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In this paper, we examine the folding behaviour
of Tachi–Miura polyhedron (TMP) bellows made of
paper, which is known as a rigid-foldable structure,
and construct a theoretical model to predict the
mechanical energy associated with the compression
of TMP bellows, which is compared with the
experimentally measured energy, resulting in the gap
between the mechanical work by the compression
force and the bending energy distributed along all
the crease lines. The extended Hamilton’s principle
is applied to explain the gap which is considered to
be energy dissipation in the mechanical behaviour of
TMP bellows.

1. Introduction
Foldable structures are widely used in various fields.
For example, deployable large structures in space are
required to fold compactly while on the ground, and
expand smoothly into full-sized structures in space.
The key geometries of space-deployable structures are
membranes and hollow cylinders. Some attempts have
been made to study optimum foldable structures through
folding patterns based on origami design, which is the
art of paper folding. Origami is a Japanese art, meaning
‘folding papers’, and has been used extensively for
making figures such as birds and elephants, out of
flat paper. Origami patterns are applied to cylindrical
structures or thin-walled tubes.
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Guest & Pellegrino [1] studied a triangulated foldable cylinder for deployable mast structures.
Their proposed cylindrical structures are made of a helical strip with triangular panels. They
also performed axial compression tests, which were compared to the result of computational
simulation [2]. Hunt & Ario [3] studied the buckling pattern of a thin cylindrical piece of paper
under torsional loading to observe that the folding geometry is similar to the Yoshimura pattern
[4], composed of rigid faces and mountain-valley crease lines. Ario & Nakazawa [5] studied the
folding patterns of multi-layered pantographic truss structure with pin joints by using static and
dynamic numerical methods, where the truss material is assumed to be elastic and also elasto-
plastic material. They predicted the force–displacement relationship of such a multi-layered
truss structure. Ma & You [6] designed several tubes with an origami pattern with the aim of
using them as energy absorbing structures. Song et al. [7] applied origami pattern to thin-walled
tubes to achieve uniform crushing processes with the aim of lowering the initial peak in the
force–displacement curve while maintaining almost uniform compression force. Although many
types of tubes or cylindrical structures with origami patterns have been proposed, rigid-origami
patterns, in which deformation takes place only along crease lines, are better suited to minimize
the elastic energy associated with deformations of materials during compression (or folding).

Inspired by the Yoshimura buckling pattern of a hollow cylinder under compression [4], Miura
[8] proposed a developable double corrugation (DDC) method. To prove this DDC concept,
Tanizawa & Miura [9] made a rigorous model based on the Galerkin method, where the total
elastic energy of a buckled flat sheet can become a minimum. Among several patterns of such
buckled corrugated shapes, they found that the so-called Miura-ori pattern gave rise to the
minimum elastic energy. This pattern is also used for studying on the folding and unfolding
behaviours of tree leaves [10] and deployable structure design based on the folding pattern of
leaves [11]. A more generalized form of the Miura-ori pattern has also been investigated so
that an approximation of a double-curved surface with rigid-folding motion can be constructed
[12]. Wu & You [13] studied an ordinary grocery shopping bag which is not rigid foldable and
proposed a new crease pattern that enables folding using rigid materials, which can be applied
in the packaging industry. Recently, the Tachi–Miura Polyhedron (TMP) [14,15], which takes
advantage of Miura-ori features, was proposed. Unlike other cylinders, this structure has a feature
of having rigid foldability while filling a three-dimensional space; therefore, it can be applied to
various deployable structures and actuators using rigid panels while the deformation takes place
only along the crease lines.

In this paper, we examine the folding behaviour of TMP bellows made out of paper sheets
under compression load along the cylinder axis, both experimentally and analytically. As far as
the application of a developable structure is concerned, the structure should fold and unfold
easily. A paper sheet is flexible and easy to make crease lines, therefore we have used paper to
study the folding behaviour of the TMP in this paper.

2. Tachi–Miura polyhedron: geometry
Tachi–Miura polyhedron [15] is shown in figure 1.

Figure 2b shows the flat sheet geometry of the TMP, which is characterized by length
parameters; l, m, d, an inner angle of parallelogram α which remains constant during the folding
of TMP and the number (N) of repeating unit areas (shaded area in figure 2b), where two identical
origami papers (front and back) are connected to form a bellows-like structure, shown in figure 2a.

