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In earlier work, we presented a foundation for the
second law of classical thermodynamics in terms of
the entropy principle. More precisely, we provided
an empirically accessible axiomatic derivation of an
entropy function defined on all equilibrium states of
all systems that has the appropriate additivity and
scaling properties, and whose increase is a necessary
and sufficient condition for an adiabatic process
between two states to be possible. Here, after a brief
review of this approach, we address the question
of defining entropy for non-equilibrium states. Our
conclusion is that it is generally not possible to
find a unique entropy that has all relevant physical
properties. We do show, however, that one can define
two entropy functions, called S− and S+, which, taken
together, delimit the range of adiabatic processes
that can occur between non-equilibrium states. The
concept of comparability of states with respect to
adiabatic changes plays an important role in our
reasoning.

1. Introduction
It is commonly held that entropy increases with time.
While entropy is fairly unambiguously well defined for
equilibrium states, a good part of the matter in the
universe, if not most of it, is not in an equilibrium state.
It does not have a well-defined entropy as one measures
it using equilibrium concepts, for example Carnot cycles,
but if one does not know precisely what entropy is for
non-equilibrium systems, the notion of increase cannot
be properly quantified.

Several definitions of entropy for non-equilibrium
states have been proposed in the literature. (See [1] for
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a review of these matters and [2] for a discussion of steady-state thermodynamics.) These
definitions do not necessarily fulfil the main requirement of entropy, however, which, according
to our view, is that entropy is a state function that allows us to determine precisely which
changes are possible, and which are not, under well-defined conditions. Given the magnitude
of this challenge, we do not mean to criticize the heroic efforts of many scientists to define non-
equilibrium entropy and use it for practical calculations, but we would like to point out here some
of the problems connected with defining entropy in non-equilibrium situations.

Our starting point is the basic empirical fact that under ‘adiabatic conditions’ certain changes
of the equilibrium states of thermodynamical systems are possible and some are not. The second law
of thermodynamics (at least for us) is the assertion that the possible state changes are characterized
by the increase (non-decrease) of an (essentially) unique state function, called entropy, which is
extensive and additive on subsystems.

The second law is one of the few really fundamental physical laws. It is independent of models
and its consequences are far reaching. Hence, it deserves a simple and solid logical foundation!
An approach to the foundational issues was developed by us in several papers in 1998–2003 [3–6].
We emphasize that, contrary to possible first impressions, our approach is not abstract but is
based, in principle, on experimentally determined facts. We also emphasize that our approach
is independent of concepts from statistical mechanics and model making. This point of view
has recently been taken up and even applied to engineering thermodynamics in the textbook
by Thess [7].

We can summarize the contents of this paper as follows. We begin, in §2, with a very brief
review of our approach to the meaning and existence of entropy for equilibrium systems. An
important concept is the adiabatic comparability (comparability for short) of states with respect to
the basic relation of adiabatic accessibility (to be explained in the next section). This property,
which is usually taken for granted in traditional approaches, often without saying so, means
that for any two states X and Y of the same chemical composition there exists an adiabatic
process that either takes X to Y or the other way around. If one assumes this a priori, then the
existence and uniqueness of entropy follows in our approach quickly from some very simple and
physically plausible axioms. However, it is argued in [3–6] that this comparability is, in fact, a
highly non-trivial property that needs justification. The mathematically most sophisticated part
of this earlier work, and its analytical backbone, is the establishment of comparability starting
from some simpler physical assumptions that include convex combinations of states, continuity
property of generalized pressure and assumptions about thermal contact.

In §2, we discuss the possibilities for extending the definition of entropy to non-equilibrium
states. The concept of comparability will again play an important role. In fact, we shall argue that
it may not be possible in general to define one unique entropy for non-equilibrium states that
fulfils all the roles of entropy for equilibrium states. Instead, one has to expect a whole range
of entropies lying between two extremes, which we call S− and S+. Only when comparability
holds do these two state functions coincide, and we have a unique entropy. Comparability for
non-equilibrium states, however, is an even less trivial property than for equilibrium states and
can certainly not be expected in general.

Another point that comes into play and is far from trivial is reproducibility of states. In fact, it
is hard to talk about the properties of states that occur only once in the span of the universe, but
that is often the case for non-equilibrium states. For this reason, one must be circumspect about
definitions that may look good on paper but cannot be implemented in fact.

2. The entropy of classical equilibrium thermodynamics
This section gives a summary of the main findings by Lieb & Yngvason [3–6]. We consider
thermodynamical systems, which can be simple or compound, and have equilibrium states
denoted by X, X′, etc. These states are collected in state spaces Γ , Γ ′, etc. The composition (also
called ‘product’) (X, X′) of a state X ∈ Γ and X′ ∈ Γ ′, which means simply considering the two
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states jointly but without a physical interaction between them, is just a point in the cartesian
product Γ × Γ ′. There is also the concept of a scaled copy λX ∈ λΓ of a state X ∈ Γ with a real
number λ > 0. This means that extensive properties like energy, volume, etc. are scaled by λ while
intensive properties like pressure, temperature, etc. are not changed. Composition and scaling are
supposed to satisfy some obvious algebraic rules.

