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Abstract
Recurrent event data are commonly encountered in longitudinal follow-up studies related to
biomedical science, econometrics, reliability, and demography. In many studies, recurrent events
serve as important measurements for evaluating disease progression, health deterioration, or
insurance risk. When analyzing recurrent event data, an independent censoring condition is
typically required for the construction of statistical methods. In some situations, however, the
terminating time for observing recurrent events could be correlated with the recurrent event
process, thus violating the assumption of independent censoring. In this article, we consider joint
modeling of a recurrent event process and a failure time in which a common subject-specific latent
variable is used to model the association between the intensity of the recurrent event process and
the hazard of the failure time. The proposed joint model is flexible in that no parametric
assumptions on the distributions of censoring times and latent variables are made, and under the
model, informative censoring is allowed for observing both the recurrent events and failure times.
We propose a “borrow-strength estimation procedure” by first estimating the value of the latent
variable from recurrent event data, then using the estimated value in the failure time model. Some
interesting implications and trajectories of the proposed model are presented. Properties of the
regression parameter estimates and the estimated baseline cumulative hazard functions are also
studied.
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1. INTRODUCTION
Recurrent event data are often collected in longitudinal follow-up studies. During the
observation period, recurrent events, such as repeated tumor occurrences (Byar 1980),
repeated hospitalizations (Eaton et al. 1992a,b), or recurrent injuries (Wassell,
Wojciechowski, and Landen 1999), are recorded in the studies. The observation of recurrent
events could be terminated (i.e., censored) by loss to follow-up, end of the study, or a failure
event such as death. Conventional analysis usually focuses on either failure time data (Cox
1972; Cox and Oakes 1984) or recurrent event data [Prentice, Williams, and Peterson 1981;
Andersen and Gill 1982; Pepe and Cai 1993; Lin, Wei, Yang, and Ying 2000; Wang, Qin,
and Chiang (WQC) 2001]. In this article, the event process and the failure time are both of
interest, and we consider the joint modeling of a recurrent event process and a failure time.
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In analyzing recurrent event data, an independent censoring condition is usually required for
the development of statistical methods under different types of models. When a failure event
serves as a part of the censoring mechanism, validity of the independent censoring
assumption is violated when the recurrent event process is correlated with the failure time.
Lancaster and Intrator (1998) considered a joint parametric model of the recurrent event
process and the failure time, and demonstrated the use of their methodology using AIDS
panel data. In their work, then used a latent variable to characterize the association between
the recurrent event process and the failure time, and a common baseline function is shared
by the intensity of the recurrent event process and the hazard of the failure time. In non-
parametric and semiparametric settings, WQC (2001) proposed estimation procedures for
estimating the cumulative rate function and regression parameters under multiplicative
intensity models with dependent censoring. The WQC model focused on the distributional
pattern of the recurrent event process where the censoring time was treated as a nuisance and
the joint modeling of recurrent event process and failure time was not considered.

To jointly model recurrent events and failure time, Ghosh and Lin (2003) studied correlated
marginal models for these two outcomes. At the cost of censoring some of the originally
uncensored data, they developed estimation inferences with the correlation between
recurrent events and failure time unspecified. Using a general censoring pattern, Huang and
Wang (2002) proposed statistical methods to study two nested joint models of a recurrent
event process and a failure time, where the correlation of the two outcomes is partially
specified in the conditional distribution of the recurrent event process given the failure time.
Note that neither of those two articles used frailty in their joint models. In this article we
consider joint modeling of the recurrent event process and the failure time via frailty. This
joint model has attractive features of frailty models, especially in its interpretation of
correlation, and avoids parametric assumptions on the frailty term.

The article is organized as follows. In Section 2 we introduce a joint model of recurrent
event process and failure time in which a common subject-specific latent variable (frailty) is
used to model the association between intensity of the recurrent event process and hazard of
the failure time. The proposed joint model is flexible in that no parametric assumptions on
the distributions of censoring times and latent variables are made, and under the model,
informative censoring is allowed for observing both the recurrent events and failure times.
In Section 3 we present theoretical implications and trajectories of the proposed model. In
Section 4 we study a “borrow-strength estimation procedure” by first estimating the value of
the latent variable from recurrent event data, then using the estimated values in the failure
time models. We explore properties of the regression parameter estimators and the estimated
baseline cumulative hazard functions. In Section 5 we report results of simulation studies,
along with the application to a Denmark schizophrenia case cohort study, and we conclude
with discussion in Section 6.

2. NOTATION AND THE JOINT MODEL
Let N(t) denote the number of events occurring before or at time t, and let D be the failure
time and C be the potential censoring time for reasons other than the failure event. The
research interest is to derive inferential results on N(·) and D within a fixed time interval [0,
T0], where the event process potentially could be observed beyond T0. Let X be a 1 × p
vector of covariates. We then make the following model assumptions:

(M1) There exists a nonnegative-valued latent variable Z so that, given X = x and Z =
z, the recurrent event process N(·) is a nonstationary Poisson process with
intensity function
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where α is a p × 1 vector of parameters and the baseline intensity function λ0(t)

is a continuous function with . The latent variable Z
satisfies E(Z|X) = E(Z).

(M2) Given (x, z), the hazard function of D takes the form

where β is a p × 1 vector of parameters and the baseline hazard function h0(t) is
continuous.

(M3) Conditioning on (x, z), (N(·), D, C) are mutually independent.

