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The Earth’s islands harbor a distinct, yet highly threatened, biolog-
ical and cultural diversity that has been shaped by geographic
isolation and unique environments. Island systems are key natural
laboratories for testing theory in ecology and evolution. However,
despite their potential usefulness for research, a quantitative de-
scription of island environments and an environmental classifica-
tion are still lacking. Here, we prepare a standardized dataset and
perform a comprehensive global environmental characterization
for 17,883 of the world's marine islands >1 km? (~98% of total
island area). We consider area, temperature, precipitation, season-
ality in temperature and precipitation, past climate change veloc-
ity, elevation, isolation, and past connectivity—key island
characteristics and drivers of ecosystem processes. We find that
islands are significantly cooler, wetter, and less seasonal than
mainlands. Constrained by their limited area, they show less eleva-
tional heterogeneity. Wet temperate climates are more prevalent
on islands, whereas desert climates are comparatively rare. We use
ordination and clustering to characterize islands in multidimen-
sional environmental space and to delimit island ecoregions,
which provides unique insights into the environmental configura-
tion and diversity of the world’s islands. Combining ordination
and classification together with global environmental data in
a common framework opens up avenues for a more integrative
use of islands in biogeography, macroecology, and conservation.
To showcase possible applications of the presented data, we pre-
dict vascular plant species richness for all 17,883 islands based on
statistically derived environment-richness relationships.

environmental regionalization | island biogeography |
vascular plant diversity

M arine islands harbor a great part of our planet’s biological
and cultural diversity and provide ecosystem services to
more than 500 million people (1). Existing estimates assign 3—
3.6% of the Earth’s land area to islands (2, 3) and their number
exceeds 100,000, depending on threshold size (4). Islands vary
greatly in geologic history, area, isolation, elevation, and climatic
conditions (2, 5, 6). The complex interplay between islands’ past
and present environments and their isolated nature has pro-
duced biota that differ greatly among islands and between islands
and mainlands (7). Islands are characterized by a high pro-
portion of endemic species (3) and their unique biota are par-
ticularly susceptible to anthropogenic threats (1, 8, 9). Island
research and conservation could make great progress with truly
global analyses, but standardized data on key island biogeo-
graphic characteristics are currently lacking.

Biogeographic and macroecological research, and conserva-
tion planning, rely on spatially explicit data on both biodiversity
and abiotic conditions (10). For instance, knowledge on envi-
ronmental and compositional representativeness and irreplace-
ability is necessary for conservation prioritization (11, 12) and
requires standardized data for all locations worldwide. Global
data on climatic and other environmental drivers of ecosystem
processes, and ecosystem responses like productivity and vegeta-
tion structure, are becoming increasingly available at increasing
resolution (13), and knowledge on the biotic constituents of eco-
systems has improved greatly (13, 14). The advent of such large
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environmental and biodiversity datasets has opened up opportu-
nities for global-scale analyses and, especially for mainlands, has
facilitated significant progress in research over the past decade.

Although initially restricted to model archipelagos, such as
Galapagos, Hawaii, and the Canaries, island research has in-
spired some of the most influential theories in ecology and
evolution (5, 15-17). Recently, quantitative global analyses have
also appeared (8, 18, 19) but have been restricted to a non-
random subset of islands with available data. A synthesis of the
macroecology of the world’s islands is still missing. Although the
large number, small size, and discrete boundaries of islands
provide exciting research opportunities (17), the same qualities
have hampered the compilation of standardized data. The United
Nations Environment Programme Island Directory (20) was a first
step toward a global overview, providing information on ~2,000
islands. More recently, scientific knowledge on physical and bi-
ological aspects of select islands and archipelagoes was summa-
rized (6) and the “Global Island Database” made available
information for conservation and policy making (gid.unep-wemc.
org). Despite such first steps toward a global island dataset,
a rigorous, standardized, and quantitative characterization of the
world’s islands is still lacking.