To begin with, state spaces are just sets, and no more structure is needed for the ‘elementary’
part of our approach. However, for the further development and in particular the derivation of
adiabatic comparability, we assume that the state spaces are open convex subsets of R

N for some
N ≥ 2 (depending on the state space). Simple systems, which are the building blocks for composite
systems, have a distinguished coordinate, the energy U, and N − 1 work coordinates, denoted
collectively by V. Often, V is just the volume.

A central concept in our approach (as in [8–12]) is the relation of adiabatic accessibility. Its
operational definition (inspired by Planck’s formulation of the second law; see [13, p. 89]) is
as follows:

A state Y is adiabatically accessible from a state X, in symbols X ≺ Y(read: ‘X precedes Y’), if it is
possible to change the state from X to Y in such a way that the final effect on the surroundings is that a
weight may have risen or fallen.1

It is important to note that the process taking X to Y need not be ‘quasi-static’; in fact, it can be
arbitrarily violent.

The following definitions and notations will be applied: if X ≺ Y or Y ≺ X, we say that X and Y
are adiabatically comparable (or comparable for short). If X ≺ Y but Y �≺ X, we write X ≺≺ Y (read: ‘X

strictly precedes Y’), and if both X ≺ Y and Y ≺ X hold, we write X
A∼ Y and say that X and Y are

adiabatically equivalent.

(a) The entropy principle
We can now state the second law (entropy principle):

There is a function called entropy, defined on all states and denoted by S, such that the following holds:

(1) Characterization of adiabatic accessibility: for two states X and Y with the same ‘matter
content’2

X ≺ Y if and only if S(X) ≤ S(Y). (2.1)

(2) Additivity and extensivity: for compositions and scaled copies of states, we have

S(X, X′) = S(X) + S(X′) and S(λX) = λS(X). (2.2)

(i) Remarks

1. The scaling relation in (2.2) says that the entropy doubles when the size of the system is
doubled, but this linearity is not a triviality. It need not hold for non-equilibrium entropy, where
nonlinear effects might come into play.

The additivity in (2.2) is one of the remarkable facts about entropy (and one of the most difficult
to try to prove if there ever is a mathematical proof of the second law from assumptions about
dynamics). The states X and X′ can be states of two different systems, yet (2.2) says that the
amount by which one system can reduce its entropy in an adiabatic interaction of the two systems
is precisely offset by the minimum amount by which the other system is forced to raise its entropy.

1Such processes are called work processes in [14].

2In the studies by Lieb & Yngvason [3–6], the ‘matter content’ is measured by the scaling parameters of some basic simple
systems. Physically, one can think of the amounts of the various chemical ingredients of the system.
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2. It is noteworthy that the mere existence of entropy satisfying the fundamental relation

dS = 1
T

dU + P
T

dV −
∑

i

μi

T
dni, (2.3)

where T = (∂S/∂U)−1 is the absolute temperature, P = T(∂S/∂V) the (generalized) pressure and
μi = T(∂S/∂ni) the chemical potentials of the constituents with mole numbers ni in a mixture,
leads to surprising connections between quantities that at first sight look unrelated, for instance3

mv2
sound
RT

= cP

cV
,

dP0

dT
= �h

T�v
and

d
dT

ln K(T) = (�H)2

RT2 . (2.4)

3. Another consequence of the existence of entropy is a formula, owing to Max Planck
([13, pp. 134–135]), that relates an arbitrary empirical temperature scale Θ to the absolute
temperature scale T,

T(Θ) = T0 exp
(∫Θ

Θ0

(∂P/∂Θ ′)V
P + (∂U/∂V)Θ ′

dΘ ′
)

. (2.5)

It is remarkable that the integral on the right-hand side depends only on the temperature although
the terms in the integrand depend in general also on the volume, but this follows from the fact
that (2.3) is a total differential.

4. The entropy also determines the maximum work that can be obtained from a system in an
environment with temperature T0,

ΦX0 (X) = (U − U0) − T0(S − S0), (2.6)

where X is the initial state with energy U and entropy S, and X0 is the final state with energy U0
and entropy S0. (This quantity is also called availability or exergy.)

The main questions that were addressed in [3–6] are as follows:

Q1 Which properties of the relation ≺ ensure existence and (essential) uniqueness of entropy?
Q2 Can these properties be derived from simple physical premises?
Q3 Which further properties of entropy follow from the premises?

To answer Q1 the following conditions on ≺ were identified in [3–6]:

A1 Reflexivity: X
A∼ X.

A2 Transitivity: if X ≺ Y and Y ≺ Z, then X ≺ Z.
A3 Consistency: if X ≺ X′ and Y ≺ Y′, then (X, Y) ≺ (X′, Y′).
A4 Scaling invariance: if λ > 0 and X, Y ∈ Γ with X ≺ Y, then λX ≺ λY.

A5 Splitting and recombination: X
A∼ ((1 − λ)X, λX).

A6 Stability: if (X, εZ0) ≺ (Y, εZ1) for some Z0, Z1 and a sequence of ε’s tending to zero, then
X ≺ Y.

These six conditions are all highly plausible if ≺ is interpreted as the relation of adiabatic
accessibility in the sense of the operational definition. They are, however, not sufficient to ensure
the existence of an entropy that characterizes the relation on compound systems made of scaled
copies of Γ . A further property is needed,

Comparison property (CP) for scaled products of a state space Γ : any two states in (1 − λ)Γ ×
λΓ are adiabatically comparable, for all 0 ≤ λ ≤ 1.

