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Tissue-conserving surgery is used increasingly in cancer treatment.
However, one of the main challenges in this type of surgery is the
detection of tumor margins. Histopathology based on tissue sec-
tioning and staining has been the gold standard for cancer diagnosis
for more than a century. However, its use during tissue-conserving
surgery is limited by time-consuming tissue preparation steps (1–2 h)
and the diagnostic variability inherent in subjective image interpre-
tation. Here, we demonstrate an integrated optical technique based
on tissue autofluorescence imaging (high sensitivity and high speed
but low specificity) and Raman scattering (high sensitivity and high
specificity but low speed) that can overcome these limitations. Au-
tomated segmentation of autofluorescence images was used to se-
lect and prioritize the sampling points for Raman spectroscopy,
which then was used to establish the diagnosis based on a spectral
classification model (100% sensitivity, 92% specificity per spectrum).
This automated sampling strategy allowed objective diagnosis of
basal cell carcinoma in skin tissue samples excised during Mohs mi-
crographic surgery faster than frozen section histopathology, and
one or two orders of magnitude faster than previous techniques
based on infrared or Raman microscopy. We also show that this
technique can diagnose the presence or absence of tumors in unsec-
tioned tissue layers, thus eliminating the need for tissue sectioning.
This study demonstrates the potential of this technique to provide
a rapid and objective intraoperative method to spare healthy tissue
and reduce unnecessary surgery by determiningwhether tumor cells
have been removed.

Biophotonics techniques based on molecular spectroscopy can
measure small chemical alterations in tissues, allowing label-

free diagnosis of cancer (1–3). The availability of diagnosis and
tumor imaging during surgery is extremely valuable to surgeons
as it would enable them to excise and evaluate sequential layers
of tissue to ensure the complete removal of tumor cells while
sparing as much healthy tissue as possible. This surgical tech-
nique, called tissue-conserving surgery, has been used in-
creasingly in the treatment of cancers such as skin (4) and breast
(5). However, ensuring the complete excision of the tumor
remains one of the key challenges in tissue-conserving surgery.
Failure to remove all tumor cells increases the risk of tumor
recurrence and the need for secondary surgery (6, 7).
Histopathology, the gold standard method for cancer di-

agnosis, is based on tissue sectioning and staining, followed by
examination under an optical microscope to identify the tumor
cells based on their distribution and morphology. Histopathology
also may be used to diagnose the successive tissue layers excised
during tissue-conserving surgery, such as in Mohs micrographic
surgery (MMS) for the treatment of high-risk basal cell carci-
noma (BCC) (8). If the histopathologic diagnosis indicates tumor
persistence, the location of the remaining tumor is recorded and
further tissue layers are removed by the surgeon until the mar-
gins are clear. Although MMS provides the highest cure rates
(6), the lengthy (1–2 h per layer) and costly tissue preparation

procedures required for intraoperative evaluation of the excised
tissues by frozen-section histopathology have limited the wider
use of MMS. Apart from being time consuming, the current
histopathologic methods can provide only a subjective evalua-
tion, leading to variability in diagnosis (9, 10). These drawbacks
have limited the use of traditional histopathology mostly to tis-
sue-conserving surgery of nonmelanoma skin cancers, and this
technique remains impractical for most other cancer types.
Changes in the molecular spectra of tissues, measured by in-

frared absorption and Raman microscopy, may be used to build
multivariate classification models, which allow objective di-
agnosis of independent tissue samples obtained from new
patients. Recently, quantitative diagnosis based solely on the
spectral information of tissue with simultaneous sensitivity and
specificity higher than 90% was demonstrated for many cancer
types, including skin (11–15), esophagus (16), prostate (17–21),
breast (22), and lung (23, 24) (here, sensitivity represents the
percentage of correctly detected tumor samples relative to the
total number of tumor samples, and specificity is the percentage
of correctly identified nontumor samples relative to the total
number of nontumor samples). Nevertheless, achieving objective
diagnosis while maintaining a high spatial resolution (20–50 μm)
required tissue sectioning and long data acquisition times: typi-
cally 30–40 min/mm2 for infrared microscopy and 5–20 h/mm2