From a biological perspective, islands are inherently different
from continental areas and drivers of these differences are key to
understanding processes and patterns on islands (1). In island
biogeographic theory, isolation and area are considered the most
important drivers of island biodiversity (2, 15). Speciation pre-
dominantly occurs on large and isolated islands and large islands
are more likely to maintain viable populations of many species
(21-24). Isolation affects island biota in complex ways (22). For
instance, the amount of surrounding landmass may determine
the number of arriving propagules and the overwater distance
may act as a dispersal filter causing compositional disharmony—
an underrepresentation of certain taxonomic or ecological
groups (25). However, a comprehensive framework for global
island research requires going beyond classical island bio-
geographic determinants (26). Age and time-area dynamics are
key predictors of the diversity of evolutionary arenas (27), and
consequently island age and geology (e.g., volcanic vs. conti-
nental) represent core factors for understanding island bio-
diversity (23, 28). In addition, macroclimate, heterogeneity, and
climate stability are known to influence endemism, assembly, and
phylogenetic structure of island communities (19, 29-31).

Areas within which ecosystems share certain characteristics
may be defined as “ecoregions” (32). Delineations may be based
on biotic composition, evolutionary legacy, drivers of ecosystem
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processes (e.g., temperature), or measures of ecosystem respon-
ses (e.g., productivity; ref. 33). Biomes, e.g., describe regions of
similar vegetation structure determined by temperature and
precipitation (34-36). Often, criteria for delineations are not well
defined. For instance, the widely used World Wildlife Fund
ecoregion classification represents an expert-based assessment of
both the distinctiveness of biotic assemblages and proxies such as
vegetation structure (37). More quantitative classifications, made
possible by the increasing availability of information, efficient
algorithms, and computational power, have appeared recently
(33, 38-40), but islands are often underrepresented or altogether
excluded, due to their small size.

Here, we aim to provide a comprehensive environmental
synopsis and classification of the world’s islands. We (i) provide
a comprehensive multivariate characterization and a standard-
ized dataset of island bioclimatic and physical conditions; (i)
compare island and mainland environments; (iii) explore multivar-
iate approaches for delineating environmental island ecoregions;
(iv) provide general perspectives how this unique multivariate
characterization may be used in island research and management;
and (v) implement an example application by making environ-
ment-based predictions of vascular plant species richness on
islands worldwide.

Results and Discussion

Island Environments. Our bioclimatic and physical characteriza-
tion of the world’s islands considered 85,122 marine islands
smaller than Greenland. These islands comprise ~7.84 x 10
km?, or 5.3% of the Earth’s land area, significantly exceeding
prev10us estimates of 3-3.6% (2, 3). In total 65,730 islands in the
dataset are smaller than 1 km but they make up only 0.17% of
overall island area. Hence, island sizes show 2 strongly right-
skewed distribution (17 islands >100,000 km? Fig. S1). How
many islands exist in total cannot be stralghtforwardly estimated.
Fractal theory predicts island number to increase with decreasing
minimum considered island area, up to millions of smallest islets
and rocks (4). We focused on islands >1 km?, which is bi-
ologically justifiable because on small islands spematlon events
and endemism are rare (21, 22) and stochastic forces drive
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Fig. 1.

diversity patterns (41). Of 19,392 islands >1 km?, 17,883 had
sufficient environmental information for a detailed assessment of
bioclimatic and physical conditions (Fig. 1 and Table S1). To-
gether, they comprise ~7.67 x 10° km?, i.e., 5.2% of the Earth’s
land area and 97.8% of total island area, and serve as a solid
baseline for an abiotic characterization of the world’s islands.

Contrary to what some map projections suggest, Hawaii is not
the most remote archipelago. The most remote islands belong to
the Society and Austral Islands and Western Tuamotu (French
Polynesia; Fig. 1B). Tahiti, ~5,900 km from the nearest main-
land, is the largest of these islands. In terms of surrounding
landmass (42), the most isolated islands lie east of Australia
(from Macquarie Island to Fiji; Fig. 1C), including New Zealand
and New Caledonia, islands of outstandingly high endemism
richness (3). Assuming a decrease in sea levels of 122 m (43),
about 75% of all islands were probably connected to a continent
during the last glacial maximum (LGM) (Fig. 1D). Such land
bridges could have allowed biotic exchange between and ho-
mogenization of the respective island and mainland assemblages.
Isolated evolution on unconnected islands, in contrast, may have
preserved unique assemblages, including relict endemics on
old continental fragments and iconic adaptive radiations on vol-
canic archipelagos (17, 44).