3The first equation is the relation between the velocity of sound and heat capacities in a dilute gas, and the second is the
Clausius–Clapeyron equation with P0(T) the pressure at the coexistence curve between two phases, �h the specific latent
heat and �v the specific volume change at the phase transition. The last equation is the van ’t Hoff relation between the
equilibrium constant K(T) of a chemical reaction and the heat of reaction �H.
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(b) Uniqueness and the basic construction of entropy for equilibrium states
If one assumes CP together with A1–A6, it is a simple matter to prove that the entropy on a state
space Γ is uniquely determined, up to an affine change of scale, provided an entropy function exists.
The proof goes as follows.

We first pick two reference points X0 ≺≺ X1 in Γ . (Recall that X0 ≺≺ X1 means that X0 ≺ X1, but
X1 ≺ X0 does not hold. If there are no such points, then all points in Γ are adiabatically equivalent,
and the entropy must be a constant.) Suppose X is an arbitrary state with X0 ≺ X ≺ X1. (If X ≺ X0
or X1 ≺ X, we interchange the roles of X and X0 or X1 and X, respectively.) For any entropy
function S, we have S(X0) < S(X1) and S(X0) ≤ S(X) ≤ S(X1) so there is a unique number λ between
0 and 1 such that

S(X) = (1 − λ)S(X0) + λS(X1). (2.7)

By the assumed properties of entropy, this is equivalent to

X
A∼ ((1 − λ)X0, λX1). (2.8)

Any other entropy function S′ also leads to (2.8) with λ replaced by some λ′. From the assumptions
A1–A6 and X0 ≺≺ X1, it is easy to prove (see [4, lemma 2.2]) that (2.8) can hold for at most one λ,
i.e. λ = λ′. Hence, the entropy is uniquely determined, up to the choice of the entropy of X0 and
X1, i.e. up to an affine change of scale.

We now come to the existence of entropy. From assumptions A1–A6 and CP, one shows (see [6,
equations (8.13)–(8.20)]) that

sup{λ : ((1 − λ)X0, λX1) ≺ X} = inf{λ : X ≺ ((1 − λ)X0, λX1)}, (2.9)

and, denoting this number by λ∗,

X
A∼ ((1 − λ∗)X0, λ∗X1). (2.10)

With the choice
S(X0) = 0 and S(X1) = 1 (2.11)

for some reference points X0 ≺≺ X1, we now have an explicit formula for the entropy:

S(X) = sup {λ : ((1 − λ)X0, λX1) ≺ X} (2.12)

or, equivalently,

S(X) = inf {λ : X ≺ ((1 − λ)X0, λX1)}. (2.13)

These formulae use only the relation ≺ and make appeal neither to Carnot cycles nor to statistical
mechanics.4

A change of reference points is clearly equivalent to an affine change of scale for S. Thus, the
main conclusion so far is

Theorem 2.1 (existence and uniqueness of entropy, given CP). The existence and uniqueness (up
to a choice of scale) of entropy on Γ is equivalent to assumptions A1–A6 together with the CP.

(i) Remarks

1. The uniqueness is very important. It means that any other definition leading to an entropy
function satisfying the requirements of the second law, as stated above, is identical (up to a scale
transformation) to the entropy defined by equation (2.12). In order to measure S, it is not necessary
to resort to equation (2.12) or (2.13), although it is, in principle, possible to do so. (Note that the
use of sup and inf is not a mathematical abstraction but merely reflects the fact that in reality
measurements are never perfect.) Instead, one can use any method, like the standard practice

4If X1 ≺≺ X, then ((1 − λ)X0, λX1) ≺ X has the meaning λX1 ≺ ((λ − 1)X0, X) and the entropy is > 1. Likewise, the entropy is
< 0 if X ≺≺ X0. See [4, remark 2, pp. 27–28].
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when preparing steam tables, namely measuring heat capacities, compressibilities, etc., using
equation (2.5) to convert empirical temperatures to absolute temperatures, and then integrating
equation (2.3) along an arbitrary path from a reference state to the state whose entropy is to
be determined.

2. The CP plays a central role in our reasoning, and it is appropriate to make some comments
on it. First, we emphasize that, in order to derive (2.10), comparability of all states in (1 − λ)Γ ×
λΓ , and not only of those in Γ , is essential. Previous authors have also noted the importance of
comparability. In the seminal work of Giles [9], it appears as the requirement that if X, Y and
Z are any states (possibly of composite systems) such that X ≺ Z and Y ≺ Z, then X and Y are
comparable. The same conclusion is assumed if Z ≺ X and Z ≺ Y. Similar requirements were made
earlier by Landsberg [10], Buchdahl [11] and Falk & Jung [12]. These assumptions imply that states
fall into equivalence classes such that comparability holds within each class. That comparability
is non-trivial, even for equilibrium states, can be seen from the example of systems that have only
energy as a coordinate (‘thermometers’) and where only ‘rubbing’ and thermal equilibration are
allowed as adiabatic operations. For the composite of two such systems, CP is violated and the
entropy is not unique. See [4, fig. 7, p. 65], and also the figure in §3d.

