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Abstract
Genome-wide association studies (GWAS) have successfully identified several loci associated
with primary biliary cirrhosis (PBC) risk. Pathway analysis complements conventional GWAS
analysis. We applied the recently developed linear combination test for pathways to datasets
drawn from independent PBC GWAS in Italian and Canadian subjects. Of the Kyoto
Encyclopedia of Genes and Genomes and BioCarta pathways tested, 25 pathways in the Italian
dataset (449 cases, 940 controls) and 26 pathways in the Canadian dataset (530 cases, 398
controls) were associated with PBC susceptibility (P < 0.05). After correcting for multiple
comparisons, only the eight most significant pathways in the Italian dataset had FDR < 0.25 with
tumor necrosis factor/stress-related signaling emerging as the top pathway (P = 7.38 × 10−4, FDR
= 0.18). Two pathways, phosphatidylinositol signaling and hedgehog signaling, were replicated in
both datasets (P < 0.05), and subjected to two additional complementary pathway tests. Both
pathway signals remained significant in the Italian dataset on modified gene set enrichment
analysis (P < 0.05). In both GWAS, variants nominally associated with PBC were significantly
overrepresented in the phosphatidylinositol pathway (Fisher exact P < 0.05). These results point to
established and novel pathway-level associations with inherited predisposition to PBC that on
further independent replication and functional validation, may provide fresh insights into PBC
etiology.
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INTRODUCTION
Primary biliary cirrhosis (PBC) is the most common autoimmune liver disease and primarily
affects women, with a prevalence of 1 in 1000 over the age of 40 years.1 The serological
hallmark of PBC is the formation of anti-mitochondrial antibodies against the pyruvate
dehydrogenase complex subunit E2 (PDC-E2).2 The antibodies specifically recognize
immunoreactive PDC-E2 within apoptotic blebs of biliary epithelial cells.3 Untreated
disease involves progressive, non-suppurative granulomatous inflammation and autoreactive
T lymphocyte-mediated destruction of the small-to-medium intrahepatic bile ducts leading
to chronic cholestasis, portal inflammation, cirrhosis and end-stage liver disease.4 The
accepted concept of PBC etiology is that it arises on a background of strong genetic
susceptibility that is reactive to a variety of potential environmental triggers. The disease has
a monozygotic concordance of 63%,5 a sibling relative risk of 10.5,6 and 1–6% of all
patients with PBC have at least one first-degree relative affected.7 Other autoimmune
disorders also tend to be more common in the families of PBC cases.8 To date, there have
been three genome-wide association studies (GWAS) for PBC that have reproducibly
identified several risk loci that implicate key gene loci involved in adaptive immunity and
inflammatory response.9–12

The genetic associations with PBC risk identified by the genome-wide approach are just
those single nucleotide polymorphisms (SNPs) that met the most stringent criterion for
statistical significance applied to account for the exceedingly large number of statistical
comparisons made in a GWAS. Many more variants are typically associated with disease
only at the nominal significance level in a GWAS and are therefore not investigated
further.13 However, if the excess familial risk for PBC is to be explained, some of these
discarded variants must be false negatives and constitute genuine PBC susceptibility loci.
Moreover, due to population genetic heterogeneity, different SNPs in or near the same gene
or in a functionally related gene may be associated with the disease among individual cases
in a GWAS sample. This makes it less likely that a replicable association with the disease
would be found when testing SNPs one at a time as is usually done in a GWAS.14 Single
nucleotide polymorphisms and the genes that they belong to are not random entities. The
products of specific sets of genes interact as members of discrete molecular and cellular
pathways with defined biological function.15 Collectively, these observations have
motivated the development of methods for the secondary or complementary statistical
analysis of GWAS data that use biological pathways represented by gene sets, instead of
SNPs, as the units of analysis.16 Pathway-based tests provide a dynamic biologically
plausible template to efficiently integrate statistical information from the multitude of SNPs
with weaker effects that are otherwise missed by conventional single-SNP GWAS
analysis.17