for Raman microscopy (13, 15, 20, 23, 25). Because the tissue
layers excised during MMS typically are 100 mm2 in size,
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diagnosis would require several days, making conventional in-
frared and Raman microscopy impractical for use during cancer
surgery. Although coherent Raman spectroscopy has demon-
strated faster tissue imaging at high spatial resolution (26, 27),
the ability of these techniques to build classification models that
can be used for objective diagnosis of the presence or absence of
tumors in independent tissue samples has not been established.
Here, we demonstrate an optical technique integrating tissue

autofluorescence and Raman scattering in a manner that can be
automated and used during tissue-conserving surgery for label-
free objective diagnosis of large tissue samples. We show that
this technique has great potential for intraoperative use, because
it can provide objective diagnosis of BCC for whole tissue sec-
tions and unsectioned tissue layers faster than conventional
histopathology and without the need for sample preparation.

Results
Classification Model for Quantitative Diagnosis of BCC Based on
Raman Spectra. The first step in the development of the spec-
tral classification model for BCC was to establish a method to
assign the measured Raman spectra to the correct tissue struc-
tures in the skin samples. Fig. 1A shows a typical example of skin
tissue containing nodular BCC, hair follicles, and dermis. By
comparing the pseudocolor image obtained by k-means cluster-
ing of the Raman spectra with the histopathologic image
obtained by H&E staining, the centroid spectra for each cluster
were assigned a label corresponding to BCC or healthy skin
structures, such as epidermis (including hair follicles), inflamed
dermis, dermis, fat, sebaceous gland, and muscle. Fig. 1B pres-
ents the mean of the Raman spectra corresponding to BCC and
other tissue structures included in the classification model. In
agreement with previous reports (13, 15), the Raman spectra of
BCC possess more intense bands corresponding to DNA (788
cm−1, 1,098 cm−1) compared with other tissue structures whereas
the spectra of dermis regions were dominated by bands specific
to collagen fibers (851 and 950 cm−1) (28).
Several spectral classification models were tested based on

various data reduction and statistical classification methods and
were optimized for BCC diagnosis. The model was trained on
tissue samples obtained from 55 patients with BCC on the face
or neck, including nodular, infiltrative, and superficial BCCs (492
centroid spectra in total). The best performance for BCC
(highest specificity when sensitivity was set at 95%) was obtained
when 10 principal components of the raw spectra were reduced
further to K − 1 (with K = 6 being the total number of tissue
classes) canonical features using rank-reduced multiclass linear
discriminant analysis. These five spectral features then were used
with the multinomial logistic regression classifier. At a target
sensitivity of 95%, the cross-validation results indicated 95.3%
sensitivity and 94.6% specificity for BCC classification. The
classification model then was tested on an independent set of
skin samples from 22 patients with BCC on the face and neck
(total of 199 centroid spectra) and showed 100% sensitivity and
92.9% specificity, which is in good agreement with the cross-
validation results (confusion matrix in Table S1). The receiver
operating characteristic is presented in Fig. 1C.

Imaging and Diagnosis of BCC by Raster-Scanning Raman Microspec-
troscopy. Although raster scanning requires long acquisition times
that are impractical for intraoperative diagnosis (5–20 h/mm2), we
first established the full capabilities of Raman microscopy to image
and diagnose BCC for independent tissue samples under this
idealized setting. Fig. 2 A and B presents the diagnosis for skin
sections containing nodular and infiltrative BCC on the neck and
head when the sensitivity of the classification models was set at
95%. The “substrate” area was identified using the bright-field
or fluorescence images of the tissue samples (not included in the
classification model). The BCC regions were diagnosed correctly by
the classification model, including tumor regions as small as 40 ×
40 μm2, confirming the high sensitivity of the classification model.
Because the corresponding specificity was 94%, for each sample