(a) Folding angles
To examine the characteristics of the TMP, we examine the geometry of a Miura-ori unit as shown
in figure 3 where several folding angles are defined, and the solid and dashed lines are mountain
and valley folding lines, respectively. Let the horizontal crease lines (parallel to the x–y plane) be
the main crease lines, and the crease lines tilted with respect to the horizontal plane (x–y plane) be



3

rspa.royalsocietypublishing.org
ProcRSocA469:20130351

..................................................

(a) (b)

z
y
x

Figure 1. (a) Tachi–Miura polyhedron and (b) its folding motion from left to right.
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Figure 2. (a) Tachi–Miura polyhedronwhere the black solid line shown on the side surface is discussed in figure 4, (b) its initial
flat sheet geometry and (c) repeating unit cell.
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Figure 3. (a) Repeating Miura-ori unit cell shown in grey coloured area, (b) its flat sheet, which is folded into (c).

sub-crease lines. Figure 3 shows details of the repeated unit cell where the main creases are O0O1
and O1O2, and sub-creases are O1A1 and O1B1. This flat sheet geometry of Miura-ori (figure 3b)
is repeated throughout the TMP, where the main geometrical parameters are; an inner angle α,
half of the dihedral angle of main fold θM that is the angle of a main crease line and half of the
dihedral angle of sub-fold θS that is the angle of a sub-crease line (figure 3c). It is noted that α

remains constant, and θM and θS change during the TMP bellows compression.
The equations relating these angles (α, θM, θS) are obtained as

CD
O0C

= A0C
O0C

CD
A0C

⇔ tan θG = tan α sin θM. (2.1)
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Figure 4. Side view of the black line shown in figure 2a.

and
B1E
B1B2

= B1F
B1B2

B1E
B1F

⇔ sin θG = sin α sin θS. (2.2)

To calculate the total length of all TMP crease lines, we focus on a TMP with N = 2 case, at first.
The width of the development of the TMP is (2l + 2m + d/ tan α) (see the repeating unit cell as
shown in figure 2c), thus the total length of the main crease lines is 2(2l + 2m + d/ tan α). Note
that the TMP bellows consists of two sheets as developed and shown in figure 2. Next, the length
of one single sub-crease line is d/ sin α, therefore the total length of all sub-crease lines is 8d/ sin α

because the TMP with N = 2 has eight sub-crease lines. Generalizing this calculation to the TMP
with N repeated units case, we obtain the total length of all main crease lines to be (4l + 4m +
2d/ tan α)(N − 1) and the length of all sub-crease lines to be 8Nd/ sin α.

The main fold angle θM can be determined by the height H of the TMP bellows as follows
(figure 4):

cos θM = H
Nd

= H0 − u
Nd

, (2.3)

where d is the width of the repeated cell in figure 2c, equal to the length between adjacent crease
lines shown in figure 5, where only a repeated folding cell is shown and θk is the angle of the main
crease (k = M) or the sub-crease line (k = S).

3. Folding behaviour of Tachi–Miura polyhedron bellows: experiments
In order to examine the behaviour of folding a TMP bellows experimentally, we used an Instron
machine (model 8521S) to conduct compression tests in the axial direction on five identical
specimens of TMP bellows made out of paper (Strathmore 500 Bristol,2 Ply, Plate Surface, 235–72,
thickness t is 0.27 mm), with each sample being tested once. The parameters which determine
the dimensions of the initial flat sheet geometry of the TMP bellows (see figure 2) are α = 45◦,
l = 30 mm, m = 30 mm, d = 30 mm and N = 7.

The initial height of the TMP H0 (figure 2a) is 150 mm. Let the initial main fold and sub-fold
angles of the TMP be θM,0 and θS,0, respectively, with θM,0 = 44.4◦ and θS,0 = 54.2◦ in the initial
condition. The TMP bellows is compressed up to a maximum displacement of 100 mm at a rate
of 2.0 mm s−1, therefore the final height of the TMP bellows is 50 mm, the final angle of the main
fold is 76.2◦ and the final angle of the sub-fold is 80.2◦.



5

rspa.royalsocietypublishing.org
ProcRSocA469:20130351

..................................................

d
(a) (b)

d
u

F

hk

hk,0 qk

qk

qk,0

qk,0

k = M,S
qk

qk,0

Figure 5. Definition of folding angles of main or sub-crease line θk (k = M, S) at initial (a) and current folding (b).
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Figure 6. Force–displacement relationship of the TMP bellows under compression.