Sixty-five percent of all islands are tropical. Annual mean
temperature and temperature seasonality follow typical lat-
itudinal trends (Fig. 1 F and G). Past climate change velocity,
i.e., the speed needed to track the mean annual change in tem-
perature since the LGM [21,000 years before the present (y BP)],
while accounting for variation in topographic complexity, is
highest on North Atlantic islands (Fig. 1H), which is consistent
with ref. 31. Precipitation is highest on tropical and highly ele-
vated islands (Fig. 17), with high intraarchipelago variation. For
instance, within the Marquesas, only islands higher than 800 m
receive rainfall exceeding 3,000 mm/y. Consequently, they harbor
cloud and rain forests and differ from lower islands in compo-
sition and richness (45). In contrast, flat islands can be extremely
dry. Precipitation seasonality is highest on tropical islands at
western continental coasts (e.g., Isla Lobos de Tierra, Peru, and
Cape Verde; Fig. 1)).

Dist E
z
Distance to g
mainland £ o
0 1 3 4
=——mm
o, Dist (km)
D g,
GMMC < 1
Mainland I
g 4
connection E a
= no &
GMmMe
F g o
Temp :E h
Mean H 3
annual g 5l

temperature

| ommme
Temp ("C)
H g 4
CCvT = 2
AR
Climate A E
change ' g )
velocity S 1 2
E——a
log,s CCVT (nva)
J g s
= 5
varP o2
Precipitation | g3
seasonality E .
0 50 150

Global patterns of key physical and bioclimatic variables on 17,883 marine islands >1 kmZ. (A) Island area (Area), (B) distance to mainland (Dist), (C)

surrounding landmass proportion (SLMP), (D) glacial maximum mainland connection (GMMC), (E) elevational range (Elev), (F) annual mean temperature (Temp),
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Some island characteristics are strongly correlated (Fig. S2
and Table S2). We found highest correlations between isolation
metrics and mainland connection, among climatic variables, and
between area and elevation. Some of these correlations are un-
derlain by simple geometric constraints. For instance, high
mountains require a minimum area and remote islands are un-
likely to have had past mainland connections. For a subset of 102
volcanic islands for which we obtained estimates of geologic age
since emergence, island age was not related to area (as raw
variable, P = 0.62; log;p-transformed, P = 0.96; as quadratic
term, P = 0.77). In theory, the area of a volcanic island increases
after its emergence and decreases after volcanic activity has
stopped (28), but the expected hump-shaped relationship be-
tween age and area may only be noticeable within geologically
homogeneous systems like single archipelagos. However, we
found a significant negative correlation between island age and
elevational range (r = —0.25, P < 0.05), possibly reflecting the
effect of erosion on island height.

We performed principal component analysis (PCA) to reduce
correlated variables to independent components and visualize
island characteristics in fewer dimensions (Fig. 2 A-C and Fig.
S3). The first three axes of a PCA including all 10 bioclimatic and
physical variables accounted for 72.4% of the variance, with the
most important axis (39%) representing primarily bioclimatic
variables (Fig. 2 4 and B, and Table S3). Isolation and mainland
connection metrics varied mainly along the second axis, almost
separating the islands into two groups (Fig. 24). The third axis
separated small, flat islands from large, high islands, with most
islands falling on the small, flat end (Fig. 2B). Visualized on
a world map (Fig. 2D), the PCA results allow identification of
groups of islands with similar characteristics. An abrupt change
occurred at the transition from continental to oceanic islands.
Within these groups, we detected more gradual changes along
physical and bioclimatic axes. These gradients were even more
pronounced when PCA was applied to current bioclimatic (Fig.
2F) or physical variables separately (Fig. 2G).