While the above-mentioned references are only concerned with equilibrium states, the authors
of [14] require comparability as part of their second law, even for non-equilibrium states. We shall
comment further on this issue in §3.

We do not want to adopt CP as an axiom, because we do not find it physically compelling. Our
preference is to derive it from some more immediate assumptions. Consequently, an essential
part of the analysis in [3–6], and, in fact, mathematically the most complex one, is a derivation
of CP from additional assumptions about simple systems, which are the basic building blocks
of thermodynamics. At the same time, one makes contact with the traditional concepts of
thermodynamics such as pressure and temperature.

As already mentioned, the states of simple systems are described by an energy coordinate
U (the first law enters here) and one or more work coordinates, like the volume V. The key
assumptions we make are as follows:

— The possibility of forming, by means of an adiabatic process, convex combinations of states
of simple systems with respect to the energy U and the work coordinate(s) V.

— The existence of at least one irreversible adiabatic state change, starting from any
given state.

— Unique supporting planes for the convex sets AX = {Y : X ≺ Y} (‘forward sectors’) and a
regularity property for their slope (the generalized pressure).

From these assumptions one derives [4, theorems 3.6 and 3.7]

Theorem 2.2 (comparability of states for simple systems). Any two states X, Y of a simple system

are comparable, i.e. either X ≺ Y or Y ≺ X. Moreover, X
A∼ Y if and only if Y lies on the boundary of AX,

or, equivalently, X lies on the boundary of AY.

This theorem, however, is not enough because to define S by means of the formulae (2.12) and
(2.13) we need more, namely comparability for all states in (1 − λ)Γ × λΓ , not only in Γ !

The additional concept needed is

— Thermal equilibrium between simple systems, in particular the zeroth law.

In essence, this allows us to make one simple system out of the compound system (1 − λ)Γ × λΓ so that
the previous analysis can be applied to it, eventually leading to comparability for all states in the
compound system. See [4, section 4].

The final outcome of the analysis is (cf. [4, theorems 4.8 and 2.9]):
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Theorem 2.3 (entropy for equilibrium states). The CP is valid for arbitrary scaled products of
simple systems. Hence the relation among states in such state spaces is characterized by an additive and
extensive entropy, S.

The entropy is unique up to an overall multiplicative constant and one additive constant for each ‘basic’
simple system.

Moreover, the entropy is a concave function of the energy and work coordinates, and it is nowhere
locally constant.

To include mixing processes and chemical reactions as well, the entropy constants for different
mixtures of given ingredients, and also of compounds of the chemical elements, have to be chosen
in a consistent way. In our approach, it can be proved, without invoking idealized ‘semipermeable
membranes’, that the entropy scales of the various substances can be shifted in such a way that
X ≺ Y always implies S(X) ≤ S(Y). The converse, i.e. that S(X) ≤ S(Y) implies X ≺ Y provided X
and Y have the same chemical composition, cannot be guaranteed without further assumptions,
however. These matters are discussed in [4, section 6].

3. Non-equilibrium states
There exist many variants of non-equilibrium thermodynamics. A concise overview is given in
the monograph by Lebon et al. [1], where the following approaches are discussed, among others:
classical irreversible thermodynamics (CIT), extended irreversible thermodynamics (EIT), finite-
time thermodynamics, theories with internal variables, rational thermodynamics and mesoscopic
thermodynamic descriptions. Most of these formalisms focus on states close to equilibrium.
Aspects of steady-state thermodynamics are thoroughly discussed in [2].

A further point to note is that the role of entropy in non-equilibrium thermodynamics
is considerably less prominent than in equilibrium situations. Equilibrium entropy is a
thermodynamic potential when given as a function of its natural variables U and V, i.e. it encodes
all equilibrium thermodynamic properties of the system. For a description of non-equilibrium
phenomena, on the other hand, more input than the entropy alone is needed.

It is a meaningful question, nevertheless, to ask to what extent an entropy can be defined for
non-equilibrium states, preserving as much as possible of the useful properties of equilibrium
entropy. To formulate and discuss this question precisely, we consider a system with a space Γ

of equilibrium states that is embedded as a subset in some larger space Γ̂ of non-equilibrium
states. We emphasize that Γ̂ need not contain all non-equilibrium states that the system might, in
principle, possess, but only a part that is relevant for the problems under consideration. A natural
requirement is that states in Γ̂ are reproducible. It is not clear to us that the entropy of an exploding
bomb, for instance, is a meaningful concept (although the energy might be).

Another point to keep in mind is that a non-equilibrium state is, typically, either time
dependent or it is not isolated from its environment, as in the case of a non-equilibrium steady
state that has to be connected to reservoirs that cause fluxes of heat or electric current to flow
through it.

(a) Entropies for non-equilibrium states
We assume that a relation ≺ is defined on Γ̂ such that its restriction to the equilibrium state space
Γ is characterized by an entropy function S, as discussed in §2. The physical meaning of ≺ on Γ̂

is supposed to be the same as before, i.e. X ≺ Y means that Y can be reached from X by a process
that in the end leaves no traces in the surroundings except that a weight may have been raised
or lowered. As discussed in §2, the assumption that the restriction of ≺ to Γ is characterized
by an entropy function is equivalent to assuming that this restriction satisfies conditions A1–A6
together with CP. For the non-equilibrium states in Γ̂ , it is not natural to require A4 (scaling) and
A5 (splitting), but we shall assume the following:
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N1 The relation ≺ on Γ̂ satisfies our assumptions A1 (reflexivity), A2 (transitivity), A3
(consistency)5 and A6 (stability).