Figure 6 shows the force (F)–displacement (u) data of the TMP bellows under compression in
which the black solid lines indicate the upper and lower boundary of experimental data based
on five compression tests, and the dashed line indicates the approximated F–u relationship based
on the least-squares fitting: Fapp = 6.42 × 10−6u3 − 9.45 × 10−4u2 + 0.1u + 0.2, where Fapp is the
applied compressive force in Newtons, and u is the displacement in millimetres. Integrating this
equation from 0 mm to the total displacement (100 mm), we obtain the mechanical work done by
compression loading W = 0.338 J, which is the area underneath the F–u curve shown in figure 6.

4. Analysis on folding behaviour of Tachi–Miura polyhedron
To investigate the folding behaviour of the TMP, we discuss the modelling of the force–
displacement relationship by using the principle of virtual work, followed by the modification
of folding angles based on the paper thickness. We also examine the bending moment of each
hinge line in terms of the folding angle, followed by a comparison of the predictions based on the
model and the experiment that we discussed in previous section.

(a) Modelling of the force–displacement relationship
As far as rigid-foldable structures are concerned, their flat facets remain flat during folding while
deformation takes place only along the crease lines in terms of a bending moment vector along
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the crease line. Under a conservative system, the mechanical work done by the external force is
supposed to be equal to the bending energy along the crease lines, and the required compression
force can be obtained by using the principle of virtual work;

F(u)δu =
∑

k

2lM(θk)δθk, (4.1)

where δθk is the change in fold angle of a crease line, M(θk) is the corresponding bending moment
per unit length and l is the length of the crease line. The TMP consists of two types of crease lines:
main crease and sub-crease lines. Therefore, the right-hand side of equation (4.1) is modified to

F(u)δu =
∑

i

{
2lM,iM(θM)δθM

}+
∑

j

{2lS,jM(θS)δθS}, (4.2)

where lM,i is the length of ith main crease line, and lS,j the length of jth sub-crease line.
By applying a variation to equation (2.1) with respect to θG and θM, we obtain

δθG = tan α cos2 θG cos θMδθM. (4.3)

Similarly, we apply a variation to equation (2.2), to obtain

δθS = cos3 θG cos θM

cos α cos θS
δθM. (4.4)

It is noted that the main fold angle θM is related to displacement u by equation (2.3). Taking a
variation of equation (2.3), we obtain

δu = Nd cos θMδθM. (4.5)

By substituting equations (4.4) and (4.5) into (4.2), we obtain the following relation:

F(u)Nd cos θM δθM =
∑

i

{2lM,iM(θM)δθM} +
∑

j

{
2lS,jM(θS)

cos3 θG sin θM

cos α sin θS
δθM

}
,

resulting in

F = 2
Nd sin θM

⎡
⎣∑

i

{lM,iM(θM)} +
∑

j

{
lS,jM(θS)

cos3 θG cos θM

cos α cos θS

}⎤⎦, (4.6)

because the folding angles θM and θS are calculated by using displacement u based on
equations (2.1)–(2.3). Therefore, the F–u curve can be obtained from equation (4.6).

(b) Effects of paper thickness
The above model is made based on the assumption that the paper is thin, mathematically having
no thickness, which is not correct. Here, we will examine the effects of finite thickness of paper
on the force–displacement relationship of TMP bellows. The folding angle defined in figure 5,
θk (k = M, S) is obtained assuming that the thickness of a piece of paper is extremely thin and is
given by equation (2.3).

When we apply a representative TMP crease pattern to a sheet of paper, the thickness of
the paper (t) affects the geometry of folding angles, particularly the radius of curvature ρ (here
we assume that the radius of curvature ρ is constant along the curved crease line, figure 7). In
addition to this, the TMP bellows is made of two identical sheets of paper, which are bonded.
This overlapped area of the two origami sheets also affects the mechanical behaviour of the TMP
bellows, thus we consider these effects in revising equation (4.6). To this end, we consider the
crease model with finite paper thickness as shown in figure 7.
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Figure 7. Folding of unit paper cell by accounting for the effect of the paper thickness t.

First, half of the height of the unit paper cell (z) and the rigid flat surface of the unit paper cell
(z′) are calculated as follows:

z = hk,0

2
− t

2
sin θ ′

k − u
2

(4.7a)

and

z′ = z − ρ sin θ ′
k = hk,0 − (t + 2ρ) sin θ ′

k − u

2
, (4.7b)

where hk,0 is the initial height of the main or sub-crease line and u is displacement.
Second, the length of G1G2 (dashed line in figure 7 centre) is d as shown in figure 5. With a

finite thickness, G1G2 is expressed as follows:

