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Manipulating expression of large genes (>6 kb) in adult cardio-
myocytes is challenging because these cells are only efficiently
transduced by viral vectors with a 4–7 kb packaging capacity. This
limitation impedes understanding structure–function mechanisms
of important proteins in heart. L-type calcium channels (LTCCs)
regulate diverse facets of cardiac physiology including excita-
tion–contraction coupling, excitability, and gene expression. Many
important questions about how LTCCs mediate such multidimen-
sional signaling are best resolved by manipulating expression of
the 6.6 kb pore-forming α1C-subunit in adult cardiomyocytes. Here,
we use split-intein–mediated protein transsplicing to reconstitute
LTCC α1C-subunit from two distinct halves, overcoming the diffi-
culty of expressing full-length α1C in cardiomyocytes. Split-intein–
tagged α1C fragments encoding dihydropyridine-resistant channels
were incorporated into adenovirus and reconstituted in cardiomyo-
cytes. Similar to endogenous LTCCs, recombinant channels targeted
to dyads, triggered Ca2+ transients, associated with caveolin-3, and
supported β-adrenergic regulation of excitation–contraction coupling.
This approach lowers a longstanding technical hurdle to manipulat-
ing large proteins in cardiomyocytes.
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Adult ventricular cardiomyocytes have a unique cytoarchi-
tecture and intracellular milieu (including transverse tubules,

dyadic junctions, and ryanodine receptors) that is not replicated
in many other cell types (1). Consequently, many fundamental
questions regarding structure–function mechanisms of cardiac
signaling proteins can only be pursued in the context of native
cardiomyocytes. Knock-in mouse models are unarguably the gold
standard for structure–function studies of signaling proteins in
heart. However, the high cost (∼$50,000) and length of time (up
to 2 y) required to generate a single knock-in mouse makes it
impractical to routinely use this model system for investigative
studies of structure–function mechanisms in heart cells. Directly
manipulating expression of target proteins in adult cardiomyocytes
is an important tool for structure–function studies in heart (2).
However, this approach is challenging because (i) adult car-
diomyocytes are refractory to transfection using conventional
methods and (ii) they can only be maintained in culture for short
periods (3–4 d) before they dedifferentiate (2). Fortunately, adult
cardiomyocytes are efficiently transduced by viral vectors. A major
technical hurdle is that commonly used viral vectors have a pack-
aging capacity of 4−7 kb (2, 3).
Studies of the cardiac L-type calcium channel (LTCC) illus-

trate these challenges. In heart, LTCCs mediate excitation–
contraction (EC) coupling, control excitability, and regulate gene
expression (1, 4). In ventricular myocytes, the majority of LTCCs
are targeted to transverse tubules where they are closely apposed
to intracellular Ca2+ release channels, ryanodine receptors
(RyR2), at dyadic junctions (4, 5) (Fig. 1A). This spatial ar-
rangement is critical for the high gain of Ca2+-induced Ca2+

release (CICR) that underlies cardiac EC coupling (6). A subset
of cardiac LTCCs are found located in caveolae (7), and are
hypothesized to selectively signal through local effectors to the
nucleus (8, 9) (Fig. 1A). Cardiac LTCC currents are increased
several-fold by protein kinase A (PKA), which is activated via
β-adrenergic signaling (10). The molecular mechanisms and

determinants underlying LTCC targeting to dyads and cav-
eolae and modulation by PKA are either unknown or ambiguous.
Reconstituting LTCCs in heterologous cells to address such
questions has proven inadequate because these cells are deficient
in essential structural elements such as transverse (t) tubules
(Fig. 1B), and also lack a permissive environment for PKA mod-
ulation (11, 12). Moreover, because resolving these structure–
function questions will likely require many different constructs, it
is impractical to use knock-in mice for such investigative pur-
poses. Hence, directly manipulating LTCCs in isolated adult
ventricular myocytes is critical for addressing these questions.
Cardiac LTCCs are multisubunit proteins containing a pore-
forming α1C assembled with auxiliary β and α2δ subunits, and
calmodulin (13) (Fig. 1C). The 6.6 kb size of α1C is at the pack-
aging capacity of commonly used viral vectors, making it difficult
to generate viral vectors incorporating full-length α1C. This de-
ficiency has been a major roadblock to progress in determining
structure–function mechanisms of cardiac LTCCs.
To overcome the obstacle of routinely expressing LTCC α1C