N2 For every X ∈ Γ̂ , there are X′, X′′ ∈ Γ such that X′ ≺ X ≺ X′′.

The meaning of the second requirement is that every non-equilibrium state in Γ̂ can be
generated from an equilibrium state in Γ by an adiabatic process, and that every non-equilibrium
state can be brought to equilibrium by such a process (e.g. by letting the non-equilibrium state
relax spontaneously to equilibrium). We consider this to be very natural, physically.

The basic question we now ask is: What can be said about possible extensions of S to functions
Ŝ on Γ̂ that are monotone with respect to ≺, i.e. that satisfy Ŝ(X) ≤ Ŝ(Y) if X ≺ Y, and, if X ∈ Γ , then
Ŝ(X) = S(X) as well?

Our answer involves the following two functions:
For X ∈ Γ̂ define

S−(X) := sup {S(X′) : X′ ∈ Γ , X′ ≺ X} (3.1)

and

S+(X) := inf {S(X′′) : X′′ ∈ Γ , X ≺ X′′}. (3.2)

Thus, S− measures how large the entropy can be of an equilibrium state out of which X is created
by an adiabatic process, and S+ measures how small the entropy of an equilibrium state can be
into which X equilibrates by an adiabatic process.

The essential properties of these functions are collected in the following proposition. In words,
it says the following: both S− and S+ take only finite values and increase or remain unchanged
under adiabatic state changes. A sufficient condition for Y to be adiabatically accessible from
X is that S+(X) ≤ S−(Y). While neither of the functions are necessarily additive, S− is at least
superadditive and S+ subadditive (see equation (3.5)). The entropy is unique if and only if
S− = S+, because any function that is monotonously increasing or unchanged with respect to the
relation of adiabatic accessibility and coincides with S on Γ lies between S− and S+. The unique
entropy is then additive, by (3.5).

Proposition 3.1 (properties of S±).

(a) −∞ < S±(X) < +∞ for all X ∈ Γ̂ .
(b) S±(X) = S(X) for X ∈ Γ , and S−(X) ≤ S+(X), for all X ∈ Γ̂ .
(c) The sup and inf in the definition of S± are attained for some X′, X′′ ∈ Γ with X′ ≺ X ≺ X′′.
(d)

X ≺ Y implies S−(X) ≤ S−(Y) and S+(X) ≤ S+(Y). (3.3)

(See figure 1.)
(e)

If S+(X) ≤ S−(Y), thenX ≺ Y. (3.4)

(See figure 2.)
( f ) Under composition, S− is superadditive and S+ subadditive, i.e.

S−(X1) + S−(X2) ≤ S−(X1, X2) ≤ S+(X1, X2) ≤ S+(X1) + S+(X2). (3.5)

(g) If Ŝ is any function on Γ̂ that coincides with S on Γ and is such that X ≺ Y implies Ŝ(X) ≤ Ŝ(Y),
then

S−(X) ≤ Ŝ(X) ≤ S+(X). (3.6)

5Compound states have the same meaning as in the equilibrium situation, i.e. we consider two copies of the system and one
state of each copy side by side.
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X

Y

G

G

X¢ Y¢ X¢¢ Y ¢¢Z

Figure 1. This illustrates equation (3.3) with S−(X)= S(X ′), S+(X)= S(X ′′), S−(Y)= S(Y ′), S+(Y)= S(Y ′′). The arrows
indicate adiabatic state changes. The state Z ∈ Γ with Y ′ ≺≺ Z ≺≺ Y ′′ is not adiabatically comparable with Y (but it is
adiabatically comparable with X because X ≺ X ′′ ≺ Z). (Online version in colour.)

X

Y

X¢¢ Y¢
G

G

Figure 2. Illustration of equation (3.4) with S+(X)= S(X ′′), S−(Y)= S(Y ′). (Online version in colour.)

Proof. (a) and (b) follow immediately from the assumptions on ≺ and the properties of S, namely
X′ ≺ X ≺ X′′ implies S(X′) ≤ S(X′′).

(c) Since the entropy is concave on Γ and, in particular, continuous, it takes all values between
S(X′) and S(X′′) for any two states X′ and X′′ in Γ with X′ ≺ X′′. Hence, by N2 and the definition
of S−, there is an X′

0 ∈ Γ with S(X′
0) = S−(X), and we claim that X′

0 ≺ X. Indeed, by the definition of
S− there is, for every ε > 0, an X′

ε ∈ Γ with X′
ε ≺ X and 0 ≤ S(X′

0) − S(X′
ε) ≤ ε. We can pick Z0 ≺≺

Z1 ∈ Γ and 0 ≤ δ(ε) such that δ(ε) → 0 for ε → 0 and S(X′
0) + δS(Z0) = S(X′

ε) + δS(Z1). Then

(X′
0, δZ0) ∼ (X′

ε , δZ1) ≺ (X, δZ1).