G1G3 = G1G2 + G2G3 ⇔ d = ρθ ′
k + d′, (4.8)

where d is the arc length of the mid-plane, G1G3.
Therefore, the relationship between the folding angle (θ ′

k) and TMP bellows displacement (u)
is expressed by

cos θ ′
k = z′

d′ = hk,0 − (t + 2ρ) sin θ ′
k − u

2(d − ρθ ′
k)

. (4.9a)

It is noted that equation (4.9a) replaces equation (2.3) by accounting for paper thickness. Solving
for u in equation (4.9a), we obtain

u = hk,0 − 2(d − ρθ ′
k) cos θ ′

k − (t + 2ρ) sin θ ′
k. (4.9b)

Here, we assume that ρθ ′
k � d to obtain

u = hk,0 − 2d cos θ ′
k − (t + 2ρ) sin θ ′

k

= hk,0 −
√

(t + 2ρ)2 + (2d)2 cos(θ ′
k − ξ (t, ρ)),

(4.10)

where

ξ (t, ρ) = sin−1

(
t + 2ρ√

(t + 2ρ)2 + (2d)2

)
. (4.11)

Therefore, folding angle θ ′
k which contains the effect of the paper thickness t is obtained as follows:

θ ′
k = cos−1

(
hk,0 − u√

(t + 2ρ)2 + (2d)2

)
+ ξ (t, ρ). (4.12)
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Figure 8. (a) Side view of TMP with θM = 0◦, showing overlap area (dark shaded area) in which two sheets of paper are
attached. Black thick lines indicate the sub-crease lines and dashed lines indicate the main crease lines that are affected by
the overlap area, (b) top view of the TMP with θM = 90◦, showing the number of overlaps in each area. N is the number of
repeating unit area.

For the present dimensions of the TMP bellows, the thickness of the paper t is 0.27 mm and its
radius of curvature ρ is 0.38 mm, thus we assume that the magnitudes of t and ρ are much smaller
than d = 30 mm (sheet length), which allows for the following equation to be obtained:√

(t + 2ρ)2 + (2d)2 ≈
√

(2d)2 = 2d. (4.13)

Using equations (2.3), (4.12) and (4.13), the difference between θk and θ ′
k is obtained as

θ ′
k = θk + ξ (t, ρ). (4.14)

Therefore, ξ is the difference between the ideal case in which t is zero, and the case in which the
thickness of the paper is considered. This parameter represents the effect of t.

In the above discussion, we considered only the effect of one crease line composed of only one
sheet of paper. Next, we consider the bonded (overlapped) area and the crease line attached to the
area as shown in figure 8. For the overlapped area of the TMP bellows, figure 8a shows the side
view of the TMP at θM = 0◦, and where the dark shaded area is the overlapped area where the
two sheets are bonded. Also in figure 8a, the black thick lines show the sub-crease lines, and the
dashed lines indicate the main crease lines that are affected by the overlapped area. Figure 8b is
the top view of the TMP at the folding angle θM = 90◦, i.e. completely flattened geometry, where
the overlap of the TMP faces are shown shaded. The figure also shows the number of overlaps
in each area. Because of these overlapped areas, the mechanical behaviour of these crease lines
(black thick and dashed lines in figure 8) is different from that of other crease lines, thus these
crease lines should be treated differently. The calculation of the folding angle especially should be
done differently from that of the other crease lines.

Considering the effect of the overlapped area on the sub-crease lines (black thick lines in
figure 8), we get a revised value of ξ that is

ξ ′ = no × ξ (t, ρ) = no sin−1 t + 2ρ√
(t + 2ρ)2 + (2d)2

, (4.15)

where no is the factor of overlaps to implement the effect of the bonded area (see appendix A).
Considering equation (4.15) and the effect of paper thickness and overlap of facets, we obtain the
revised formula for F, i.e. revision of equation (4.6)

F = 2
Nd sin θM

⎡
⎣∑

i

{lM,iM(θM + ξi)} +
∑

j

{
lS,jM(θS + ξj)

cos3 θG cos θM

cos α cos θS

}⎤⎦, (4.16)
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Figure 9. M–θ∗ relationship of the unit paper cell experiment.

where ξi (or ξj) takes ξ or ξ ′, which depend on the main crease lines i (or sub-crease line, j). Note
that the folding angles θM and θS are a function of the displacement u, which are obtained from
equations (2.1), (2.2) and (4.12). Therefore, the predicted compression force expressed as (4.16) is
a function of displacement u and gives a F–u curve. It is noted that a similar analytical treatment
was used by Natori et al. [16], when they analysed a membrane origami structure folding pattern
introducing effective thickness t∗ to approximate the effects of the material thickness. On the other
hand, our approach focuses on a folding angle that is based on thickness and radius of curvature
and represents those effects, as ξi, that can be obtained through the geometry of the crease pattern.