and other large proteins in adult cardiomyocytes, we developed
an approach that relies on split-intein–mediated protein trans-
splicing. Inteins are naturally occurring protein-splicing elements
found in archaeal, eubacterial, and eukaryotic genes (14). When
attached to two different polypeptides (termed “exteins”), trans-
acting split inteins can rapidly associate to form an active intein
that uses a self-catalytic reaction to splice the two exteins together
with a peptide bond while excising itself out of the resulting pro-
tein sequence (15, 16). We used the split DnaE intein from the
cyanobacterium Nostoc punctiforme (17, 18) to reconstitute full-
length α1C in situ from two separate halves. The split-intein–tagged
α1C fragments readily incorporated into adenovirus and recon-
stituted dihydropyridine (DHP)-resistant channels in cardiomy-
ocytes. Similar to endogenous LTCCs, intein-spliced α1C subunits
targeted to dyads, triggered Ca2+ transients, associated with cav-
eolin-3, and supported PKA regulation of EC coupling.
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Results
Design and Functional Properties of Split-Intein–Spliced α1C Recon-
stituted in HEK293 Cells. LTCC α1C subunit is a 2,171-residue pro-
tein containing four homologous domains each with six trans-
membrane segments and cytoplasmic N and C termini (19) (Fig.
1C). The homologous domains are joined by long intracellular
loops. We split α1C cDNA at the II–III loop and cloned the split-
intein fragments of N. punctiforme DnaE intein into the C and N
termini of the left ([I–II]N-intein) and right (C-intein[III–IV]) halves,
respectively (Fig. 2A and Fig. S1). To visualize and distinguish
reconstituted channels from endogenous LTCCs, we attached
CFP and YFP to the N and C termini of [I–II]N-intein and
C-intein[III–IV], respectively; engineered an extracellular epi-
tope tag (bungarotoxin-binding site, BBS) (20, 21) into do-
main II S5–S6 loop of CFP[I–II]N-intein; and introduced two
mutations (T1066Y/Q1070M) into C-intein[III–IV]YFP that

render LTCCs relatively insensitive to DHP blockers (DHP–)
(22, 23) (Fig. 2A). When coexpressed in cells, we predicted
CFP[I–II]N-intein and C-intein[III–IV]YFP would interact to form
a spliced α1C intermediate in which the split N. punctiforme
DnaE inteins associate to form an active intein. The active
intein would then use a self-catalyzed reaction to splice the two
channel halves together while excising itself out (Fig. 2A). Typi-
cally, three intein residues—cysteine, phenylalanine, and aspara-
gine—are left behind in the spliced product. Taking advantage of
an endogenous asparagine residue at the split site, we designed
constructs so that the splicing reaction leaves behind only two
foreign residues, cysteine and phenylalanine (Fig. S1).
We first used Western blotting to determine whether coex-

pression of split-intein–tagged α1C moieties in HEK293 cells
resulted in a reconstituted full-length protein as conceptualized in
Fig. 2A. In cells expressing either CFP[I–II]N-intein or C-intein[III–
IV]YFP alone, respectively, anti-GFP (which recognizes both CFP
and YFP) Western blots revealed bands corresponding to the two
half proteins (Fig. 2B, lanes 2 and 3). In cells coexpressing CFP[I–
II]N-intein and C-intein[III–IV]YFP, we detected a higher molecular
weight band at the expected size of the spliced WT α1C channel
product (Fig. 2B, lane 4). We similarly detected the spliced DHP-
resistant α1C channel when CFP[I–II]N-intein was coexpressed with
C-intein[III–IV

