that
consistently stimulate cell migration and invasion independent of the setting while others,
e.g., various keratins, exert a more variable, nuanced, and at first sight complicated, impact
on these processes. Beyond the type of IF protein, additional determinants such as the level
at which it is expressed, its associated partners, intracellular organization and covalent
modifications (e.g., phosphorylation) are acting in concert to define the overall impact on
intricate processes such as cell migration. Further, cellular and biological context is crucially
important. The expression “networking galore” (cf. title for this review) is meant to convey
the recurring notion that the nature and impact of various IFs during migration in normal as
well as disease settings reflects their pervasive integration, in a context-dependent manner,
within the broader fabric of the cell.

Basic attributes of IFs relevant to their properties and function in vivo

As is the case for F-actin and microtubules, IFs depend on an array of partner proteins for
their assembly, organization, function, and regulation. In particular, plakin family proteins
are “cytoskeletal organizers” that anchor IFs, microtubules and actin at several strategic
locations within cells [9]. Beyond their signature plakin domain, plakin family members
tend to be large and exhibit a modular substructure that enables them to act as versatile
organizers of the cytoskeleton [10]. Plakin proteins mediate IF attachment to the
cytoplasmic “plaque” domain in cell-cell desmosome adhesions and cell-matrix
hemidesmosome adhesions, to other elements of the cytoskeleton (F-actin, microtubules),
and to the surface of the nucleus [9-11].

IF proteins are regulated by several types of post-translational modifications including
phosphorylation, O-glycosylation, ubiquitination, sumoylation, and acetylation [12-14].
Such modifications are site-specific within the IF protein backbone, are typically reversible
(and often dynamic), and regulate virtually all aspects of their assembly, organization,
properties, and function [3,15,16]. In combination, associated proteins and post-translational
modifications help define the polymerization status and intracellular organization of IFs in
their natural setting. Actively migrating, polarized cells tend to have their IF system
reorganized around the nucleus or at their rear, trailing end, in natural settings [17-19] and
under conditions of mutant IF protein expression [20].

Interplay between intermediate filaments, adhesion, and other cytoskeletal

elements

Desmosomes are comprised of transmembrane cadherins, armadillo proteins such as
plakoglobin and plakophilins, and plakin proteins such as desmoplakin that link desmosomal
plaques to IFs intracellularly [11] (Figure 2A). Desmosomes maintain tissue integrity under
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mechanical stress [11] beginning at an early stage during mouse embryogenesis [21]. Potent
pro-migratory cues such as epidermal growth factor (EGF) regulate the assembly and
functional state of desmosomes (and hemidesmosomes) and IF network architecture [22—
25]. Stimulation of cell migration is generally coupled to weaker desmosome-dependent
cell-cell adhesion [26]. Indeed, enhanced desmosome turnover and their reduced
colocalization with keratin have been observed in migrating oral squamous cell carcinoma
cells [27].

Cell migration is also a function of dynamic interactions between ECM components and the
cell cortex (Figure 2A). The transmembrane, adhesion-mediating entity in hemidesmosomes
is the a6p4 integrin heterodimer, which provides a cell surface receptor for extracellular
laminin [28]. Intracellularly, integrin linkage to IFs is mediated by plakin proteins including
the bullous pemphigoid antigens 1 and 2 (BPAG1, BPAG2), and plectin (Figure 2A; [10]).
In the complete absence of keratin, hemidesmosome components are scattered in skin
keratinocytes which, paradoxically, adhere faster to the ECM and show increased migration
relative to wild-type [29]. Re-expression of the K5—K14 keratin pair alone (typical of
progenitor basal keratinocytes) in such keratin-free skin keratinocytes reverses this
phenotype, even when at a sub-physiological level. By comparison keratinocytes null for
BPAG1 show a normal density of hemidesmosomes at the cell-matrix interface, but lack a
cytoplasmic plaque and attachment to keratin IFs, and exhibit a delay in their ability to cover
a wound site in skin /n situ[30]. The knockdown of actinin-4, an actin-binding protein,
results in a loss of directionality during the migration of individual keratinocytes, correlating
with a mislocalization of a6f34 integrin and BPAG1e (Figure 2A) and defects in cell polarity
and lamellipodial dynamics [31]. The p90 ribosomal protein S6 kinase (RSK) has been
implicated in hemidesmosome remodeling [32,33] and in the regulation of the wound-
inducible keratin 17 [34], raising the issue of its influence in complete keratin-null and/or
actinin-4 knockdown keratinocytes. Besides, Bordeleau ef a/. showed that the knockdown of
keratin 8 (K8) in cultured hepatoma cells impaired cell migration in a scratch-wound assay
[35], decreased cell surface area upon spreading, altered Rho-dependent actin fiber
organization, and decreased local stiffness at focal adhesions, reflecting an interplay
between K8/K18 IFs and Rho-mediated actin dynamics occurring through plectin, RACK1
and Src [36] (see below).