(c) Measurement of the M–θ∗ relationship of unit paper cell
In this section, we discuss the validity of our model. Before using equation (4.16), we performed a
paper folding test on a unit paper cell specimen made of the same paper used in the compression
tests of the TMP bellows (Strathmore 500 Bristol, 2 Ply, Plate Surface, 235–72 and thickness t
is 0.27 mm). The unit paper cell specimen used has a width of 90 mm, and the length from the
crease line is 70 mm. To measure the force required to bend the paper specimen, we used a force
sensor (IMADA DS2–1 Digital Force Gauge with a 5 N capacity). Using equations (2.3) and (4.14),
we obtained the relationship between the displacement u, the folding angle θ ′, and the bending
moment along the crease line as M(θ ′) = 2Fd sin θ ′. The initial height (h0) of the unit paper cell
specimen was 101 mm, with a displacement rate of 0.2 mm s−1, and the initial folding angle θ ′

0 of
44◦ is folded to 88◦. Here, we introduce the non-dimensional folding angle ratio θ∗ as follows:

θ∗ = θ ′ − θ0

π/2 − θ0
, (4.17)

where θ∗ is a normalized angle change, indicating the fraction of the bending angle of a crease
over the entire angle change, i.e. from the initial angle to final angle. Based on this, the M–θ∗ curve
of the unit paper cell specimen was obtained experimentally as shown in figure 9, in which the
black lines indicate the boundaries of the experimental data based on five paper bending tests,
and the dashed line is an approximation of the experimental data. We use a Gaussian function to
approximate the nonlinear M–θ∗ curve as follows:

M(θ∗) = c0 + c1θ
∗ +

n∑
i=1

c3i−1 exp

{
− (θ∗ − c3i)2

c2
3i+1

}
. (4.18)

In this case, n = 3 is used.
Table 1 shows a set of the coefficients of the approximation function based on the Gaussian

function. Selection of these coefficients is made such that the square of the difference between the
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Table 1. Coefficients in equation (4.18).

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
0.211 0.794 −0.0363 0.855 0.0826 −0.0500 0.818 0.201 −0.648 0.905 0.854

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Critical strain εi shown in figure 10.

test 1 test 2 test 3 test 4 test 5 mean value ε̄C
critical strain εi 0.00282 0.00270 0.00286 0.00264 0.00265 0.00273

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

predicted values and experimental values after it is integrated over the entire region of θ∗ becomes
the minimum, i.e. least-square criterion. It is noted that there exists a clear kink point in the M–θ∗
curve of figure 9 around θ∗ = 0.82 that may correspond to the onset of plastic deformation of the
paper unit sample. To analyse this kink point, we performed tensile tests on five flat paper sheets.

Figure 10 shows the tensile stress (σ )–strain (ε) curves of the paper used in this study. Let the
critical strain (or yield strain) at the yield stress σY,i be εC,i (i = 1,2,3,4,5), respectively. The mean
value of the critical strain for all five tests was ε̄C = 0.00273 (table 2). We focused on the strain
of the outer surface of the crease line under bending, shown as the black thick line in figure 7.
Based on figure 7, the initial length of the outer surface is 2d, and its length at a folding angle θk
(k = M, S) is 2d + tθk.

Therefore, the bending strain of the outer surface ε′ is expressed as follows:

ε′ = (2d + tθk) − 2d
2d

= tθk

2d
. (4.19)

Solving for θk, we obtain

θk = 2dε′

t
. (4.20)

Substituting ε̄C = 0.00273 for ε′ into equation (4.20), the folding angle θk at the critical strain ε̄C is
θk = 81.2◦ which is equal to θ∗

k = 0.81 based on equation (4.17). The predicted value of θ∗
k = 0.81 is

in very good agreement with the experimental value of θ∗ = 0.82, corresponding to the kink point
of the M–θ∗ curve in figure 9, indicating that the critical strain ε̄C is considered to be a cause of the
kink point in the M–θ∗ curve of figure 9. Therefore, the bending stress at the outermost surface
reaches an initial yield stress of the paper σY at first, and it is shifted to the inner point along the
paper depth under an increasing bending moment.
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Figure 11. Comparison between experimental data and theoretical prediction of force–displacement relationship of TMP
bellows under compression.