TQ/YM]YFP (Fig. 2B, lane 5). The transsplicing re-
action was highly efficient, as evidenced by the complete consump-
tion of the moiety with limiting expression (C-intein[III–IV]YFP)
in the reaction (Fig. 2B, lanes 4 and 5). The high efficiency of the
transsplicing reaction is likely aided by the fact that the I–II and
III–IV domains of CaV channels have a natural affinity for each
other and interact when coexpressed (24–26). By titrating the
relative amount of CFP[I–II]N-intein to C-intein[III–IV]YFP cDNA
transfected, it was possible to approach a balanced level of ex-
pression where both fragments were essentially used up in the
splicing reaction (Fig. 2C).
We next determined whether intein-spliced α1C had similar

functional properties to full-length (WT) α1C subunit expressed
in HEK293 cells. First, WT α1C requires coexpression of CaVβ
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Fig. 1. Model systems for structure–function studies of cardiac LTCCs. (A,
Upper) Adult rat ventricular cardiomyocyte. (A, Bottom) Differential LTCC
targeting to distinct subcellular microdomains in cardiomyocytes. (B) Model
systems for LTCC structure–function studies. (Scale bar, 20 μm.) (C) Topology
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Fig. 2. Reconstituting LTCCs by split-intein–medi-
ated protein transsplicing. (A) Strategy for recon-
stituting full-length α1C using split-intein–mediated
protein splicing. The α1C subunit is split into two
halves tagged with fluorophores and flanking N.
punctiforme DnaE split inteins, creating CFP[I–II]N-intein
and C-intein[III–IV]YFP, respectively. A 13-residue BBS
tag is introduced to permit selective labeling of
surface channels with quantum dot (QD655). (B and
C ) Anti-GFP Western blot showing successful re-
constitution of covalently linked full-length α1C
from intein-flanked α1C moieties in HEK293 cells.
Lane 1, full-length α1C[BBS]–YFP (open circle) + β2a-
CFP (open square); lane 2, CFP[I–II]N-intein (inverted
triangle); lane 3, C-intein[III–IV]YFP (open diamond);
lane 4, CFP[I–II]N-intein + C-intein[III–IV]YFP (open tri-
angle); lane 5, CFP[I–II]N-intein + C-intein[III–IV

TQ/YM]YFP
(open triangle). Untagged β2a is coexpressed in
lanes 2–5. (C) Titration of CFP[I–II]N-intein to C-intein[III–
IV]YFP transfection ratio (plus CFP-β2a). (D) Confocal
images showing CFP, YFP, and QD fluorescence in
cells coexpressing CFP[I–II]N-intein + C-intein[III–IV]YFP ±
β2a. (Scale bar, 10 μm.) (E) Flow cytometry dot plot
of YFP and QD fluorescence. (F) Quantification of
QD655 signal. *P = 0.0000427 compared with –β
using two-tailed unpaired t test. n = 5, 50,000 cells
per experiment.
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for effective targeting to the cell surface (27, 28) (Fig. 2F). To
selectively label surface channels, nonpermeabilized HEK293
cells coexpressing CFP[I–II]N-intein + C-intein[III–IV]YFP ± β2a were
sequentially labeled with biotinylated α-bungarotoxin (BTX) and
streptavidin-conjugated fluorescent quantum dots (QD655). Chan-
nel surface expression was analyzed by confocal imaging (Fig. 2D)
and flow cytometry (Fig. 2E). Quantification of fluorescence in-
tensity signals indicated CaVβ increased surface expression of intein-
spliced α1C eightfold, similar to the magnitude of response seen
with WT α1C (Fig. 2F).
We next compared functional characteristics of currents recon-

stituted with intein-spliced α1C subunits to those obtained with
their full-length WT counterparts. LTCCs reconstituted with WT
α1C + β2a generated robust whole-cell currents (Fig. 3A) that ac-
tivated at a threshold potential of –30 mV and peaked at 0 mV
(Fig. 3B). Moreover, WT channels were strongly and rapidly
inhibited by 1 μM nifedipine, with complete loss of current ob-
served for 5 μM and 10 μM nifedipine (Fig. 3 A–C). Intein-spliced
WT α1C channels reconstituted with CFP[I–II]N-intein + C-intein[III–
IV]YFP + β2a displayed virtually identical whole-cell currents and
similar sensitivity to nifedipine as WT α1C + β2a (Fig. 3 D–F and
Table S1). By contrast, intein-spliced DHP-resistant α1C channels
displayed currents that were relatively insensitive to nifedipine
(Fig. 3 G–I). Expressing either CFP[I–II]N-intein or C-intein[III–
IV]YFP separately did not yield either ionic or gating currents in
HEK293 cells (Fig. S2). This contrasts with previous reports that
expressing the I–II domain of CaV1.1 (α1S) in skeletal myotubes
results in measurable gating charge (24, 25). The difference could
be due to either the distinct CaV1 isoforms or cell types involved.