LINC (linker of nucleoskeleton and cytoskeleton) is a protein complex present at the nuclear
membrane that participates in anchoring the nuclear lamina to cytoskeletal proteins on the
cytoplasmic side [37] (Figure 2A). Nesprin-3, a component of LINC, also associates with
plectin [38]. Disruption of LINC via expression of mutated nesprin impairs intracellular
force transmission, alters the organization of F-actin and vimentin IFs, and causes impaired
migration and polarization in mouse embryonic fibroblasts [39]. Similarly, depletion of
Nesprin-3 in human aortic epithelial cells alters the organization of vimentin IFs and impairs
cell migration [40]. On a related front, depletion of the major IFs in astrocytes (nestin,
vimentin, glial fibrillary acidic protein) alters the position and rotation of the nucleus during
astrocyte migration [41] and impairs their migration [42]. Such findings build upon the
observation that cell migration entails dynamic changes in the position and shape of the
nucleus [43], and that IFs contribute to nuclear architecture in skin keratinocytes [3] and
migrating cells [43].

A keratin-containing multi-protein partnership may be regulating the pace
of keratinocyte migration

The significance of the partnerships between IFs and their associated proteins is adeptly
conveyed by the converging migration phenotypes exhibited by several genetic null mutants
in mouse skin keratinocytes. Genetic loss of epiplakin, a plakin family member, in mouse
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results in enhanced skin keratinocyte migration [44] alongside loss of keratin IF bundling
post-wounding [45]. Enhanced migration also occurs in mouse keratinocytes genetically null
for plectin [46], plakoglobin [47] plakophilin [47], and keratin 6 (K6a/K6b) [48,49]. Further,
the loss of either K6a/K6éb, plectin or plakoglobin occurs alongside Src family kinase
activation and altered F-actin reorganization [44,46,50]. A follow-up effort on the plectin
deficiency phenotype suggested that IFs may indirectly regulate the organization and
stability of microtubules via an interaction with the plectinlc isoform, specifically, and an
associated impact on focal adhesion dynamics and directional migration of keratinocytes
[51].

The powerful Src kinase is known to regulate leading edge protrusion through Rac and
Cdc42 signaling, and stimulate focal adhesion dynamics and formation of invadopodia;
besides, Src can also directly induce epithelial-to-mesenchymal transitions (EMT; see Box
1). In the study involving K6a/K6b null keratinocytes, Src was shown to directly interact
with keratin IFs in a K6-dependent fashion via a novel, non-phosphotyrosine-mediated
contact involving Src’s SH2 domain, which dampens its enzymatic activity [49]. Also, Src’s
partitioning to detergent-resistant membranes, a locale where it is transiently inactive, is
mitigated in K6a/K6b null keratinocytes [49]. Whether such findings also apply to epiplakin,
plakophilin, plakoglobin and/or plectin null keratinocytes is an issue now worth examining,
as is the relationship of these findings to those of Bordeleau et al. [36], discussed above.
Much remains to be learned about this keratin-containing multi-protein partnership and the
mechanism(s) and effector(s) through which it so adeptly regulates keratinocyte migration.
The apparent paradox between the wound-inducible character of K6 and its negative
influence of “pure” cell migration (i.e., as seen in the “favorable” setting of ex vivo culture)
has also been observed for several other cytoskeletal proteins. One must now seek to
understand how various elements contribute to determine the optimal speed and mode of
cellular migration in a given biological context (see [19]).