(60 clusters per sample) we expected, on average, 3.6 clusters
corresponding to healthy skin structures to be misclassified as BCC
(false positives). Such misclassifications may be observed particu-
larly in Fig. 2 A and B, in which approximately three to four regions
corresponding to hair follicles and inflamed dermis were labeled as
BCC (red arrows). In certain tissue samples, 100% specificity for
BCC was observed, as shown in Fig. 2C. This sample represents an
example of a skin section for which traditional H&E histopatho-
logic diagnosis of the skin structures (morphologically similar to
BCC; black arrows) may be difficult. After evaluation of sequential
layers, the tissue sample was diagnosed by histopathology as neg-
ative (BCC-free) and the structures were identified as hair follicles.
Fig. 2C shows that the Raman spectral classification model pro-
vided the correct diagnosis for all hair follicles, based only on the
molecular information in the examined tissue section, and without
requiring the evaluation of adjacent sections. Because the classifi-
cation model was optimized to discriminate between BCC and
healthy tissue rather than among healthy tissue structures, mis-
classification among healthy tissue structures, particularly dermis,
inflamed dermis, epidermis, and muscle, also was observed. For
tissue blocks, diagnosis was obtained directly by analyzing the
surface of tissue blocks removed during MMS without cutting thin
sections (Fig. 2 D and E). The classification model was set at 100%
target sensitivity to account for the small decrease in sensitivity
observed for smaller infiltrative BCC tumor regions (50–100 μm)
attributed to an increase in sampling depth compared with tissue
sections used for training the model. The diagnosis obtained by the
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Fig. 1. Classification model for BCC diagnosis based on Raman spectra. (A)
Typical example of using the two-step k-means clustering algorithm for
assigning the Raman spectra to the tissue structures and BCC. (Scale bar: 300
μm.) Typical centroid Raman spectra are shown for the clusters indicated by
arrows: BCC (blue arrow), hair follicle (black arrow), and dermis (green ar-
row). (B) Mean Raman spectra of the healthy skin structures and BCC. Derm.,
dermis; Epid., epidermis; Hfol., hair follicle; Inf. D., inflamed dermis; Mus.,
muscle; Seb. G., sebaceous glands. (C) Receiver operating characteristic for
the classification model (BCC vs. all other classes combined).
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Raman spectral model was in full agreement with the histopatho-
logic diagnosis for all samples, including nodular, superficial, and
infiltrative BCCs, as well as for BCC-negative samples (see Fig. S1
for more examples).

Multimodal Spectral Histopathology. To reduce the data acquisi-
tion time associated with raster scanning, tissue autofluorescence
imaging then is used to determine the main spatial features of
the tissue sample, and this information is used to select and
prioritize the sampling points for Raman spectroscopy (Fig. 3).
First, wide-field autofluorescence images were recorded high-
lighting the presence of tryptophan (excitation, 292 nm; emis-
sion, 357 nm) and collagen (excitation, 377 nm; emission, 447
nm) in the sample; then, the ratio of these images was computed
to improve the contrast between tissue structures. Fig. 3 A and C
shows that autofluorescence imaging has high sensitivity for