In GWAS pathway analysis, one can map SNPs to genes and test for overrepresentation of
statistically significant association signals among genes within a known biological pathway
compared with the number of such signals among genes outside the pathway. This is termed
the ‘competitive’ approach.16 Alternatively, one can jointly test all genes within the pathway
for an association with the disease. As the latter only considers disease association signals
within a pathway and does not compare them to signals outside the pathway, it is termed the
‘self-contained’ approach. So far, these methods have been successfully employed to
analyze GWAS of a diverse group of diseases.18,19 Here, we report the results of pathway
analysis of two datasets from previously completed GWAS in independent Italian and
Canadian PBC cohorts. We applied a recently developed ‘self-contained’ GWAS pathway
analysis method, the linear combination test (LCT) of Luo et at.,20 to identify pathways
associated with genetic predisposition to PBC and provide greater insight into the etiology
of this complex autoimmune disease. In accordance with recommendations for validating
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GWAS pathway analysis findings by complementary methods,14,21 the statistical
significance of top pathways that were replicated in both datasets was further confirmed by
using two ‘competitive’ pathway-oriented strategies.

RESULTS
Linear combination test for pathway analysis

First, we individually analyzed the Italian and Canadian datasets using the LCT.20 This
algorithm uses raw genotype data to first compute genome-wide single-SNP association
statistics (see Material and methods for details). After assigning all SNPs between the start
site and the 3’ untranslated region to a gene, single-SNP P-values were combined for each
gene using the gene-level LCT statistic derived by Luo, et al.20 Genes were classified into
pathways using the well-accepted Kyoto Encyclopedia of Genes and Genomes (KEGG) and
BioCarta resources. Finally, gene-level statistics for all genes within a pathway were
combined using the pathway-level LCT (see Material and methods). For these tests, we set P
< 0.05 and false discovery rate (FDR) < 0.25 as a stringent criteria for significance (Material
and methods).

In the Italian dataset, 207 695 SNPs out of 468 982 SNPs were located within genes and
mapped to 14 527 genes. Of these, 4172 genes were assigned to pathways for LCT analysis.
In the Canadian dataset, 143 059 SNPs out of 334 444 SNPs were located within genes and
mapped to 14792 genes. Of these, 4226 genes were assigned to pathways for LCT analysis.
Pathways with > 10 genes accounted for 175 BioCarta and 172 KEGG pathways in the
Italian study and 176 BioCarta and 172 KEGG pathways in the Canadian study. At the gene-
level, the LCT identified 253 genes in the Italian sample and 236 genes in the Canadian
sample with P-value < 0.05. These genes are listed in Supplementary Table S1. As shown in
Supplementary Table S2, there was limited overlap between significant genes in the two
datasets.

Pathways suggested from the linear combination test analyses
At the pathway-level, the LCT identified 25 pathways (13 BioCarta, 12 KEGG) in the
Italian dataset at the P < 0.05 level (Table 1). Of these, eight pathways achieved the
threshold for statistical significance we set for this study (P < 0.05 and FDR < 0.25).
Notably, these eight included three pathways that are likely to be important in the
pathogenesis of inflammatory and autoimmune processes: tumor necrosis factor (TNF)/
stress-related signaling pathway (P = 7.38 × 10−4, FDR = 0.18), antigen processing and
presentation (P = 1.08 × 10−3, FDR = 0.18), and chaperones modulate interferon signaling
pathway (P = 2.33 × 10−3 FDR = 0.192).

There were 26 pathways (8 BioCarta, 18 KEGG) in the Canadian dataset at the P < 0.05
level using LCT analysis (Table 2). None of these pathways met the more stringent criterion
for statistical significance (P < 0.05 along with FDR < 0.25). However, three of the
pathways had an FDR of < 0.5: regulation and function of carbohydrate-responsive element-
binding protein (ChREBP) in liver pathway (P = 5.68 × 10−4, FDR = 0.285), bone
remodeling pathway (P = 2.33 × 10−3, FDR = 0.493) and apoptosis (P = 3.96 × 10−3, FDR =
0.493). For both datasets, there was no significant correlation between the number of genes
in a pathway and pathway rank. Complete LCT pathway analysis results for the Italian
dataset are presented in Supplementary Table S3 and for the Canadian dataset in
Supplementary Table S4. We also present the pathway results from both datasets combined
using Fisher’s method for meta-analysis in Supplementary Table S5.