Box 1

Intermediate filaments, epithelial-to-mesenchymal transition (EMT), and
tumor growth, invasiveness, and metastasis

Invasion of the proximal connective tissue stroma by cancer cells is a critical initial step
in cancer metastasis. Epithelial cancer cell invasion is typically accompanied by an
epithelial-to-mesenchymal transition, or EMT, so-called because epithelial cells typically
lose their polarity and other defining characteristics (e.g., E-cadherin, keratin expression)
as they adopt a fibroblast-like morphology (including vimentin expression) and
aggressive migratory properties. One of the key differences between the epithelial and
mesenchymal phenotypes lies in the tight cell-cell and cell-matrix contacts made by
epithelial cells compared to the loosened contacts of mesenchymal cells (see [106], [107]
for excellent reviews on this topic). The process of EMT is increasingly appreciated as an
important mechanism to account for the enhanced motility and invasiveness of epithelial
tumor cells [71,108,109].

As epithelial cells undergo EMT, their IF system switches from being keratin-dominated
to vimentin-dominated, which is characteristic of mesenchymal cells. Many cancer cell
lines exhibit both a keratin-based and a vimentin-based IF network that show distinct
intracellular organization and regulation [62,110]. The pioneering work of Mary Hendrix
and colleagues shed an “early light” on the significant relationship between IFs and cell
migration, and its relation to the potential for metastasis. These studies, whether cell-
culture-based [111,112] or using xenograft assays/n vivo[113], revealed the pro-
migratory influence of vimentin, the impressive power of an interplay between two types
of IFs (namely vimentin and keratins 8/18) towards invasiveness, and the important role
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of focal adhesions and integrins, in particular. As such, this work is still inspirational
today.

Keratin 6 and its type | partner K16 are often upregulated in various types of carcinomas,
providing clinically useful diagnostic markers [52]. K6’s impact on keratinocyte migration
(and possibly the K6-Src interaction) could help explain a series of intriguing clinical
correlations [53]. For instance, loss of K6 expression correlates with an aggressive behavior
for endometrial carcinomas [54], while reduced K6 expression coupled with re-emergence
of K8/K18 expression correlates with the acquisition of malignancy in mouse skin subjected
to chemical carcinogenesis [55]. These correlations suggest that the functional significance
of inducing or modifying K6 (and possibly K16, plakoglobin, plectin, etc.) may be part of a
natural strategy to counter dedifferentiation- and malignancy-promoting signaling and
cellular processes (e.g. EMT) [49]. This said, other findings remind us that the link between
keratins and cancer (see [52]) is not so simple. Higher levels of K16, for example, correlate
with a poorer survival among breast cancer patients with metastatic relapses [56], while
higher levels of keratins 5, 6 and 17 have been linked to a worse prognosis in breast cancer
[57-59]. Again here, whether a given keratin or a conglomerate of IF proteins and binding
partners promote or mitigate cell migration and/or tumor cell properties likely is determined
by the overall “context” — e.g., associated proteins, post-translational modifications, and the
biological setting.

Intermediate filaments, cellular mechanics, and migration

Cells develop a polarized cytoarchitecture as they initiate cell migration, such that their front
and rear become different in their molecular components and functional properties [60,61].
As a cell senses relevant environmental cues, signaling events, actin polymerization, and
myosin motor function each become spatially regulated so as to generate membrane
protrusions at the leading edge and retractive forces at the trailing edge. Mechanical signals
participate in the establishment of polarized cell protrusions and directional migration and,
as expected, there is evidence that IFs impact cell migration from the standpoint of cellular
mechanics [29,62,63].