detecting BCC (blue arrows), as tumors may be well delineated
in both collagen (dark regions) and tryptophan (gray regions)
images. However, the specificity of tissue autofluorescence is
low, as other tissue structures (green arrows), such as epidermis,
hair follicles, fat, and sebaceous glands, elicit an autofluorescence
intensity similar to that of BCC. An unsupervised image seg-
mentation algorithm was used to divide the ratio image into seg-
ments and to determine the contour of the skin sample. Because
dermis elicits a stronger autofluorescence emission than the other
tissue structures when excited with 377-nm light, an automated
method was established to detect dermis directly from the col-
lagen autofluorescence images. For all other segments, an al-
gorithm was used to generate several sampling locations for the
Raman spectral measurements. Fig. 3A shows that after segmen-
tation and detection of dermis based on the autofluorescence in-
tensity, for the 4 × 4-mm2 tissue region, only 70 segments were
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Fig. 2. Diagnosis of BCC by Raman microspectroscopy using raster scanning. Tissue sections: (A and B) nodular BCC; (C) BCC-negative skin sample containing
hair follicles with morphology similar to that of BCC (black arrows). Unsectioned tissue layers: (D) infiltrative BCC; (E) superficial BCC. The histopathology
images for adjacent sections are included for comparison. (Scale bars: 400 μm.) False positives are indicated by red arrows.
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Fig. 3. Comparison between BCC diagnosis obtained byMSH and by raster-scanning Raman spectroscopy. (A) Use of tissue autofluorescence images to determine
sampling points for Raman spectroscopy measurements in MSH. Segments above the threshold in the collagen autofluorescence image are classified as dermis and
excluded from the Raman spectra measurements. (B) Diagnosis obtained by 200 × 200 raster-scanning Raman spectroscopy (40,000 spectra) compared with the
MSH diagnosis using 350 spectra, as indicated in the segmented image. (C) Histopathology image of the adjacent tissue section. (Scale bars: 0.5 mm.)
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retained for Raman spectral measurements. Fig. 3B shows that
the diagnostic images obtained by raster-scanning Raman spec-
troscopy and multimodal spectral histopathology (MSH) were in
agreement with the H&E histopathology of the adjacent section.
However, in this case, MSH provided a dramatic decrease in
acquisition time, as it required 115-fold fewer Raman spectra
compared with raster scanning while providing similar spatial
and diagnosis accuracy for BCC. Another comparison between
raster-scanning Raman microscopy and MSH is shown in Fig. S2.
A set of eight tissue samples then was used to explore several

algorithms for generating the sampling points and to establish
the diagnosis for each segment based on the Raman spectra:
a fixed number of sampling points, fixed density of sampling points,
random or space-filling distribution of points, and segment
diagnosis based on the average spectrum or majority voting. An
acceptable tradeoff between diagnostic accuracy and acquisition
time was found to occur when five spectra were measured for
each segment based on a space-filling algorithm, after trimming
20 μm at the edges of each segment. A segment was diagnosed as
BCC when at least two spectra in the segment were classified
individually as BCC. If only one spectrum in a segment was clas-
sified as BCC, the class of the entire segment would be decided by

a majority vote of 15 training instances nearest (in the original
spectral space) the given spectrum. This additional nearest-
neighbors algorithm was included to account for the fact that in
MSH, the classification model was applied on individual Raman
spectra, which have a significantly lower signal-to-noise ratio than
the centroid spectra used in the model and in raster-scanning
Raman microscopy.
The MSH then was applied in diagnosing a set of unseen tissue

samples obtained from 20 new patients treated by MMS for BCC
on the face or neck (10 BCC-positive and 10 BCC-negative
samples). Fig. 4 presents typical examples of MSH diagnosis for
nodular, micronodular, and infiltrative BCCs, as well as BCC-
clear samples. Although the number of spectra depended on the
size and complexity of the samples, the results show that for
a typical ∼1-cm2 sample, accurate diagnosis by MSH typically
can be obtained with 500–1,500 Raman spectra. For the BCC-
positive samples (Fig. 4 A–D), the higher per-spectrum sensitivity
regime (95% sensitivity, 94% specificity) allowed successful de-
tection of BCC in all tissue samples. For the BCC-negative
samples (Fig. 4 E–H), the classification model produced, on
average, three false positive segments per sample, typically ac-
counting for 0.05–0.25% of the entire tissue area. These results
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Fig. 4. MSH diagnosis for tissue sections from patients with BCC on the face or neck. (A–D) BCC-positive samples. (E–H) BCC-negative samples (red arrows
indicate the false positive segments). The diagnostic images were obtained by setting the classification models at target 95% sensitivity and 94% specificity
per spectrum. The number of spectra measured for every sample is included in brackets and is the same for both diagnosis regimes. Histopathology images for
adjacent sections are included for comparison (BCCs are highlighted by black curves where appropriate). (Scale bars: 2 mm.)
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are in agreement with the expected average rate of false positives
arising from the suboptimal specificity and from the diagnosis
algorithm for the segments: 94% specificity means that we expect
slightly more than six false positive segments for a typical sample
of 200 segments (assumptions considered: given that the sample
is clear of BCC, the model classifies all spectra independently;
the 15-nearest-neighbors adjustment in the segment classifica-
tion is ignored). When the per-spectrum specificity was increased
to 98.8% (corresponding to 60% sensitivity), the expected number
of false positive segments per sample drops below 1. The experi-
mental results are close to this theoretical value, typically showing
one to two false positive segments (Fig. S3). Further examples of
MSH diagnosis are shown in Fig. S4. Importantly, the reduction in
per-spectrum sensitivity led to only minor errors in BCC diagnosis,
and overall, 9 of the 10 BCC-positive samples still were diagnosed
correctly. The diagnosis for the false negative sample, containing
only 200-μm BCC regions, is included in Fig. S5. Indeed, in a
clinical application, the classification models may be optimized
further according to the size of the sample and type of the BCC.
Next, we tested the feasibility of MSH in providing quantita-