Two pathways reached the P < 0.05 level in both datasets using the LCT. They were the
phosphatidylinositol signaling system (Italian: P = 0.016, FDR = 0.436; Canadian: P =
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0.034, FDR = 0.693; meta-analysis P = 4.48 × 10−3) and the hedgehog signaling pathway
(Italian: P = 0.044, FDR = 0.636; Canadian: P = 0.041, FDR = 0.693; meta-analysis P =
0.013).

Complementary analyses supports specific pathways
The phosphatidylinositol signaling system and the hedgehog signaling pathways were
followed up in each dataset by two complementary pathway analysis methods (Table 3).
First, we applied i-GSEA4GWAS, a modification of the gene set enrichment analysis
(GSEA) approach that uses SNP label permutation (see Material and methods).22 Using the
i-GSEA4GWAS algorithm, the association between the phosphatidylinositol signaling
system pathway and PBC was found to be statistically significant in the Italian dataset (P =
0.003), but not in the Canadian sample. Similarly, the hedgehog signaling pathway yielded
significant results on i-GSEA4GWAS in the Italian dataset only (P = 0.005).

Second, we used Fisher’s exact test as a measure of significance for the proportion of the
total genes in each pathway that contained at least one SNP with P-value < 0.05 (see
Material and methods for details). Applying Fisher’s exact test, pathway enrichment ratios
for the phosphatidylinositol signaling system were significant in both cohorts (Italian: P =
1.42 × 10−5; Canadian: P = 3.45 × 10−4) with 32 out of 77 genes and 26 out of 77 genes
from this pathway containing at least one SNP with P < 0.05 in the Italian and Canadian
GWAS, respectively. Although hedgehog signaling also demonstrated enrichment in both
datasets, ratios for this pathway were not statistically significant (Table 3).

To further dissect the LCT pathway analysis association signal for these two pathways in
each dataset we examined the most significant genes underlying the signals (Figure 1). The
genes most strongly driving the association for each replicated pathway differed between the
two datasets pointing to the genetic heterogeneity and complexity of the disease under study
and power limitations in the dataset sample numbers, especially for ascertaining genes with
smaller effect size.

DISCUSSION
In this study, we used a newly developed pathway-based method, the LCT, to analyze two
datasets obtained from previously completed GWAS of Italian and Canadian PBC cohorts.
At the conservative cutoff for statistical significance (P < 0.05 and FDR < 0.25) that we
adopted, the LCT identified eight pathways associated with the risk of development of PBC
in the Italian dataset. We leveraged the availability of data from the two independent,
geographically separated PBC case populations to evaluate our findings more broadly. In the
interpretation of our results, we focus on those pathways that showed nominal evidence of
association in both the Italian and in the Canadian dataset, and emphasize that GWAS
pathway analysis is primarily a tool to generate hypothesis for further testing. Two KEGG
pathways, phosphatidylinositol signaling and hedgehog signaling systems, attained the P <
0.05 level of significance on LCT pathway analysis in both datasets but did not meet the
FDR < 0.25 criterion in either dataset. Both pathways were significant in the larger (Italian)
dataset by a modified GSEA, further suggesting their involvement in PBC genetic
susceptibility. Simple pathway enrichment ratios for phosphatidylinositol signaling also
remained statistically significant in both datasets using Fisher’s exact test-Current
experimental evidence offers a variety of putative mechanisms that may underpin the
possible role of phosphatidylinositol and hedgehog signaling activity in PBC etiology. Each
of these mechanisms serves as a potential avenue that requires follow-up functional
investigation.
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The phosphatidylinositol signaling system pathway is an integral component of the adaptive
immune response and is essential for the maintenance of self-tolerance.23