Mechanotransduction involving IFs also plays a role in epithelial cell attachment to the
extracellular matrix (ECM). Zhang et a/. [64] uncovered a mechanotransduction pathway in
C. elegans that involves hemidesmosome-like elements comprising IFs. They observed that
muscle contraction mechanically alters the epidermis and activates p21-activated kinase
(PAK). PAK, in turn, phosphorylates IF proteins, an event that promotes hemidesmosome
biogenesis. Therefore, hemidesmosomes act as mechanosensors which, when subject to
tension, trigger intracellular signaling processes that promote epithelial morphogenesis.
Cell-cell junctions participate in the integration of local traction forces to generate long-
range gradients of intra- and inter-cellular tension during collective cell migration [65].
While studying Xenopus gastrulation, Weber et a/. [19] found that application of a punctual
mechanical force on single Xengpus mesendoderm cells (via magnetic tweezers and
cadherin-coated beads) induces polarized protrusions at the opposite end of the force (and
the cell) and persistent directional cell migration. Such localized tension (“tugging”)
induces, in a plakoglobin-dependent fashion, a redistribution of the keratin IFs at the cell’s
rear end (see Figure 2A for a summary of these findings). These striking events centered on
keratin and plakoglobin are required for force-induced, polarized “group” cell protrusions
and normal mesendoderm polarity and organization /n vivo.
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Vimentin is a fascinating type 111 IF protein that is prominently expressed throughout
embryogenesis but becomes largely restricted to mesenchymal cell types in the adult setting,
including fibroblasts, bone marrow-derived blood cell lineages, and endothelial cells
[66,67]. Vimentin can re-emerge in the adult setting, as it is strongly upregulated following
injury to various tissues (e.g., muscle, central nervous system, various connective tissues)
and during EMT (see Box 1). Vimentin exerts pleiotropic and context-dependent roles in
cells [68] and, in particular, has a marked impact on cell migration in several physiologically
normal settings [69]. For example, vimentin is required for lymphocyte adherence to and
migration through an endothelium [70], fibroblast or breast cancer single cell motility [71],
and /n vitrowound closure of alveolar epithelial cells [72] (see Table 1 for a summary of
cell migration phenotypes arising from IF manipulations).

Vimentin also occurs at unusually high levels in many types of epithelial cancers (e.g., [68]).
Vimentin expression is in fact required for the invasive phenotypes of prostate cancer cells
[73,74], soft tissue sarcoma cells, and breast cancer cells, in /n vitro assays [75]. Blocking
vimentin expression in a squamous carcinoma cell model not only decreases motility [76]
but also promotes a more epithelial phenotype, as manifested by the upregulation of K13,
K14, and K15 [77] and change in cell shape [71]. Conversely, vimentin overexpression has
been shown to enhance prostate cancer cell invasion [78] and invadopodia elongation [79].

Numerous studies incorporating a more mechanistic focus hint that vimentin and the process
of cellular migration mutually regulate one another. The tumor suppressor adenomatous
polyposis coli (APC), which is frequently mutated or lost in cancer (e.g., colorectal), directly
binds to and regulates vimentin organization [80]. In migrating astrocytes, APC is required
for vimentin IF alignment with the microtubule network [80]. A C-terminal APC truncation
mutant binds to and disorganizes vimentin, but not keratin IFs, when expressed in human
SW480 colon cancer cells. Loss of APC in cancer cells that have undergone EMT may thus
alter vimentin IF organization and impact motility and invasiveness (see Figure 2B for a
summary). In cultured breast epithelial cells, overexpression of oncogenic H-Ras-V12G or
the transcription factor Slug, each of which promote cell migration and EMT [81], induces
vimentin expression. In turn, vimentin expression is required for H-Ras-V12G- and Slug-
induced migration and expression of receptor tyrosine kinase Axl, while suppressing
epithelial markers such as K6 [81]. Overexpression of Axl rescues the slower migration
phenotype of a breast cancer cell line expressing vimentin siRNA, suggesting that vimentin
acts in part through Axl.

An RNAI screen aimed at identifying regulators of vimentin expression yielded the
surprising finding that the mitochondrial enzyme MTHFD2 (methylenetetrahydrofolate
dehydrogenase 2) is required for vimentin expression and network organization [82]. Similar
to vimentin itself, the sSiRNA-mediated knockdown of MTHFD impairs breast cancer cell
migration and ECM invasiveness, suggesting their interdependence in this context.

Vimentin expression is also regulated by miRNAs. Overexpressing mir-138, which is
downregulated in several tumors, results in decreased vimentin expression as well as
decreased cell migration and invasion in renal cell carcinoma cell lines [83] (Figure 2B).
Similarly, mir-30a represses vimentin expression, cell migration and invasion, in breast
cancer cell lines [84]. Since some tumor cells exhibit decreased expression of mir-138 and
mir-30a [83,84], these findings may help explain how vimentin expression becomes
upregulated in EMT and cancer.
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The complex relationship between keratins 8/18 and epithelial cell

migration

The type 1l keratin 8 has also been implicated in cell migration and tumor metastasis
[35,85]. Like vimentin, K8 is quite broadly expressed during development but becomes
restricted to simple epithelial lineages (e.g., liver, gut, kidney, lungs) in the adult setting
[86]. Further, K8 expression is induced or elevated in many tumor settings (including breast,
lung, and pancreatic cancers) and tumor-derived cell lines [86]. Unlike the case for
vimentin, however, the impact of K8 on tumor cell migration and invasion tends to be
inhibitory. This said, the pioneering work of Mary Hendrix and colleagues two decades ago
showed that the balance between vimentin and K8/K18 expression is a key determinant of
the migratory properties and invasiveness of various types of tumor cells ex vivoand in vivo
(Box 1).