Hence, X′
0 ≺ X by the stability assumption A6. In the same way, one shows that the infimum

defining S+(X) is attained.
(d) If X ≺ Y and X′ ≺ X, then X′ ≺ Y, so S−(X) ≤ S−(Y). Likewise, X ≺ Y and Y ≺ Y′′ implies

X ≺ Y′′, so also S+(X) ≤ S+(Y).
(e) If S+(X) ≤ S−(Y) then there exists X′′ and Y′ with X ≺ X′′, Y′ ≺ Y and X′′ ≺ Y′. But then X ≺ Y

by transitivity.
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( f ) By (c), there exist X′
i, X′′

i , i = 1, 2 ∈ Γ such that S−(Xi) = S(X′
i), S+(Xi) = S(X′′

i ) and X′
i ≺ Xi ≺

X′′
i . From the additivity of the equilibrium entropy S and

(X′
1, X′

2) ≺ (X1, X2) ≺ (X′′
1 , X′′

2),

we obtain

S−(X1) + S−(X2) = S(X′
1) + S(X′

2) = S(X′
1, X′

2)

≤ S−(X1, X2) ≤ S+(X1, X2) ≤ S(X′′
1 , X′′

2)

= S(X′′
1) + S(X′′

2) = S+(X1) + S+(X2). (3.7)

(g) Let X′ ≺ X ≺ X′′ as in (c). Then

S−(X) = S(X′) = Ŝ(X′) ≤ Ŝ(X) ≤ Ŝ(X′′) = S(X′′) = S+(X). (3.8)

�

The following theorem clarifies the connection between adiabatic comparability and
uniqueness of an extension of the equilibrium entropy to the non-equilibrium states. (Recall
that two states X and Y are called comparable w.r.t. the relation ≺ if either X ≺ Y or Y ≺ X
holds.) Particularly noteworthy is the equivalence of (i), (iii) and (vi) below, which may be
summarized as follows: a non-equilibrium entropy, characterizing the relation ≺, exists if and only if
every non-equilibrium state is adiabatically equivalent to some equilibrium state.

Theorem 3.2 (comparability and uniqueness of entropy). The following are equivalent:

(i) There exists a unique Ŝ extending S such that X ≺ Y implies Ŝ(X) ≤ Ŝ(Y).
(ii) S−(X) = S+(X) for all X ∈ Γ̂ .

(iii) There exists a (necessarily unique!) Ŝ extending S such that Ŝ(X) ≤ Ŝ(Y) implies X ≺ Y.
(iv) Every X ∈ Γ̂ is comparable with every Y ∈ Γ̂ , i.e. the CP is valid on Γ̂ .
(v) Every X ∈ Γ̂ is comparable with every Z ∈ Γ .

(vi) Every X ∈ Γ̂ is adiabatically equivalent to some Z ∈ Γ .

Proof. That (i) is equivalent to (ii) follows from (d) and (g) in proposition 3.1. Moreover,
(ii) implies (iii) by (e). The implications (iii) → (iv) → (v) are obvious.

(v) → (ii): if X′ and X′′ are as in proposition 3.1(c), and S(X′) = S−(X) < S+(X) = S(X′′), there
exists a Z ∈ Γ with S(X′) < S(Z) < S(X′′). If (v) holds, then either Z ≺ X or X ≺ Z. The first
possibility contradicts the definition of S− and the latter the definition of S+. Hence S− = S+,
so (v) implies (ii).

It is clear that (vi) → (v) because CP holds on Γ .

Finally, (ii) → (vi): since X′, X′′ ∈ Γ , and S(X′) = S(X′′) (by (ii)), we know that X′ A∼ X′′,
because the entropy S characterizes the relation ≺ on Γ by assumption. Now X′ ≺ X ≺ X′′, so

X
A∼ X′ A∼ X′′. �

(b) Maximumwork
Assume now that a ‘thermal reservoir’ with temperature T0 is given. Such a reservoir can be
regarded as an idealization of a simple system without work coordinates that is so large that an
energy change has no appreciable effect on its temperature (defined, as usual, to be the inverse
of the derivative of the entropy with respect to the energy). An energy change �Ures and a
corresponding entropy change �Sres of the reservoir are thus connected by

�Ures = T0�Sres. (3.9)
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We denote by ΦX0 (X) the maximum work that can be extracted from a state X ∈ Γ̂ with the aid
of the reservoir if the system ends up in a state X0 ∈ Γ with internal energy U0 and entropy S0. If
X ∈ Γ , i.e. X is an equilibrium state, then

ΦX0 (X) = (U − U0) − T0(S − S0), (3.10)

where U is the internal energy of X and S is its entropy. This follows as usual by considering the
total entropy change of the system plus reservoir, i.e. S0 − S + �Sres, which has to be ≥ 0 by the
second law for equilibrium states. The work extracted is W = −(�Ures + U0 − U), and using (3.9)
we obtain W ≤ (U − U0) − T0(S − S0). Equality is reached if the process is reversible.