Island-Mainland Comparisons. Island and mainland characteristics
differed markedly. Elevational range was significantly lower on
islands than in mainland grid cells (Fig. 34). Although this is
partly due to the small size of most islands compared with the
coarse mainland grain, limited area is also an intrinsic island
feature that precludes elevational ranges comparable to main-
land mountain regions. Significantly lower seasonality and higher
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precipitation on islands indicate lower climatic continentality
than on mainlands (Fig. 34). Due to a large number of Arctic
islands, annual mean temperatures were lower on islands, whereas
past climate change velocity was significantly higher, with espe-
cially high values in the Canadian Arctic Archipelago. In a com-
mon PCA space, islands and mainland regions occupied different
areas (Fig. 3 D and E). The first two axes explained 68.6% of the
variation and uncovered the most striking differences, as kernel
densities were uncorrelated among islands and mainlands (r =
0.07, P > 0.05). For other axis combinations, kernel density cor-
relations were significant (PC1/PC3: r = 0.72; PC2/PC3: r = 0.16;
both P < 0.001). Kernel densities of islands connected to the
mainland during the LGM and unconnected islands were signifi-
cantly correlated, indicating that they occupy a similar environ-
mental space (PC1 and PC2: r = 0.75; PC1 and PC3: r = 0.65; PC2
and PC3: r = 0.88; all P < 0.001). We projected islands onto the
classic Whittaker plot of biomes classified by annual mean tem-
perature and precipitation (Fig. 3 B and C) (35). Overall, cold
climates and wet climates were overrepresented on islands, and
warm and dry climates underrepresented. Tropical and especially
temperate rainforests were overrepresented on islands, which is
notable because temperate rainforests are among the rarest eco-
systems on Earth (12).

Quantitative Island Regionalizations. We produced a set of classi-
fications of global islands to provide a first environment-driven
island ecoregion framework. Because area and elevational range
showed no or only low spatial autocorrelation (Table S1), a re-
gionalization considering these variables generated disjunct eco-
regions, reflecting that small, flat islands may occur next to large,
high islands (Fig. S4). Including only bioclimatic and physical
variables with a high level of spatial autocorrelation (Moran’s I
values from 0.59 to 0.99, all P < 0.001) generated more contig-
uous ecoregions (38). Excluding area and elevational range and
using nonhierarchical clustering [partitioning around medoids
(PAM)] of weighted PCA axes, we identified eight distinct sets of
islands (Fig. 4, Fig. S5, and Table S4): Clusters I-IV included
northern temperate to Arctic islands, with II-IV characterized by
LGM mainland connections and differentiated by bioclimate.
Clusters V-VIII consisted of temperate to tropical islands, with VI
including the majority of highly isolated oceanic islands. The lack
of further divisions among highly isolated oceanic islands high-
lights their comparatively homogeneous bioclimatic conditions.
Although this ecoregionalization offers a first quantitative baseline

Fig. 2. Principal component analyses (PCAs) based on bio-

S ‘s f\ﬁa o Yy v cIirT;atic and. physical va.riables for 1_7,883 marine islands >1
. L2 B 7 ¥ *’X km* worldwide. (A-C) Biplots of the first three PCA axes when
""“‘i.. A { _’: Y all 10 variables are included. (D-G) Maps of ordination site

\, R AR VA "'V",’ scores: (D) all 10 variables, (E) all variables but Area and Elev,

L kD Ty -4 (F) contemporary bioclimatic variables only (Temp, varT, Prec,

i varP), and (G) physical variables only (Area, Dist, SLMP,

G . Pl',ys\liil){m i" GMMIC, Elev). Colors refer to a red-green-blue (RGB) color

= éﬁm”,ﬂf'“" ) 11'5.3- ol space (cubes in legend) projected onto the respective 3D PCA

space. Hence, in A-D each island consistently has the same
color. Cubes in D-G show PCA results in a 3D space. In A-C, points
are plotted in decreasing order of the respective component not
shown to give an impression of three-dimensionality, in D-G in
decreasing order of island area, plotting the rare large islands on
top if points overlap. Abbreviations follow Fig. 1.
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in temperature (CCVT) [in logio(meters per year)], annual precipitation (Prec)
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mainland grid cells plotted onto Whittaker's scheme of biomes (35) de-
lineated on the basis of Temp and Prec. (D) PCA for 4,676 oceanic islands
(cyan), 13,207 continental islands (magenta), and mainland grid cells (gray).
(E) Kernel densities of geologic subsets along the first two PCA axes.

for the world’s island environments, the specific outcome is con-
tingent on the number of groups chosen and the clustering algo-
rithm. Using the unweighted pair-group method with arithmetic
mean (UPGMA) instead of PAM produced groups of vastly dif-
ferent sizes (1-7,092 islands per cluster compared with 1,284-3,289
islands per cluster; Fig. S6), highlighting the methodological sen-
sitivity of the clustering approach. The application of environment-
based regionalizations is also limited by the gradual nature of most
environmental changes, which compromises the idea of strict dis-
tinctions. Multivariate measures of environmental similarity based
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on PCA analyses and as mapped in Fig. 2 may represent a more
appropriate and powerful tool to account for gradual changes
when analyzing and visualizing regional affinities. We suggest
carefully checking the results of both the ordination and cluster-
ing steps.