(d) Comparison between the experiment and the predictions by the model
Figure 11 shows the experimental data of the F–u curve (dark area) and the predicted F–u
curve based on equation (4.16) shown as a solid line. Although the predicted F–u curve agrees
with the experimental data reasonably well, especially in the beginning of the compression, it
underestimates the experimental data for larger displacements. In the following section, this
discrepancy is discussed with respect to energy dissipation.

5. Discussion

(a) Extended Hamilton’s principle
In developing the analytical formula for compression force (F)–displacement (u) behaviour
(equation (4.16)), we assumed that the mechanical work done by the compression load is equal
to the bending energy consumed along all crease lines. However, there is a gap between the
experimental data and theoretical prediction, which is shown in figure 11. Therefore, to analyse
this gap, we examine possible energy dissipation. To this end, we use the extended Hamilton’s
principle [17], which is defined as

δJ = δ

∫ t1

t0

(T − U)dt =
∫ t1

t0

δDdt, (5.1)

where t0 is the initial time, t1 the final time, T is kinetic energy and U is potential energy, which
is composed of two terms; the elastic energy and the potential energy owing to the external
force. Although δJ is zero in a conservative system, δJ is not zero in a non-conservative system
where energy dissipation takes place. Taya & Mura [17] used the extended Hamilton’s principle
to analyse the energy dissipation (δJ) along the crease lines of a rectangular metal plate subjected
to impact loading where the material along the crease lines was plastically deformed. When we
apply the extended Hamilton’s principle to the folding behaviour of TMP bellows, we obtain the
following equation:

δJ =
∫ tf

0

{
δ

∫
V

1
2
v2ρddV −

(∫
li

2Mδθdli −
∫

S
FδudS

)}
dt =

∫ tf

0

∫
li
δDdlidt, (5.2)

where tf is the final time, V is volume, v is the velocity of the material element during compression
of TMP bellows, ρd is the density of material, M is the bending moment along the crease line,
F is the compressive force applied to the top of the TMP bellow and u is the corresponding
displacement. In the middle of equation (5.2), the first term represents the kinetic energy, the
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Figure 12. (a) Initial layout of TMP sheet whose vertices are removed, and (b,c) show the vertices removed.

second term is the bending energy along the crease lines, and the third term is the work done by
the compressive force. In this study, we consider the case where the TMP bellows is compressed
at a low speed, thus the kinetic energy term is negligible. Letting the energy owing to the
bending of the crease lines be B and the mechanical work by the compressive force W, we only
have to compare these two terms. The work by the bending moment B that is owing to the
bending moment multiplied by the angle change along the crease lines can be obtained by using
equation (4.1) as follows:

B =
∫

li
2Mδθdli =

∫
S

F′du, (5.3)

where F′ is the theoretical predicted force based on equation (4.16).
It is noted here that for the quasi-static deformation of TMP bellows, use of equation (5.3) is

justified, thus there is no need to use the extended Hamilton’s principle. However, its effectiveness
is justified for a high-speed bellows actuator, as the dynamic term (first term in the middle bracket
in equation (5.2)) becomes large. Thus, use of the extended Hamilton principle provides a more
accurate analytical tool.

By using the extended Hamilton’s principle, the energy dissipation that occurs during
compression can be estimated. The mechanical work done by the external force (W) is 0.338 J,
and the bending energy (B) is 0.292 J, therefore the energy dissipation (δJ) is estimated to be 0.046 J.
This led us to question where such energy dissipation would have taken place in the TMP bellows
under compression loading. One speculation is that the energy dissipation takes place at vertices
where the stress concentration would presumably take place, but this is not accounted for in the
above model. Thus, we will examine this point in the following.

(b) Effect of vertices
We assembled the same TMP bellows where all vertices are removed as shown in figure 12 where
the TMP bellows has the same dimensions as before. Considering the number of vertices, the total
length of the main crease lines is reduced to 42(N − 1) from the original length and that of the sub-
crease lines is reduced to 48(N − 1). We then applied compression loading to the TMP bellows,
where the same conditions as described in §3 were used.

Figure 13 shows the result of the compression test on the TMP bellows whose vertices are
removed, where the solid line is the prediction by the model, using equation (4.16) where the
net crease lines are reduced owing to the removal of the vertices, which are accounted in this
modelling. The dashed line in figure 13 indicates an approximate F–u relationship: F′

app = 5.17 ×
10−6u3 − 7.49 × 10−4u2 + 0.081u + 0.14. By using the extended Hamilton’s principle, we obtain
W of 0.285 J, B of 0.254 J and δJ of 0.031 J. The theoretical F–u curve agrees with the experiment
slightly better than the case where the vertices of the TMP are not removed, reducing δJ/W to
10.9%, from the 13.6% in the TMP bellows with vertices.
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Figure 13. The force–displacement relationship of the TMP bellows under compression where vertices are removed.