tive diagnosis for unsectioned tissue blocks excised during MMS.
However, for tissue blocks, the autofluorescence images obtained
with the wide-field autofluorescence imaging system integrated
into the Raman microscope were blurred because of the out-of-
focus light. Therefore, the autofluorescence images of tissue blocks
were measured on a separate confocal fluorescence microscope
equipped with a 457.9-nm laser; subsequently, the samples were
moved on the Raman microscope for the spectral measurements
(the accuracy of sample relocation from the confocal microscope
to the Raman instrument was ∼100 μm). The confocal micro-
scopic images had superior contrast among dermis, BCC, and
other skin structures compared with wide-field autofluorescence
imaging and consequently allowed efficient segmentation. Fig. 5,
Upper shows that MSH provided the correct diagnosis for BCC
while requiring only 608 Raman spectra. For other samples (Fig.
5, Lower), the diagnosis of BCC was correct only for tumors
larger than ∼500 μm. Although the confocal images allowed very
efficient segmentation of BCC regions as small as 100 μm, the
misalignment between the confocal fluorescence microscope and

the Raman microscope led to sampling errors that caused mis-
classification, particularly for the spectra near the edges of the seg-
ments. However, such errors can be eliminated easily by integrating
confocal autofluorescence imaging into the Raman microscope.

Discussion
Figs. 4 and 5 demonstrate that MSH can provide accurate and
objective diagnosis of BCC in both tissue sections and unsec-
tioned tissue blocks with 500–1,500 Raman spectra for typical
tissue samples of 1 × 1 cm2. For our laboratory-based in-
strument, the acquisition time for the autofluorescence images
was 4 min (8 min for confocal fluorescence) and the integration
time for each Raman spectrum was 2 s. Using these estimates,
the diagnosis time for MSH was 20–60 min, which is shorter than
the diagnosis time for frozen-section histopathology, currently
used during MMS (45–120 min for tissue preparation and 10–15
min for diagnosis). However, because MSH diagnosis no longer
is limited by time-consuming tissue sectioning and staining, the
development of a prototype instrument using an optimized high-
speed Raman microscope [e.g., a line-shaped laser or multifocal
Raman microscope has been reported to measure 10–48 Raman
spectra simultaneously (29)] and integrated confocal or struc-
tured illumination autofluorescence imaging might allow intra-
operative diagnosis of tissue layers and blocks within a few minutes.
The key advantage over other techniques is that the diagnosis

is objective and may be obtained without any tissue preparation
(sectioning and staining). Such developments could provide fast
and objective feedback to the surgeon as to whether all tumor
cells have been excised or whether further tissue removal is re-
quired. Although this study focused on BCC, MSH may be used to
provide intraoperative diagnosis and ensure clear margins dur-
ing tissue-conserving surgery for other cancer types for which
histopathological diagnosis currently is not performed routinely.

Materials and Methods
Patients and Skin Tissue Samples. All skin tissue samples were obtained during
routine MMS at the Nottingham University Hospitals National Health Service
(NHS) Trust. Ethical approval was granted by the Nottingham Research Ethics
Committee (07/H0408/172). Informed consent was obtained from all patients.
See SI Text for details regarding tissue preparation.