Phosphatidylinositol signaling is known to be a key controller of T helper 17 cell
differentiation.24–25 T helper 17 cells, a subset of helper T cells that produce interleukin 17,
are major drivers of both inflammation and autoimmunity.26 T helper 17 differentiation may
be modulated by dendritic cell interleukin 12 (IL-12) through its effect on interferon-γ.27 It
has been demonstrated that dendritic cell IL-12 production is in turn positively regulated by
the p110 β catalytic subunit of phosphoinositide 3-kinase (PI3K).28 Interestingly, the
PIK3CB gene coding for the PI3K p110β isoform, emerged as the most significant gene of
the phosphatidylinositol pathway in the Italian data (P = 9.54 × 10−4, Figure 1a). The
importance of IL-12 to PBC pathogenesis is highlighted by the identification of a strong and
reproducible association between the IL12A and ILD2RB2 loci and disease risk in every
PBC GWAS conducted thus far.9–2 Further, aberrant signal transduction via the
phosphatidylinositol system in PBC is consistent with the role of this pathway in disorders
that share genetic susceptibility factors with PBC, especially rheumatoid arthritis and
systemic lupus erythematosus,29,30

Several pathways biologically related to phosphatidylinositol signaling were also uncovered
using the LCT analysis at the P < 0.05 level in our data. A possible non-biological
explanation for this observation is that genes common to these different pathways underlie
the statistical association. However, pathway overlap cannot account entirely for this
observation and there are well-established functional connections between the pathways
discovered and events upstream and downstream of the phosphatidylinositol signaling
system. One particularly note-worthy relationship involves TNF/stress-related signaling, the
top pathway in the Italian dataset. This finding corroborates the independent discovery of
seven distinct loci harboring genes related to TNF signaling and downstream Nuclear
Factor-KappaB (NF-κB) signaling at the genome-wide significance level in the most recent
GWAS of PBC.12 Interactions between specific members of the TNF pathway lead to the
induction of apoptosis as well as the activation of NF-κB signaling, which is anti-apoptotic
and pro-inflammatory.31 Disturbances in this balance between cell death and survival are
now recognized as being critical to PBC progression.32 Possible involvement of the
phosphatidylinositol pathway in PBC thus appears to fit well with the TNF hypothesis as
this signaling system has been shown to mediate the effects of TNF-α on NF-κB
activation,33,34

The hedgehog signaling pathway consists of a family of molecules that control cell-type
specification during normal development and are intimately involved in tissue and organ
morphogenesis.35 Biliary epithelial cells are the first targets of autoimmune injury in PBC.
Increased expression in biliary epithelial cells of hedgehog pathway genes and genes
targeted by this pathway has previously been reported in a study of PBC patients.36 Animal
models of chronic cholestatic biliary injury also demonstrate activation of hedgehog
signaling37 and hedgehog signaling has been linked to the promotion of cholangiocyte
chemokine production that may mediate recruitment of inflammatory cells in PBC.38

Multiple lines of evidence suggest that the hepatic fibrosis seen in the natural history of PBC
can be partly attributed to epithelial-mesenchymal transition, or to the progressive
replacement of biliary epithelial cells by cells of fibroblastic lineage.39 Hedgehog signaling
is among the best-known effectors of epithelial-mesenchymal transition.40 Another inducer
of epithelial-mesenchymal transition, the Wnt signaling pathway (KEGG), ranked 17th
among the pathways in the Canadian sample (P = 0.037, FDR = 0.693).41 Crucially, our
analysis of the Italian cohort revealed that the ZIC2 gene, which is pivotal to the cross-talk
between hedgehog and Wnt, was the most significant gene not only in the hedgehog
pathway, but also for the dataset overall (P = 7.20 × 10−5, Supplementary Table S1).42 The
association between Wnt signaling and PBC remains to be elucidated, though the
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upregulation of genes in this pathway has been reported in an early microarray study of the
disorder.43

It is worth noting that the two additional analyses that we used to evaluate the pathways
replicated at the P < 0.05 threshold, complement the LCT. Taken together, they test the
association between a set of genes and disease predisposition under some of the different
underlying genetic architectures that may drive such an association. Although the LCT
combines evidence of association from all SNPs that map to a gene, the modified GSEA
only accounts for the top SNP signal in each gene and Fisher’s exact test for
overrepresentation considers all SNPs in a gene that were nominally significant in the
original GWAS.