By comparing the two cases, the TMP bellows with (figure 11), and without vertices (figure 13),
the energy dissipation, δJ is smaller for the case of the TMP without vertices (0.031 J) as compared
with that of the TMP with vertices (δJ = 0.046 J). Therefore, we can conclude that a good fraction of
the energy dissipation lies in the vertex of the TMP. One of the reasons why the vertex induces the
energy dissipation is the high stress concentration around each vertex. Because four crease lines
(two main crease lines and two sub-crease lines) are connected at each vertex, and those crease
lines affect each other, the behaviour of the crease lines around the vertex is different. It is noted
that the F–u curve of figure 13 indicates that the experimental data are more scattered. In addition,
if we compare the maximum force, the case with vertices had a maximum force Fapp = 7 N at
u = 100 mm, and the case without vertices had a maximum force of F′

app = 5.92 N, which is smaller
than that of the case with vertices. Thus, removing the vertices of the TMP bellows makes its
structure weaker compared with the TMP with its vertices intact.

We noted during the compression testing of the TMP that the main crease lines connected
at the vertex rotate horizontally. When we consider the Miura-ori unit shown in figure 3, as
main folds and sub-folds are being folded, creases O0O1 and O1O2 rotate horizontally around
the vertex O1, with θG representing this rotation. O0O1 and O1O2 are connected at vertex O1,
thus when the vertex O1 is removed, those two crease lines move independently and the effects
of horizontal motion do not affect the folding behaviour. As far as the compression of TMP
bellows is concerned, figure 14 shows the change of each folding angle (θM, θS and θG) during
the compression loading (its displacement is u), which are calculated from equations (2.1)–(2.3).
This leads to a change of the cross section of the TMP during compression. Figure 15a shows
the cross-sectional area S at height H of the TMP, and figure 15b shows the top view of the
cross-sectional area.

Figure 16a shows a comparison between the initial (dashed line) and the final configurations
(solid line) in the compression test in terms of the motion of each vertex ai (i = 1, . . . 8) (see
figure 15b). Figure 16a shows the translational motion of all vertices ai, and figure 16b shows the
change of the cross-sectional area during the compression test. Therefore, the energy dissipation
also occurs because of the translational motion of the vertices of the TMP, which is attributed to
some of the discrepancies between the experimental data and the theoretical prediction.

The results of figure 16b imply that the current design of TMP bellows has two opening ends,
top and bottom, and that their cross-sectional area increases rapidly for the initial compression
loading, but become almost constant during the later stage of compressive loading. If this TMP
bellows is transferred to a real actuator design, we may have to attach an elastic membrane to
close the top and bottom opening, where there exists a frictional energy dissipation taking place
between the external bodies interfacing with the top and bottom surface of the TMP bellows and
the TMP bellows with the elastic membrane.
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after the compression (a) and change of the cross-sectional area as a function of compression displacement (b).

Based on figure 16a, we estimated the energy dissipation owing to the friction at the top and
bottom surfaces, and the estimated energy is 0.0068 J (see appendix B). Considering δJ values
for the case of the TMP with vertices (δJ = 0.046 J) and without vertices (δJ = 0.031 J), we obtain
the difference between these two values (0.015 J = 0.046 J − 0.031 J = 
δJ). The value of 
δJ is
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Figure 17. (a) Cyclic loading test showing the first to 12th cycle and (b) energy dissipation in each cycle.
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Figure 18. The crease line of a paper bent; (a) sequence of illustrations and optical micrographs of the initial crease line, and
those in the paper under subsequent bending, (b) enlarged view of the crease line by scanning electron micrograph.

larger than that of the energy dissipation owing to the frictions of the top and bottom surfaces of
the TMP bellows, i.e. δJ = 0.0068 J. Therefore, it is speculated that additional energy dissipations
take place.