For non-equilibrium states X ∈ Γ̂ , the ± entropies defined in (3.1) and (3.2) give at least upper
and lower bounds for the maximum work

(U − U0) − T0(S+ − S0) ≤ ΦX0 (X) ≤ (U − U0) − T0(S− − S0), (3.11)

where S± denote the ± entropies of X. This can be seen as follows.
Consider a special process X → X′′ → X0 where the first step is an adiabatic process and where

X′′ and X0 are equilibrium states. As, by definition, there is no change to the rest of the universe
in the first process other than the motion of a weight, conservation of energy tells us that the work
obtained in the step X → X′′ is U − U′′. In the step X′′ → X0, the maximum work (by the standard
reasonings for equilibrium states in Γ , see above) is (U′′ − U0) − T0(S(X′′) − S0). Altogether

ΦX0 (X) ≥ U − U′′ + (U′′ − U0) − T0(S+ − S0) = (U − U0) − T0(S+ − S0),

where we have used that S(X′′) = S+ for X′′ as in proposition 3.1(c). An analogous reasoning
applied to X′ → X → X0 (with X′ as in proposition 3.1(c)) gives

ΦX0 (X′) = U′ − U0 − T0(S− − S0) ≥ U′ − U + ΦX0 (X)

and hence ΦX0 (X) ≤ (U − U0) − T0(S− − S0).

(i) Definition of entropy through maximumwork

In their influential textbook on engineering thermodynamics [14], Gyftopolous and Beretta (GB)
(see also [15]) take the concept of maximum work as a basis for their definition of entropy.
Paraphrasing their definition in our notation, they assume the maximum work ΦX0 (X) to be a
measurable quantity for arbitrary states X (equilibrium as well as non-equilibrium) and define an
entropy SGB(X) through the formula

ΦX0 (X) = (U − U0) − T0(SGB(X) − S0). (3.12)

From equation (3.11), it is clear that

S−(X) ≤ SGB(X) ≤ S+(X). (3.13)

This follows also from proposition 3.1(g) because

X ≺ Y implies SGB(X) ≤ SGB(Y), (3.14)

which can be seen by considering the process X → Y → X0, obtaining

U − U0 − T0(SGB(X) − S0) = ΦX0 (X) ≥ U − U(Y) + ΦX0 (Y)

= U − U(Y) + U(Y) − U0 − T0(SGB(Y) − S0)

= U − U0 − T0(SGB(Y) − S0).

The GB entropy is therefore one possible choice of a function, which is monotone w.r.t. ≺.
According to our analysis, it characterizes the relation ≺ if and only if the CP is valid on the
whole state space Γ̂ (as GB assume as part of their second law; see also assumption 2 in [15]), in
which case all entropies on Γ̂ extending S coincide. In particular, the GB approach via maximum
work leads to the same equilibrium entropy as the approach of §2.
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As we have already stated, however, and shall discuss further below, we consider it
implausible to assume adiabatic comparability for general non-equilibrium states. If CP does
not hold on Γ̂ , the entropy SGB may depend in a non-trivial way on the choice of the thermal
reservoir and the final state X0.6 This means that the availability for a different final state X̃0
and different reservoir with temperature T̃0 is not necessarily given by the formula ΦX̃0

(X) =
(U − Ũ0) − T̃0(SGB(X) − S̃0) if SGB(X) is defined by means of (3.12).

On the other hand, each of the entropies S±, which are also monotonic w.r.t. ≺ by proposition
3.1(b), is unique up to a scale transformation, because these entropies are defined in terms of the
equilibrium entropy on Γ which has this uniqueness property. The inequalities (3.11) hold for all
T0 and X0, irrespective of comparability.

(c) Why adiabatic comparability is implausible in general
According to theorem 3.2, the CP on Γ̂ , and hence the (essential) uniqueness of entropy, is
equivalent to the statement that every non-equilibrium state X ∈ Γ̂ is adiabatically equivalent to some
equilibrium state Z ∈ Γ . Although there are idealized situations when such comparability can be
conceived, it seems to be a highly implausible property in general. The problem can already be
expected to arise close to equilibrium as we now discuss.

Consider first the ‘benign’ case where ‘CIT’ (see [1, ch. 2]) can be considered an adequate
approximation. The states in Γ̂ are here described by local values of equilibrium parameters such
as temperature, pressure and matter density. In particular, one can define a local entropy density
by using the equilibrium equation of state, and, by subsequently integrating this entropy
density over the volume of the system, one obtains a global entropy. An equilibrium state in
Γ of the same system with the same entropy is, to a good approximation, adiabatically equivalent
to the non-equilibrium state. This can be seen by dividing the system into cells such that each cell
is approximately in equilibrium and regarding the collection of cells as a composite equilibrium
system for which the CP holds by the analysis described in §2.

The situation changes, however, when CIT is not adequate and the fluxes have to be considered
as independent variables, as in ‘EIT’ (cf. [1, ch. 7]). In this situation, also the local temperature
has to be replaced by a different variable (cf. [1, section 7.1.2]).7 A phenomenological ‘extended
entropy’, depending explicitly on the heat flux, can be considered and even computed in some
simple cases. It has the property of increasing monotonously in time when heat conduction is
described by Cattaneo’s model [16] with a hyperbolic heat transport equation rather than the
parabolic Fourier’s law.8 The classical entropy, in contrast, may oscillate (see fig. 7.2 in [1])
and does therefore not comply with the second law. Also, the argument above for establishing
adiabatic equivalence with equilibrium states no longer applies. Although we do not have a
rigorous proof, we consider it highly implausible that a state that is significantly influenced by
the flux can be adiabatically equivalent to an equilibrium state, where no flux is present, for this
would mean that turning the flux on or off could be done reversibly. Unless this can be done,
however, CP does not hold on Γ̂ and there is no unique entropy.