Our study has several limitations and the results must be interpreted with some caution. The
first, and a frequently cited criticism of GWAS pathway analyses in general, was the
reliance on canonical pathways that represented < 30% of the total genes mapped in each
dataset. However, we sought to reduce the influence of selecting canonical pathways by
sourcing our pathways from two standard, manually curated databases containing well-
defined pathways. Second, the annotation of protein-coding regions in the human genome is
incomplete and moreover, there is substantial non-coding SNP information in intergenic
regions that is now known to have both trans-effects as well as long distance cis-effects on
the expression of genes in signaling pathways.44 Using SNPs within or close to a gene to
represent the gene overlooks such distant functional and regulatory relationships. Third,
pathways in the Canadian dataset failed to breach the FDR level for statistical significance
that we set and the FDRs of the pathways replicated in both datasets was relatively high.
Possible explanations include an inadequate sample size, the behavior of the LCT statistic or
the genuine absence of a stronger pathway-level association signal for the pathways tested.
The sample size for the study was limited, but PBC is an uncommon disease and assembling
large cohorts is difficult. Lastly, the current study was limited to common SNPs (> 5%) in
the populations studied and many uncommon SNPs as well as structural variants may
underlie a considerable portion of the susceptibility to this disease.

In conclusion, the linear combination method may be useful as a secondary step to single-
marker analysis for mining a combination of known and novel biologically plausible
disease-related pathways from GWAS data. Pathways such as TNF signaling, antigen
processing and presentation, and apoptosis, each of which is an established contributor to
genetic predisposition to PBC, were among the top pathways identified.12 Two pathways,
phosphatidylinositol signaling system and hedgehog signaling, were replicated at the
nominal level of significance in the available datasets and these findings were backed by a
complementary pathway analysis approach in at least one of the datasets. Genetic variation
in these two pathways has not been frequently associated with PBC in prior work. The
findings need to be validated in other independent PBC GWAS cohorts. If explored in
greater depth and confirmed by future experimental studies, these results have the potential
to yield new targets that may be of value for preventive intervention and therapeutic
development against PBC.

MATERIALS AND METHODS
Study populations

This study included both an Italian and a Canadian cohort. All PBC cases in both GWAS
met the American Association for the Study of Liver Diseases diagnostic criteria for PBC.

The Italian dataset consisted of 449 PBC cases and 940 controls of homogenous Italian
descent with genotypes for 468 982 SNPs from the GWAS described in detail by Liu et al.11
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All retained subjects had homogeneous Italian descent genetically inferred by principal
components analysis that applied specific criteria to eliminate outliers and individuals of
Sardinian origin from the dataset. The cases had a mean age of 552 years, 90.3% were
female, 85.4% were anti-mitochondrial antibodies- positive and 31.7% had liver cirrhosis.
Stringent quality control standards were implemented as previously described and all SNPs
retained had sample call rates > 95%, minor allele frequency > 0.05 and were in Hardy-
Weinberg disequilibrium test P > 10−5. Pairs of subjects with cryptic relatedness as defined
by an identity-by-state score > 0.1 were removed.

The Canadian sample was from the GWAS described in Hirschfield et al.9 and consisted of
530 PBC cases, 398 controls and 334 444 SNPs. The cases had a mean age of 60.7 years,
93% were female, 95.5% were anti-mitochondrial antibodies- positive and 5.2% had
received a liver transplant Study genotyping was done at the University of Toronto using the
Illumina HumanHap370 BeadChip. Single nucleotide polymorphisms with minor allele
frequency < 0.01 were excluded and cryptically related individuals, who had an identity-by-
state score > 0.25, were removed. Other data filtering standards were identical to the Italian
GWAS.

Ethics statement
All participants in both primary studies provided written informed consent and were
enrolled on protocols approved by a local Institutional Review Board or ethics committee at
each center.

Linear combination test for pathway analysis
The two datasets were analyzed individually using the LCT described by Luo et al.20 The
test was made publicly available as part of a free software package that was used for the
present pathway analysis (https://sph.uth.tmc.edu/hgc/faculty/xiong/software-A.html). The
LCT provided adequate type I error rates in simulation studies that we conducted. The
algorithm used raw genotype data to first compute genome-wide single-SNP association
statistics. All SNPs between the start site and the 3′-untranslated region were then assigned
to the gene using NCBI dbSNP Build 129 and human Genome Build 36.3. As SNPs within
genes are correlated due to linkage disequilibrium, traditional methods for combining
independent P-values cannot be used to bring together Single-SNP P-values for all SNPs in
the gene. Therefore, to test the association of each gene with the disease, we combined P-
values for all SNPs within the gene using the gene-level LCT statistic derived by Luo, et
al.:20

where e = [1,1,…,1]T. Z = [Z1,…, Zk]T for a gene with k SNPs (given that Z1 = Φ−1 (1 − P1)
where, P1 is the P-value of a statistic with a normal or asymptotic normal distribution), Rg is
the correlation matrix of Z and TL follows a standard normal distribution under the null
hypothesis.