Expression and Trafficking of Intein-Spliced α1C in Adult Cardiomyocytes.
Having validated the split-intein strategy in HEK293 cells, we next
used this method to express LTCCs in adult cardiomyocytes. We
chose adenoviral vectors because they readily infect adult cardiac
myocytes and have a relatively fast onset of protein expression
(<24 h). This is important because adult cardiac myocytes begin to
dedifferentiate after3–4d inculture (2).Wewereunable to generate
adenoviruses incorporating full-length α1C, a common finding for
many investigators in the field, that is attributable to the large insert

size of α1C and regulatory elements (∼7.2 kb) being at the packaging
capacity limit of adenoviral vectors. By contrast, both intein-tagged
α1Cmoietieswere readilypackaged intoadenoviral vectors (Fig.4A).
We infected adult rat cultured cardiomyocytes with CFP[I–II]N-intein
and either C-intein[III–IV]YFP or C-intein[III–IV

TQ/YM]YFP and exam-
ined cells for protein expression 48 h after infection. The cardio-
myocyte infection was highly efficient, with>90% of cells exhibiting
robust CFP/YFP fluorescence, confirming expression of the intein-
flanked α1C moieties (Fig. 4B). Western blotting confirmed that the
split-intein–tagged α1C moieties were spliced to generate full-length
protein inadult cardiomyocytes.Whole-cell lysatesprobedwithanti-
α1C antibody detected both endogenous and intein-spliced α1C (Fig.
4B). Intein-spliced α1C was readily distinguishable from endogenous
α1C due to the presence of fluorescent protein tags that endowed
them with a higher molecular weight. Intein-spliced α1C expression
level was titratable, with increasing protein expression observed at
higher adenoviral doses (Fig. 4B).
To determine whether intein-spliced α1C expressed in car-

diomyocytes trafficked to the cell surface, we sequentially ex-
posed nonpermeabilized infected cardiomyocytes to biotinylated
BTX and streptavidin-conjugated QD655. Cardiomyocytes coex-
pressing CFP[I–II]N-intein and C-intein[III–IV]YFP displayed robust
red QD655 fluorescence staining of the surface sarcolemma (Fig.
4C and Fig. S3). As a negative control, uninfected myocytes
showed negligible QD fluorescence (Fig. 4C and Fig. S3). Sim-
ilarly, cardiomyocytes expressing only CFP[I–II]N-intein displayed
minimal QD655 surface staining, indicating this moiety alone
does not traffic to the cell surface (Fig. S3).
In adult ventricular myocytes, the close proximity of LTCCs

and RyR2s at dyadic junctions can be demonstrated using im-
munofluorescence analyses showing a high degree of colocali-
zation between endogenous α1C and RyR2 (Fig. 4D), in agreement
with previous reports (5). To determine whether intein-spliced
α1C was properly targeted to dyads we performed coimmuno-
fluorescence experiments using anti-GFP and anti-RyR antibodies
(Fig. 4D). Much of the anti-GFP staining was observed in regularly
spaced transverse patterns that occurred with a periodicity of 1.8
μm, consistent with the staining pattern of t tubules in cardiomy-
ocytes (Fig. 4D). Most importantly, quantitative analyses indicated
intein-spliced α1C colocalized with RyR2s to the same extent as
endogenous channels, as demonstrated by similar Pearson’s cor-
relation coefficient values (Fig. 4E). Similar values were obtained
by quantifying this colocalization independently using Li’s intensity
correlation coefficient (29) (Fig. S4).
Beyond localization at dyads, a subset of LTCCs in ventricular