Richness Predictions. To showcase possible applications of the
presented data and multivariate framework, we used it to predict
the spec1es richness of native vascular plants on all 17,883 islands
>1 km?. Specifically, we used a multimodel approach (46) and
included as predictors the 10 presented bioclimatic and physical
variables, richness of the nearest mainland region, and spatial
position on the sphere (Fig. 5 and Table S5). The averaged model
achieved remarkably strong fits with observed rlchness on the 475
islands used for training (Fig. S7; pseudo-R* = 0.94; averaged
mean error based on 10-fold cross-validation, 0.031; not ac-
counting for spatial nonindependence). The South East Asian
Archipelago, the Caribbean, and the Mediterranean emerged as
richness centers, attributable to their many large islands, (sub)
tropical climates, low degrees of isolation, and high regional
mainland diversity (Fig. 5). Oceanic islands were on average less
diverse than continental islands with only few exceptionally di-
verse islands (Figs. 4 and 5). The generalized additive modeling
approach presents a flexible way to account for multiple non-
linear effects and complex interactions, as well as spatial richness
variation (47). However, the model underestimated species rich-
ness on some large, tropical islands (compare Fig. S7) and over-
estimated it on others (e.g., Britain). Although the model captures
the interplay of bioclimatic and physical drivers of insular plant
species richness, the predictions only account for the variables
selected and do not mechanistically address the historical bio-
geography of the different plant clades found on islands. We
therefore caution against their use without contemplation. Nev-
ertheless, the predictions give a first global overview of vascular
plant species richness on islands and may provide a good baseline
prediction against which to test ecological and evolutionary pro-
cesses in island biogeography.

Perspectives. In contrast to alternative global frameworks (39),
our study specifically focuses on islands. It represents a first step
toward a thorough characterization of the world’s islands for
island research and conservation. The data may help to address
questions in ecology and evolution, such as whether the unique
diversity of islands and speciation patterns are due to isolation
and lack of gene flow or whether island evolution differs from
mainland evolution due to environmental differences (48). The
framework also has great potential for island conservation.
Island biota are particularly threatened, by biological invasions,
habitat loss, and changing climate (1, 3, 8, 9). The majority of
historically recorded vertebrate extinctions occurred on islands
and 39% of species facing imminent extinction are island species
(49). Island communities are highly susceptible to invasion-
induced extinction and biotic homogenization (8, 50). Assessing
environmental similarity may help to connect potential source
and target areas for invaders and aid in proactive measures.
Further, climate change particularly affects island ecosystems
due to sea level rise and limited space for range shifts (1, 9, 51).

4’1} Q@CL{{’\QQOA« ng’o
Fig. 4. PAM clustering of weighted PCA axes for
17,883 islands >1 km? based on eight environmental
variables (all except Area and Elev). Colors in the
° map (A) are calculated as mean RGB values of all
(o] islands per cluster based on the PCA in Fig. 2E. Points
() were plotted in decreasing order of Area. Circles in B
@)

O
O o0

indicate variable characteristics within the clusters:
circle, arithmetic mean; shaded ring, SD. Abbrevia-
tions follow Fig. 1. Spec indicates predicted vascular
plant species richness.
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Fig. 5. Predictions of vascular plant species richness for 17,883 islands >1 km?
(constituting ~98% of global island land area) worldwide based on generalized
additive models and model averaging. Predictors include the 10 bioclimatic and
physical variables presented here, richness of the nearest mainland region, and
spatial position on the sphere. Circles were plotted in order of increasing
species richness. The embedded map indicates the observed species richness of
vascular plants for 475 islands used to train the model. The histogram shows
the frequency distribution of log;o species richness.

We identified islands of high past climate change velocity and
areas where species may track future changes in a heterogeneous
topography. Finally, human impact is higher on islands and land
use-driven changes will still increase (3). An ecoregion frame-
work may assist in assessing habitat loss and conversion and
identifying areas of high representativeness, distinctiveness, and
priority for nature conservation (11, 12).