In an elegant study published in 2003, Beil et a/. [87] showed that treatment of pancreatic
cancer Panc-1 cells with sphingosylphosphorylcholine (SPC), a bioactive lipid, induces
keratin phosphorylation, promotes a striking reorganization of keratins IFs to the perinuclear
region, decreases cellular elasticity, and robustly stimulates cell migration (Figure 2B). A
pair of recent offerings provided additional details relevant to this paradigm. Park et a/. [88]
showed that SPC treatment also induces the expression of transglutaminase-2 expression in
Panc-1 cells, which precedes JNK kinase activation and phosphorylation at K8 Ser 431.
Busch et al. [89] reported that SPC activates ERK kinase upstream of keratin IF
reorganization, and induces phosphorylation of K8 and K18 at Ser 431 and Ser 52,
respectively, in pancreatic and gastric cancer cells. An open issue, still, is whether these
events contribute to the “mechanical softening” of the cytoplasm in SPC-treated Panc-1 cells
[87], an event that likely contributes to their more motile behavior.

There is plenty of additional reports intimating that, directly or indirectly, the expression
and/or site-specific phosphorylation of K8 (and its partner K18) impacts the migratory
properties and invasiveness of various types of cancer cells. An inhibitory influence for K8
towards cell migration is suggested by studies in which pancreatic cancer cells [89] and a
poorly invasive subclone of MDA-MB-468 breast cancer cells was subjected to K8
knockdown [90], a highly invasive subclone of MDA-MB-435 breast cancer cells was made
to overexpress K8 [90], and when KLE endometrial cancer cells and HepG2 hepatocellular
cancer cells were subjected to K8/K18 silencing [91]. Other studies related the loss of K8
phosphorylation at either Ser 73 or Ser 431 to increase migration and/or metastatic potential
for oral squamous cell carcinoma cells [92] and colorectal cancer cells [93]. The opposite
outcome, i.e., K8-dependent stimulation of cell migration, was inferred from the impaired
collective migration of hepatoma cells following K8 silencing [35]. Finally, the silencing of
the desmosomal plaque protein plakophilin 3 stimulates the migration and metastasis of
human colon carcinoma cells [94], and a recent follow-up study suggests that this is likely a
function of increases in the levels of K8 protein and the phosphatase PRL-3, along with K8
de-phosphorylation [95].

Keratin-dependent activation of Akt signaling may also play a role during tumorigenesis.
Lactotransferrin (LTF) has anti-tumor activity and is downregulated in cancer [96].
Interaction with LTF blocks K18’s binding to 14-3-3a, and suppresses K18-mediated Akt
activation and its associated impact on tumor cell proliferation and invasion [97] (Figure
2B). Of note, others have reported that K17 interacts with 14-3-3c0 and impact the Akt-
mTOR signaling axis [98], while vimentin interacts with and becomes activated by Akt to
promote cancer cell invasion [75]. Also of note though not yet related to migration per se,
O-linked N-acetylglucosamine modification of K18 also promotes Akt activity to protect the
liver from injury [99].
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In addition to vimentin and keratin, increased expression of nestin, a class IV IF protein and
a marker of stem/progenitor cells [100], occurs in multiple types of tumors [101,102]. Nestin
regulates the migration and metastatic properties, but not the growth, of prostate cancer cells
[103] and pancreatic cancer cells [104]. Due to its link to stem/progenitor cells, it now seems
timely to investigate whether nestin expression can be used to identify cancer stem cells
[105].