If one moves further away from equilibrium, not even EIT may apply and CP becomes even
less plausible. In extreme cases like an exploding bomb, one may even question whether it is
meaningful to talk about entropy as a state function at all, because the highly complex situation
just after the explosion cannot be described by reproducible macroscopic variables.

For systems with reproducible states, the entropies S± are at least well defined and in principle
measurable, although it may not be easy to do so in practice. They provide bounds on the possible

6The proof of independence in [14,15] uses the assumption that any state can be transformed into an equilibrium state by a
reversible work process, which amounts to assuming property (vi) in theorem 3.2.
7On the microscopic level, a Maxwell–Boltzmann distribution for the velocities of the molecules in a small volume element
gets shifted to a different distribution.
8Fourier’s law is q = −λ∇T, where q is the heat flux, λ the heat conductivity and T the temperature. Cattaneo’s law is
τ∂q/∂t = −(q + λ∇T), where τ is the time constant of heat flux relaxation.
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Figure 3. Illustration ofAX and the points X ′ and X ′′ in the toy example in §3d. (Online version in colour.)

adiabatic state changes in the system and the maximum work that can be extracted from the
system in a given state and a given environment. The difference

�S(X) := S+(X) − S−(X), (3.15)

which is unique up to a universal multiplicative factor, can also be considered as a measure of the
deviation of X from equilibrium.

(d) A toy example
To elucidate the concepts and issues discussed above, we may consider a simple toy example.
The system consists of two identical pieces of copper that are glued together by a thin layer of
finite heat conductivity. We regard the state of the system as uniquely specified by the energies
or, equivalently, the temperatures T1 and T2 of the two copper pieces that are assumed to have
constant heat capacity. The layer between them is considered to be so thin that its energy can be
ignored. Mathematically, the state space Γ̂ of this system is thus R

2+ with coordinates (T1, T2) and
the equilibrium state space Γ is the diagonal, T1 = T2.

We assume to begin with that the relation ≺ is defined by the following ‘restricted’ adiabatic
operations:

— increasing the energy of each of the copper pieces by rubbing and
— heat conduction between the pieces through the connecting layer obeying Fourier’s law.

The forward sector AX = {Y : X ≺ Y} of X = (T1, T2) then consists of all points that can be obtained
by rubbing, starting from any point on the line segment between (T1, T2) and the equilibrium
point ( 1

2 (T1 + T2), 1
2 (T1 + T2)) (figure 3).

As equilibrium entropy, we take S(T, T) = log T. The points X′ and X′′ of proposition 3.1(c) are

X′ = (min{T1, T2}, min{T1, T2}) and X′′ = ( 1
2 (T1 + T2), 1

2 (T1 + T2))

(see figure 3) and accordingly

S−(T1, T2) = min{log T1, log T2} and S+(T1, T2) = log( 1
2 (T1 + T2)).
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If we extend the relation ≺ defined above by allowing the copper pieces to be temporarily
taken apart and using them as thermal reservoirs between which a Carnot machine can run to
equilibrate the temperatures reversibly, then the previous forward sector will be extended and is
now characterized by the unique extension of S to

Ŝ(T1, T2) = 1
2 (log T1 + log T2).

This is precisely the ‘benign’ situation referred to at the beginning of §3c, where CIT applies.
If the parts are unbreakably linked together, however, the situation is different. An irreversible

heat flux between the two parts during the adiabatic state change is then unavoidable. If the heat
conduction is governed by Cattaneo’s rather than Fourier’s law, it is necessary to introduce the
heat flux as a new independent variable and apply EIT as discussed in the last section. The general
objections against the CP and hence the existence of a unique entropy mentioned then apply. But
even if we stay with Fourier’s law and the two-dimensional state space of the toy model, it is clear
that the extended forward sector, obtained by applying Carnot machines in addition to rubbing
and equilibration, will depend on the relation between the heat conductivity of the separating
layer between the parts, and the heat conductivity between the Carnot machine and the copper
pieces. If the latter is finite, a gap between S− and S+ will remain, because equilibration of the
temperatures by means of the Carnot machine requires a minimal non-zero time span, during
which heat leaks irreversibly through the layer connecting the two pieces.

4. Summary and conclusions
— Under the stated general assumptions A1–A6 for equilibrium states and N1 and N2 for

non-equilibrium states, the possibility of defining a single, unique entropy, monotone with
respect to the relation of adiabatic accessibility, is equivalent to the adiabatic comparability of
states (CP).

— Comparability is a highly non-trivial property. Even in the equilibrium situation, it
requires additional axioms beyond A1–A6.

— It is implausible that comparability holds for arbitrary non-equilibrium states. It might,
however, be established for restricted classes of non-equilibrium states. In any case, a
prerequisite for a useful definition of entropy is that the states can be uniquely identified,
and that they are reproducible.

— Further insight into the question of comparability might be obtained from concrete
models in which the relation ≺ is defined by some dynamical laws.
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