myocytes associate with caveolin-3 and target to caveolae (7, 30).
Consistent with this, endogenous LTCCs exhibit significant coloc-
alization with caveolin-3 in adult cardiomyocytes (Fig. S4). It is
unknown whether α1C subunits that are targeted to dyads are
molecularly distinct from those associated with caveolin-3. One
possible mechanism for differential LTCC targeting in cardio-
myocytes could be alternative splicing of α1C. We discovered that
intein-spliced α1C also colocalizes with endogenous caveolin-3 in
cardiomyocytes (Fig. S4), indicating molecularly identical α1C
subunits can target to both dyads and caveolae.
Overall, these results show that intein-tagged α1C halves ex-

pressed in cardiomyocytes are efficiently spliced together to
generate an intact α1C that traffics to dyads and associates with
caveolin-3 similar to the endogenous protein. Because noCaVβwas
coexpressed in these experiments, the results suggest intein-spliced
α1C associates with endogenous CaVβ to traffic to the cell surface.

Functional Characterization of Intein-Spliced α1C Subunits in Cardio-
myocytes. We used whole-cell patch clamp to examine the func-
tionality of intein-spliced α1C subunits expressed in cardiomyocytes.
Surprisingly, cardiomyocytes coexpressing CFP[I–II]N-intein and either
C-intein[III–IV]YFP or C-intein[III–IV

TQ/YM]YFP displayed only a mar-
ginal increase in Ba2+ current density compared with uninfected
control myocytes (Fig. 5 A–C). One possible explanation for this
result is that endogenous CaVβ subunits are rate-limiting for
LTCC functional expression in heart. This interpretation would
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be consistent with prior observations that overexpressing CaVβs
alone in heart causes a several-fold increase in LTCC current
density (11, 31). An alternate possibility was that the intein-
spliced α1C subunits were not functional despite making it to the
cell surface (Fig. 4). To distinguish between the two possibilities
we recorded currents in cardiomyocytes expressing either intein-
spliced WT or DHP-resistant α1C in the presence of 10 μM ni-
fedipine (Fig. 5D). Under these conditions, cardiomyocytes
expressing intein-spliced DHP– α1C subunits expressed currents
that were on average threefold larger than those expressing
spliced WT α1C, demonstrating that the expressed channels are
functional (Fig. 5 D and E). We obtained a similarly large DHP-
resistant current in cardiomyocytes coinfected with CFP[I–II]
N-intein and C-intein[III–IV

TQ/YM] expressed in a bicistronic ade-
novirus vector (Fig. S5). The bicistronic strategy can be used to
overcome potential concerns that directly fusing fluorescent pro-
teins to the α1C fragments could disrupt aspects of their functions
in some unanticipated way. Because DHP block of CaV1.2 is
known to be voltage- and state-dependent, we examined whether
we could achieve greater nifedipine separation of WT and DHP-
resistant α1C by using a –50 mV holding potential and 2 mM Ca2+
as charge carrier (Fig. S6). Under these conditions, WT CaV1.2
currents elicited by a ramp protocol were deeply inhibited by 10
μM nifedipine, whereas myocytes expressing intein-spliced DHP-
resistant α1C displayed a sevenfold larger remnant current (Fig. S6).
To determine the functional competence of intein-spliced α1C

to trigger CICR at dyads, we measured rhod-2–reported Ca2+
transients using line scan confocal microscopy (Fig. 6). Control
uninfected cells responded to 1 Hz field stimulation with robust
basal Ca2+ transients that were inhibited by 1 μM nifedipine (Fig.
6 A and D). In myocytes expressing either intein-spliced WT
(Fig. 6B) or DHP– (Fig. 6C) α1C, basal Ca2+ transients were
marginally larger than observed in uninfected controls, consistent
with a modest increase in the number of surface LTCCs (Fig. 6D).
Ca2+ transients in cardiomyocytes expressing intein-spliced WT
α1C were inhibited by 1 μM nifedipine (90% inhibition), with most