The preceeding results are all based on the one-time compression of the TMP bellows. To
examine the behaviour of TMP under cyclic loading, we conducted cyclic loading tests on three
samples of TMP whose dimensions are the same as those in the compression test we discussed
earlier. We applied the load to the sample at a frequency of 0.01 Hz.
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Figure 17a shows the force–displacement curve of the cyclic loading tests, with the upper
curves indicate the loading and lower curves indicate the unloading curves. The loading curves
shift downward as the number of cycles increase. We also calculated the closed loop area in each
cycle, and this closed loop area is considered to be the energy dissipation for each cycle. Figure 17b
shows the closed loop area (the energy dissipation) as a function of cycle number, indicating that
it decreases continuously with the number of cycles. This implies that the energy dissipation of
the TMP bellows made out of paper is progressive with number of cycles, and it is presumably
attributed to the microdamage in the high stressed paper domain, i.e. crease lines as evidenced
in figure 18 which shows both optical micrographs during the initial crease line formation and
those in the paper bent sequentially, and also scanning electron micrographs of the enlarged view
of the initial crease line. Figure 18 reveals the extensive damage in the paper along the crease line,
the main source of the energy dissipation discussed above.

6. Conclusion
In this paper, we assembled TMP bellows made of paper and applied compression loading on
the TMP bellows to examine their mechanical behaviour in terms of applied compression force
(F) and vertical displacement (u). We developed a new model to simulate the F–u behaviour.
Although the theoretical prediction agrees with the experimental data reasonably well, there
is a discrepancy between the theory and the experiment. This discrepancy is studied within
the framework of the extended Hamilton’s principle, and it is attributed to several energy
dissipations taking place at vertices, and also to frictional force owing to the change of the
cross-sectional area. We also performed compression tests of the TMP bellows without vertices
to conclude that a fraction of the energy dissipation is caused by the stress concentrations at
the vertices.
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Appendix A. Effect of the overlap area on the folding angles.
As the TMP bellows consists of two sheets of paper that are attached at the side of the TMP as
shown in figure 8, the calculation of the folding angle of the main crease lines (black dashed lines
in figure 8) and the sub-crease lines (black thick lines in figure 8) should be considered differently
from that of the other crease lines. Figure 19a shows the unit paper cell at its completely folded
state, and its height is t + 2ρ based on the thickness of the paper model as we discussed in §4.2.
When the TMP is folded completely, its height does not become zero (figure 19c).

Figure 19c shows the side view from the thick arrow in figure 19b, showing the cross section of
the main crease lines (grey thick lines) and the sub-crease lines (black thick lines) when the TMP
is folded completely. The height of the TMP at this state is expressed as

H = 2(t + 4ρ) + (N − 1)(t + 6ρ) = (N + 1)t + (6N + 2)ρ. (A 1)

Using equation (4.7), in which thickness of the paper is not considered, the main folding angle θM
that is shown as grey thick lines in figure 8 is calculated by using the following:

θ ′′
M = cos−1

{
(N + 1)t + (6N + 1)ρ

Nd

}
. (A 2)

Note that this angle should be 90◦ based on the thickness of the paper model.
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Figure 19. (a) Completely folded state of unit paper cell and (b) the TMP, (c) view from the arrow shown in (b), focusing on
the cross section of the main crease lines (grey thick lines) and the sub-crease lines (black thick lines). The dark shaded area
indicates front sheet and white colour is back sheet shown in (b).

We defined ξ as the difference between thickness t = 0 case and the case in which the thickness
of the paper is considered. Let us introduce a parameter no to express the folding angle as follows:

π

2
− θ ′′

M = noξ . (A 3)

Using t = 0.27 mm and ρ = 0.38 mm, we obtain ξ = 0.983◦ from equation (4.16), and θ ′′
M = 85.1◦

and no = 5.24 from equation (A 3). The value of no is substituted into equation (4.16), which in
turn is used to calculate the right-hand side of (4.17).

Appendix B. Energy dissipation owing to the friction at the top and
bottom surfaces
From figure 16a, focusing on the vertex a1 and a8, we calculate the centre position of each
crease line and then we obtain the displacement of the centre position, δ8, which represents the
displacement of the crease line. Letting Li(i = 1 − 8) be the distance between two vertices (for
example, L1 is the distance between a1 and a2) and Ltotal be the sum of Li(i = 1 − 8), we assume
that the normal force Ni(i = 1 − 8) acting on each crease line is expressed by

Ni = Li

Ltotal
F, (B 1)

where F is a compression force which is obtained from the force–displacement curve. Thus, the
friction force at the top and bottom surface is calculated as follows:

Ff,i = μNi, (B 2)

where μ is a frictional coefficient. Therefore, the total energy owing to the friction is

Ef,total = Ef,top + Ef,bottom = 2
8∑

i=1

Ff,iδi, (B 3)

where δi is the displacement of each crease line. Using this equation with μ = 0.2, we obtain that
the energy owing to this frictional force is 0.0068 J.
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