Genes were mapped to pathways from the BioCarta database (http://www.biocarta.com/
genes/index.asp) and from the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://
www.genome.jp/kegg/pathway.html). The default pathway list included with the LCT
software contained 299 BioCarta and 202 KEGG pathways. However, we decided to confine
the final analysis to pathways containing > 10 genes to avoid testing pathways that were too
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small. At this stage, P-values for all genes within a pathway were combined using the
pathway-level LCT statistic to test association of each pathway with the disease:

where TL = [TL1,…,TLm]T for a pathway with m genes, Rp is the matrix of correlations
between the test statistics for all genes in the pathway and TP is asymptotically distributed as
the standard normal distribution under the null hypothesis.

Results of the LCT analysis were adjusted for multiple comparisons using FDR control by
the Benjamini-Hochberg procedure.45 Statistical significance was set at P < 0.05 and q-value
or FDR < 0.25, a frequently adopted criterion in GWAS pathway studies.16 A meta-analysis
of LCT pathway resulting from both datasets was also conducted using Fisher’s combined
probability test.

Additional analyses for replicated pathways
To further validate pathways that were replicated at the nominal significance level (LCT
pathway P < 0.05) in both datasets, we conducted additional GWAS pathway analyses on
each dataset focused only on the replicated pathways using two complementary strategies.

First, we used the i-GSEA4GWAS adaptation of the classical GSEA genome-wide pathway
association method.22 Classical GSEA, as in Wang et al.,45 uses the single-SNP association
test statistic for the most significant SNP in each gene to represent the gene. All genes are
ranked in descending order of their test statistic value. A weighted Kolmogorov-Smirnov-
like running sum statistic is calculated to determine, within a particular pathway,
overrepresentation of highly ranked genes from the ranked list of all genes. The
Kolmogorov-Smirnov-like statistic is normalized to account for differences in the number of
genes across pathways. After this point, i-GSEA4GWAS differs from classical GSEA in that
it multiplies the normalized statistic by a correction factor. This factor depends on the
proportion of significant genes in a pathway and attenuates the possibility of pathways being
unduly influenced by a few genes that are very highly ranked. Finally, statistical significance
for pathways is calculated after phenotype label permutation in classical GSEA and SNP
label permutation in i-GSEA4GWAS. Single nucleotide polymorphisms are permuted across
pathways and the method provides a computationally efficient approach to follow-up results
from a more comprehensive primary pathway analysis. For i-GSEA4GWAS, we (a) used
single-SNP χ2 GWAS analysis results from PLINK (version 1.05) for each dataset,47 (b)
tested only those pathways that replicated on LCT in both datasets, (c) used pathway
definitions identical to LCT, (d) used the same rules for mapping SNPs to genes as in LCT
and (e) performed 1000 SNP label permutations.

The second complementary pathway analysis strategy for validation involved determining
the statistical significance of pathway enrichment ratios using Fisher’s exact test. For each
dataset, all genes containing at least one SNP with P-value < 0.05 in single-SNP χ2 GWAS
analysis were listed. Enrichment ratio for a pathway was calculated as the number of genes
in this list that map to the pathway divided by the number of genes in the pathway. As
before, only pathways that replicated on LCT in both datasets were tested using pathway
definitions identical to LCT. Fisher’s exact test was used to determine the probability that
the association between genes in the list and genes in the pathway was explained by chance
alone. Data were analyzed through the use of IPA (Ingenuity Systems, www.ingenuity.com).
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Figure 1.
Genes identified in the phosphatidylinositol and hedgehog signaling pathways. Genes
reaching statistical significance for the phosphatidylinositol signaling system (panel a) and
the hedgehog pathway (panel b) are shown by color highlights (red, Italian dataset; blue,
Canadian dataset)
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