cells unresponsive to field stimulation (Fig. 6 BandD).By contrast,
cardiomyocytes expressing spliced DHP-resistant α1C were only
modestly inhibitedby1μMnifedipine (20% inhibition)and virtually
all cells remained responsive to field stimulation. Exposure of car-
diomyocytes expressing spliced WT α1C to 5 μM nifedipine com-
pletely eliminated Ca2+ transients in response to field stimulation in
eight out of eight cells (Fig. 6E), whereas six out of nine cells
expressing spliced DHP-resistant α1C remained responsive at this
higher DHP concentration (Fig. 6F).
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With the ability to completely isolate intein-spliced DHP-
resistant α1C-stimulated Ca2+ transients with 5 μM nifedipine,
we examined whether this channel was permissive for sympathetic
up-regulation of EC coupling under these experimental conditions.
Exposure of cardiomyocytes expressing spliced DHP-resistant α1C
to 5 μM nifedipine + 1 μM isoproterenol resulted in Ca2+ tran-
sients with an elevated peak compared with those obtained with 5
μM nifedipine alone (Fig. 6G). The sympathetic elevation of Ca2+
transients under these conditions is likely due to a combination of
PKA-dependent phosphorylation of CaV1.2, RYR2, and phos-
pholamban (32).

Discussion
We have developed a unique method to readily manipulate
tagged α1C expression in isolated adult cardiomyocytes. The
unique technology offers clear advantages over using heterolo-
gous expression systems to study the functional properties of
cardiac LTCCs. Heterologous cells lack the unique cytoarchi-
tecture of adult cardiomyocytes. Consequently, questions such as
the mechanisms underlying differential LTCC targeting to dyads
and caveolae, or their putative role in pathological cardiac hy-
pertrophy, cannot be studied in noncardiomyocytes. It has also
proven difficult to determine the mechanism of PKA-induced
enhancement of LTCCs from heterologous expression experi-
ments. Based on studies in HEK293 cells, it was suggested that
phosphorylation of Ser1928 in α1C and Ser478/Ser479 in β2a was
critical for PKA regulation of LTCCs (33, 34). However, the
putative role of these phosphorylation sites in PKA regulation of
LTCC was ruled out using α1C[Ser1928Ala] mutant channels and
truncated-β2 knock-in mice (35, 36), as well as experiments in
isolated adult cardiomyocytes (11, 37). More recent data using
HEK293 point to an essential role for phosphorylation of
Ser1700 and Thr1704 in PKA regulation of LTCCs (38). The
importance of these residues has not been directly confirmed in
cardiac myocytes. Overall, these discrepancies emphasize the

importance of addressing questions pertaining to LTCC traf-
ficking and functional regulation in the context of actual heart
cells. A caveat is that the isoproterenol-induced increase in peak
evoked Ca2+ release we measured was relatively modest and
likely also includes contributions by PKA regulation of RYR and
phospholamban. In part, the relatively modest response may be
attributable to the use of rat cardiomyocytes in which PKA
modulation of CaV1.2 is much less robust than in other species
such as guinea pig (11). We are currently working to establish
conditions for strong PKA modulation of spliced DHP-insensitive
α1C in guinea pig cardiomyocytes.
Knock-in mouse models are the gold standard for defining

structure–function mechanisms of proteins in heart. The ap-
proach of manipulating α1C expression with adenoviral vectors in
isolated adult cardiomyocytes offers several advantages over
knock-in mouse models. First, knock-in mice are costly and take
up to 2 y to generate, making their routine use for in-depth
structure–function studies requiring many different constructs
impractical. By comparison, split-intein adenoviruses are more
cost and time effective. Second, certain questions cannot be
pursued in knock-in mice due to lethality of the knocked in gene.
For example, knock-in mice featuring C-terminal truncations of
α1C unexpectedly display a marked decrease in L-type calcium
current and die shortly after birth due to heart failure (39, 40).
This precludes the use of knock-in mice to pursue relevant
questions regarding the role of α1C C terminus in LTCC traf-
ficking and functional regulation in adult cardiomyocytes. Third,
the adenoviral infection approach permits questions to be easily
addressed in different species. This is important because the
functional properties of murine cardiomyocytes differ in several
critical ways from those of human, such as the action potential
duration being considerably shorter in mice (41). There have
been scattered reports of successful expression of LTCC α1C
subunits in adult cardiomyocytes (37, 42, 43). Previously, by
additionally deleting the fiber gene from the standard adenoviral
vector backbone (E1 and E3 deleted) and generating a com-
plementing stable cell line, we were able to generate adenovirus
containing full-length α1C (37, 42). However, this system proved
unstable and further attempts to generate new adenoviruses
were unsuccessful. There has been one report using lentivirus to
express α1C subunits in adult rat cardiomyocytes (44). We gen-
erated lentiviruses expressing GFP-tagged α1C truncated in the
C terminus at residue 1905, which transduced HEK293 cells ef-
ficiently, expressing α1C[1905]–GFP within 48 h. However, in our
hands, the transduction efficiency of adult cardiomyocytes was
low, and required several days for transgene expression, a prob-
lematic feature given the short half-life of rod-shaped cardio-
myocytes in culture. Recently, a biolistic transfection method was
adapted to express α1C in adult rat ventricular myocytes (41).
Compared with our approach, the biolistic method suffers from
high toxicity (∼10% viable cells) and relatively low transfection
efficiency (∼30% of surviving cells express transgene) (45).
Our unique application of split-intein technology engineers