MMS tissue blocks       Confocal autofluorescence   Segmented image     MSH diagnosis image               H&E histopathology 
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Fig. 5. MSH diagnosis of BCC in unsectioned tissue blocks as received from surgery. H&E histopathology images for adjacent sections are included for
comparison. (Scale bars: 2 mm.)
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Spectral Classification Model. All Raman spectra were recorded using a home-
built Raman microspectrometer integrated with wide-field fluorescence
imaging (details in SI Text). Raman spectral maps were recorded from skin
tissue sections deposited on MgF2 disks by raster scanning over areas of 1 × 1
mm2 in 10-μm steps (total 10,000 spectra per sample). See SI Text for details
on spectral preprocessing.

For each spectral map, a 3 × 3 moving average filter was applied and
followed by a two-step k-means clustering, with k1 = 6, k2 = 10. The pseu-
docolor spectral images obtained by k-means clustering were correlated
with the tissue structures revealed by the H&E images. The centroid spec-
trum of every cluster containing at least 10 measurement sites was included
in the database and labeled as BCC, epidermis (including hair follicle), der-
mis, inflamed dermis, muscle, or fat (including sebaceous glands). A maxi-
mum of five centroid spectra per class per patient were included in the
database. For this task, a total of 550,000 Raman spectra were recorded from
55 patients. After k-means clustering, 492 centroid Raman spectra were in-
cluded in the training dataset of the classification model: 92 for BCC, 75 for
epidermis (combined with hair follicles), 67 for inflamed dermis, 148 for
dermis, 75 for fat (combined with sebaceous glands), and 35 for muscle. For
validation, skin samples from 22 patients with BCC on face and neck were
used, for which the Raman spectra were measured and preprocessed in the
same way as the spectra included in the training dataset.

Several data reduction methods and classification techniques were com-
pared (details in SI Text).

Spectral Imaging and Automatic Diagnosis of Tissue Sections and Blocks. The
Raman spectra from a selected region of the tissuewere acquired at 10- or 20-
μm steps. After preprocessing, all spectra were analyzed by the two-step k-
means clustering algorithm to identify the tissue regions. The diagnosis of
each region in the pseudocolor spectral image was obtained by applying the
classification model to the centroid spectrum of each cluster (15, 30–32).

2.5 MSH. For each tissue section, the ratio of the autofluorescence intensity
images corresponding to tryptophan and collagen was segmented using
an unsupervised segmentation algorithm (33) and Matlab code developed
by Naidu (34). The edge pixels of the segments were trimmed off to avoid
measurement at the boundaries. The sample positioning was automated
using a programmable microscope stage. To avoid the out-of-focus problem
in Raman spectral measurements for tissues larger than 3 × 3 mm, the tissues
were divided into a 3 × 3 grid, and focusing was adjusted manually at
each region. Segments smaller than 0.01 mm2, normally found within the
dermis, were ignored and labeled as dermis. The remaining segments were
ranked in order of increasing average fluorescence intensity. Progressive
linear regressions of the intensity on the ranks were carried out to identify a
transition from a linear to a nonlinear trend. The transition was determined
as the point at which the coefficient of determination R2 fell below 0.98
(0.995 for tissue blocks). All segments with intensity higher than this threshold
were classified as dermis and excluded from the Raman measurements. The
following preprocessing was applied to the Raman spectra: removal of spectra
contaminated by the dyes used in MMS (the segments with more than three
contaminated spectra were labeled as unknown) and denoising based on an
independent set of Raman spectra from 10 patients (50,000 spectra) using
principal component analysis (PCA) with 50 loadings (35), followed by re-
moval of cosmic-ray peaks, subtraction of the background and baseline, and
normalization to zero mean and unit variance. Spectra for which the clas-
sification uncertainty as measured by the Shannon entropy was 20% higher
than the maximum value (i.e., logK, where K = 6 is the number of classes)
were labeled as “Unknown.”
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