Our approach is limited by the accuracy of the underlying bio-
climatic and physical data (S Materials and Methods) and because
it is purely environment based. However, the richness models in-
dicate that the environmental factors strongly relate to bio-
geographic factors. Once available at the global scale, biotic
similarity could be used in combination with an abiotic character-
ization to quantitatively delimit island biogeographic regions that
account directly for biogeographic history (37, 40). Until then, the
data and approaches described here can serve as a baseline and
source for developing and testing hypotheses, and for identifying
islands of particular environmental uniqueness or representative-
ness and the predictions of vascular plant species richness can aid in
identifying islands of outstanding biodiversity. The standardized
dataset (Dataset S1) and quantitative nature of our characteriza-
tion and ecoregionalization may contribute to more rigorous and
reproducible approaches in island research and conservation.

Materials and Methods

Islands. We defined islands as landmasses surrounded by ocean and smaller
than Greenland. This excludes freshwater islands. As geographic reference,
we used the GADM database (www.gadm.org/version1), which includes
85,122 high-resolution island polygons. We focused on all 19,392 islands >1
km?2. Comparison with 90-m resolution elevation data (srtm.csi.cgiar.org)
confirmed that these polygons include most islands >1 km? worldwide. For
17,883 islands, we could assemble complete environmental information. The
1,509 missing islands were distributed evenly across island-rich regions of the
globe and were only slightly larger than 1 km? (Fig. S1).

Physical Variables. We considered five bioclimatic and five physical variables
describing the exogenous physical environments of islands (33). Island area
(Area) was calculated for each GADM polygon in cylindrical equal area
projection. Although polygon area differs from actual surface area, which is
influenced by island topography, it is an adequate approximation (26). As
measures of isolation, we used the distance to the nearest mainland (Dist)
and the proportion of surrounding landmass (SLMP). Dist was calculated as
the shortest great circular distance between an island’s mass centroid and
the mainland coast. This metric is as good an isolation metric at a global
scale as the distance from the island coast (42), but its calculation is com-
putationally less demanding. Antarctica was not considered as mainland due
to its permanent ice cover. We calculated SLMP as the sum of the pro-
portions of landmass within buffer distances of 100, 1,000, and 10,000 km
around the island perimeter. SLMP has been shown to be the best isolation
metric to explain island plant diversity at a global scale (42). Unlike other
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isolation metrics, SLMP accounts for coastline shape of large landmasses by
considering only regions that extend into the measured buffers. As a coarse
proxy for island geological history, we noted whether an island was con-
nected to the mainland during the LGM (GMMC), assuming a sea level at
18,000 y BP of 122 m below the present level (43). More sophisticated
geologic data are not available at reasonable spatial resolution, but GMMC
differentiates well between oceanic and continental islands (Fig. 1D). We
included the maximum elevation of each island as a measure of topographic
complexity and a proxy for environmental heterogeneity (Elev). Elev relates
to the number of available habitats as a result of differences between
windward and leeward sites, temperature decrease with altitude, and high
precipitation regimes in certain altitudinal belts (52). Elevation data at 30-s
resolution was from ref. 53. For 1,891 small islands that did not fully enclose
a 30-s raster cell, we applied a 1-km buffer to the island perimeter.

Bioclimatic Variables. For most islands, bioclimatic variables came from
WorldClim (53). We used maximum values of annual mean temperature
(Temp) and annual precipitation (Prec), as these are key drivers of ecosystem
processes, vegetation structure (32), and species richness (19). Intraannual
seasonality was quantified using the minimum annual temperature range
(varT) and the minimum coefficient of variation in monthly precipitation
(varP). We focused on extreme values rather than spatial means to capture
the climatically most favorable part of each island. A region of French Pol-
ynesia and the Pitcairn Islands comprising 129 islands >1 km? and including
important volcanic islands like the Marquesas, was not covered by WorldClim
temperature data. We therefore modeled Temp and varT for these islands
based on the strong correlation of sea surface and air temperatures of
neighboring islands (S/ Materials and Methods). We calculated climate
change velocity in temperature (CCVT) since the LGM 21,000 y BP as the ratio
between temporal change and contemporary spatial change in temperature
at 30-s resolution and extracted mean values for each island (S/ Materials and
Methods) (31). Because of the higher uncertainty in paleoclimatic recon-
structions of precipitation (31), we did not include climate change velocity in
precipitation. We acknowledge the limitations of the bioclimate datasets, as
the WorldClim model interpolates from weather station observations using
latitude, longitude, and elevation (53). Climate predictions in regions with
poor station density and varied topography have limited reliability (54).