functional expression of a large protein with high efficiency in
adult heart cells. Beyond LTCCs there are many other large
cardiac proteins (e.g., voltage-gated sodium channel, ankyrin,
spectrin, myosin, ryanodine receptor, and titin) whose structure–
function properties, trafficking, and functional modulation in
heart are of major interest, but currently only accessible using
knock-in mice. The split-intein approach can be extended to
explore the functional properties of many other large proteins in
cardiomyocytes. Overall, the split-intein method expands the
toolkit available, which includes high-capacity HSV-1 amplicon
vectors (46), for manipulating expression of large genes in pri-
mary cardiac myocytes.

Materials and Methods
Generation of Plasmid and Adenoviral Vectors. GenBank IDs of cDNAs used
are provided in Table S2. Detailed cloning strategies to generate expression
plasmids are provided in SI Materials and Methods. PCR primer sequences
used for cloning are provided in Table S3. Replication-deficient adenoviruses
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were generated using the Clontech Adeno-X System 3. Viral expansion and
purification was carried out as described (31).

Cell Culture and Transfection/Infection. HEK293 cells cultured on 60 mm dishes
were transfected with the appropriate cDNA (6 μg each) and T-antigen (1 μg)
using calcium phosphate precipitation. Adult rat cardiomyocytes were pre-
pared as described (31, 47) and cultured in medium supplemented with 0.5
μM cytochalasin D to preserve cell morphology (48). Cells were infected with
5–15 μL of viral stock in a final volume of 1–2 mL.

Quantum Dot Detection of Cell Surface BBS-Tagged LTCCs. Surface LTCCs in
HEK293 cells or cardiomyocytes were labeledwith quantum-dots as described
(21), and assayed by flow cytometry using a BD LSR II Cell Analyzer (BD
Biosciences). Flow cytometry data were analyzed using FloJo Software (21).

Intracellular Calcium Transient Measurements. Primary myocytes in culture
were loaded with the calcium-sensing dye rhod2–AM. Evoked intracellular
calcium transients were measured as described in SI Materials and Methods.

Image Processing and Analysis. Confocal images were analyzed using ImageJ
software and background subtracted. Colocalization of CFP/YFP, α1C/RyR, and

α1C/caveolin-3 was carried out using the ImageJ JaCoP plugin. Colocalization
in two channels was quantified using Pearson’s and Li’s colocalization co-
efficient algorithms in JaCoP (29).

Electrophysiology. Whole-cell recordings were conducted on HEK293 cells 48 h
posttransfection using an EPC-8 patch clamp amplifier (HEKA Electronics) con-
trolled by PULSE software as previously described (21, 28). Whole-cell recordings
of rat ventricular myocytes were performed as described previously (31).

Analysis and Statistics.Datawere plotted and statistical analyses performed in
Origin software using built-in functions. Significant differences between
means (P < 0.05, P < 0.01) were determined using Student t test for com-
parison between two groups, or one-way ANOVA followed by Bonferroni
post hoc analyses for comparisons involving more than two groups. Data are
represented as means ± SEM.
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