Concluding remarks

Recent advances added significantly to our current understanding of the complex role of IFs
during cell migration. IFs impact migration in part because they are intrinsic determinants of
cellular micromechanical properties, and also because they contribute to the regulation of
several pathways and effectors that are intimately involved in this physiologically important
activity. In the end, the notable impact of IFs during cell migration in normal and disease
settings reflects their pervasive integration, in a context-dependent manner, within the
broader fabric of the cell.
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Subgrouping Proteins Cell type specificity
Type | Keratins Soft complex epithelia (skin, oral mucosa, etc.)
Type ll Soft simple epithelia (liver, gut, kidney, etc.)
Hard epithelia (hair, nail, oral papillae)

Type llI Vimentin, Desmin  Various (fibroblasts, leukocytes, endothelium
GFAP, Peripherin muscle, astrocytes, glia, peripheral nerves)
syncoilin

Type IV NF-L, NF-M, NF-H CNS & neurons
a-internexin CNS & neurons
synemin, nestin Muscle, neural stem cells

TypeV Lamins A,B& C Nucleus

Orphan Filensin, Phakinin Lens

Head Rod Tail
1A 1B 2A 2B

Figure 1.

Introduction to intermediate filaments (IFs). A) Classification of IF genes and proteins by
type, according to gene substructure and sequence homology, and cell type-specificity of
their distribution in the body (note: the latter list is partial). B) Visualization of assembled
10-nm wide IFs reconstituted from purified recombinant proteins (the type Il K5 and type |
K14; human) by negative staining and transmission electron microscopy. Bar equals 100
nm. C) Schematic representation of the common tripartite domain structure shared by all IF
proteins. A central domain, comprised of heptad repeat-containing a-helical coils 1A, 1B,
2A, and 2B and separated by non-heptad repeat-containing linkers L1, L12 and L2, is
flanked by “head” and “tail” domains of variable length and primary structure at the N- and
C-termini, respectively. The boundaries of the rod domain (see blue bars) are highly
conserved in primary structure among IF proteins.
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Desmosome
Desmosomal Plaque

Desmosomal ~—
Cadherins

Direction of cell migration

Cell Protrusion \ >

Vimentin Intercellular
Force

Traction Eefce Nucleus

Vimentin

Extracellular Matrix

Hemidesmosome

Invadopodia
B Keratins as negative Keratins as positive Vimentin as a positive
regulators of cell migration: regulators of cell migration: regulator of cell migration:
PKP3 SPC
J_ / AN Slug
Tgase-2 Akt H-Ras
PRL-3
Erk v p— MTHFD2 | | mir-138
JINK ectin1c .
Actinin-4 L LTF N\ APC mir-30a
S73 $431 Epiplakin ¥ Force \
l \ S73 S431 MT +—  LINC
Keratin ... —— Vimentin
| Keratin |\ 535 keratin . stability
Hemidesmosome J_ Desmosome l A
stability stability AR rrrea
. “ ?ng” Cell Directional /
iber . : .

l l protrusion Migration Migration

Migration
Migration
Positive impact Negative impact l: Activation |: Interaction _L: Inhibition

Figure2.

Function and regulation of intermediate filaments in cell migration. A) Schematic
representation of a polarized migrating cell highlighting the subcellular distribution of
vimentin and keratin IFs and their associated elements. See text for explanation. B)
Summary of key interactions involved in specifying keratins as negative (left) or positive
(center) regulators of cell migration, and in specifying vimentin as a positive regulator of
migration and key contributor to epithelial-to-mesenchymal transition (EMT). See main text
for details. Abbreviations are as follows: a6: a6 Integrin; APC: Adenomatous Polyposis
Coli; p4: B4 Integrin; BPAG1e: Bullous Pemphigoid Antigen le; BPAG2: Bullous
Pemphigoid Antigen 2; DP: Desmoplakin; Erk: Extracellular Signal-related Kinase; JNK: c-
Jun N-terminal Kinase; LINC: Linker of Nucleoskeleton and Cytoskeleton; LTF:
Lactotransferrin; MT: Microtubule; PG: Plakoglobin; MTHFD2: Methylenetetrahydrofolate
dehydrogenase 2; PKP: Plakophilin; PRL-3: Phosphatase of Regenerating Liver 3; S73 &
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S431: Serine 73 and Serine 431 of K8; SPC: Sphingosylphosphorylcholine; SUN: Sad1-
Unc84; Tgase-2: Transglutaminase-2.
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