Island Age. For 102 volcanic islands unconnected to the mainland during the
LGM, we assembled island ages, an important determinant of species di-
versity and endemism (28), from primary research literature and compila-
tions (e.g., ref. 6). Due to the small sample size, island age did not enter
multivariate analyses but we assessed its relation to other variables.

Statistical Analyses. Area, Elev + 1, Dist + 1, SLMP + 0.5, and CCVT + 1 were
logjo-transformed to reduce skewness and to moderate extreme values.
Small constants were added to avoid taking the logarithm of zero. We
assessed spatial autocorrelation using Moran’s | values. Collinearity was
evaluated using pairwise correlations. Coefficients and significances were
corrected for spatial autocorrelation following ref. 55. We performed PCAs
of both including all standardized variables and for the following subsets: all
variables but Area and Elev, contemporary bioclimatic variables only (Temp,
varT, Prec, varP), and physical features only (Area, Dist, SLMP, GMMC, Elev).

To compare the environmental characteristics of islands and mainlands, we
performed a PCA of all 17,883 islands and 42,985 equal area mainland grid
cells spanning all continental areas worldwide (each 3,091 km? but covering
less landmass in coastal areas). As input variables, we used all bioclimatic and
physical variables not restricted to islands (Elev, Temp, varT, Prec, varP, and
CCVT). We used kernel densities in PCA biplots as a measure of occupancy
and correlated them among geologic units (all islands, islands connected to
mainland at the LGM, unconnected islands, mainlands).

To delimit island regions of similar bioclimatic and physical conditions, we
performed cluster analyses based on the 10 environmental variables and the
variable subsets mentioned above. We used agglomerative hierarchical
(UPGMA) and nonhierarchical clustering methods (PAM). UPGMA produces
a cluster dendrogram representing the relatedness of the delimited regions.
From the dendrogram, a preferred number of clusters can be inferred (56).
PAM requires a specified number of clusters in advance and does not pro-
vide relationships among regions. However, PAM tends to delineate clusters
of similar size and upper limits of within-group variance, preventing the
creation of regions that greatly differ in within-region variance (38). Due to
the strong collinearity of some variables, we used Euclidean distances on
PCA axes as input distances; these are most appropriate because of the or-
thogonal nature of the PCA space (57). PCA axes were weighted by the
square root of their eigenvalues to reduce the influence of less important
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axes (57). We chose a number of clusters small enough for presentation and
discussion based on the Califski and Harabasz index (56).

Environment-Richness Model and Global Prediction. As example application of
the integrated physical and bioclimatic island data, we produced species richness
predictions for all 17,883 islands >1 km?2. The modeling approach builds on
previous work (19, 42). For 475 islands, we collected numbers of native vascular
plant species per island from floras, checklists and compilations (19, 42) (S/
Materials and Methods). As predictor variables, we used the presented physical
and bioclimatic variables, and vascular plant richness in the nearest mainland
grid cell of the cokriging data in ref. 58 to reflect historical biogeographic
influences on the available species pool. We used generalized additive models
including penalized regression splines with up to three degrees of freedom,
and an isotropic smooth of latitude and longitude on a sphere to account for
spatial patterns in the response variable (47). We allowed tensor product
interactions among Area and Temp, Dist and SRML, Temp and Prec, and Area
and Dist. We made predictions based on multiple candidate models weighted
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by model fit (46) and used 10-fold cross-validation to estimate prediction errors.
Methods and results of alternative modeling approaches can be found in S/
Materials and Methods, Fig. S7, and Table S5.

All bioclimatic and physical variables, ordination and clustering results, rich-
ness values of the nearest mainland grid cell, and predicted vascular plant species
richness values per island are available in Dataset S1 and at the Dryad Repository
(dx.doi.org/10.5061/dryad.fv94v).
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