The occurrence of recurrent events is modeled by a subject-specific Poisson process via a
latent variable. Conditioning on z, the rate function equals the intensity function, because a
Poisson process is memoryless. Under (M1), the baseline in tensity function λ0(t) is shared
by all subjects and is left unspecified. A multiplicative hazard function with the same latent
variable but a different baseline function is assumed for the hazard of failure event in (M2).
Clearly, a large value of z inflates both the intensity of recurrent events and the hazard of the
failure event. Under assumption (M3), D, C, and N(·) are allowed to be correlated via their
connection with (x, z). This model relaxes the requirement that a common baseline function
be shared by the intensity of N(·) and the hazard of D assumed by Lancaster and Intrator
(1998), while keeping the semiparametric model features of WQC (2001). Define Y =
min(C, D, T0), the time when the observation of the recurrent event process is terminated,
and Δi = I(Di ≤ Yi), the observed censoring indicator. By further conditioning on z, the usual
independent censoring condition that N(·) is independent of Y given x is relaxed for
recurrent events, and, interestingly, the independent censoring condition that D be
independent of C given x is also relaxed for failure time data.

Note that the rate function of event occurrence at time t in a random population, for study
subjects with explanatory variable x, is μZλ0(t) exp(xα), where μZ = E[Z]. In many public
health and biomedical studies, the rate function is preferred for analysis, especially in
identifying treatment effects and risk factors, because of its marginal interpretation. For
instance, the parameter α can be interpreted as the logarithm of the ratio of the rate function
for every unit increase in the explanatory variable.

Under (M1)–(M3), the distribution of Z, the baseline functions λ0(t) and h0(t), and the
distribution of C serve as nonparametric components in the model. In the next section we
examine model implications with or without additional parametric assumptions on Z, yet
with no parametric assumptions made on Z for our development of estimation inferences in
Section 4.

3. MODEL IMPLICATIONS
Let  be the event history up to t, and let t1 ≤ t2 ≤ … ≤ tN(t) be the
ordered event times before or at t. Define fZ(·) as the probability density function of the
latent variable Z, f(·) as a general probability density function, and f(·|·) as a general
conditional probability density function. In this section we discuss model implications under
the proposed joint model with or without additional parametric assumptions on Z. To
simplify the discussion, we consider the reduced model without covariates. Similar results
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for regression models with covariates can be obtained with replacement (Λ0(t), λ0(t), H0(t),
h0(t)) by (Λ0(t)exα, λ0(t)exα, H0(t)exβ, h0(t)exβ).

Proposition 1 (Posterior mean of Z). Given the observed recurrent event data, we show in
Appendix A that the posterior mean of Z can be expressed as

where f(N(y)|y) is the conditional probability density function of N(Y) given Y. We can see
that, given the follow-up time y, the posterior mean depends on the event history  only
through the number of observed events. The posterior mean can be used for individual-
specific prediction when additional model assumptions are available for obtaining an
explicit form of the formula.

Proposition 2 (Residual lifetime). Let t and s be nonnegative constants. For individuals who
survive beyond time t (D ≥ t), the conditional probability for the residual life time to be
longer than s units of time given  is

The derivation is given in Appendix A. The computation implies that

that is, the residual life time probability depends on the event history only through the
number of events occurring up to time t. Further, the median residual lifetime after time t
can be obtained by solving P(D ≥ t + s|N(t), D ≥ t) = 1/2. The residual lifetime unconditional
on the event history has the survival function

For the specific case where Z is distributed as gamma(a, b) with mean a/b, the residual
lifetime probability, given the event history, has the survivor function

This conditional survival function has the following interesting interpretation. With each
additional event occurrence in the time interval [0, t], the survival probability at time t + s is
decreased by the constant factor, {b + H0(t) + Λ0(t)}/{b + H0(t + s) + Λ0(t)} where the
constant factor has a value between 0 and 1 and depends on (H0(t), H0(t + s), Λ0(t), b). In
additional, with the assumption that Z is distributed as gamma(a, b), the survival function for
the residual lifetime unconditional on the event history can be expressed as
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It is then interesting to see that P(D ≥ t + s|N(t) = 0, D ≥ t) ≥ P(D ≥ t + s|D ≥ t), where the
inequality relationship becomes strict if Λ0(t) > 0 and H0(t + s) > H0(t) as s > 0. That is,
survivors at time t who experienced no events before t would have higher probability to live
s units of residual lifetime than those population survivors at time t.

Proposition 3 (Residual lifetime for censored subjects). It is also possible to examine the
residual lifetime of those who are censored at time t given the event history

where Δ = I(D ≤ C) is the censoring indicator and fc(t|z) is the conditional probability
density function of the censoring time, C, given Z. If we assume that the hazard function of
C given Z is λc(t|z) = zg0(t) and that Z is distributed as gamma(a, b), then we have

where G0 is the cumulative distribution function of g0. With each additional event, the
probability of surviving an extra s unit of time after being censored at t is decreased by a
constant factor, where the constant factor depends on (H0(t), H0(t + s), Λ0(t), G0(t), b).

Proposition 4 (Effect of failure time on recurrent events). We derive in Appendix A the
mean function of the recurrent event process conditional on the failure time. For t ≥ s,

The mean function given failure time can be decomposed into two parts, one part depending
on the baseline cumulative rate function, and the other part depending on the baseline
cumulative hazard function and the frailty distribution. The function E[N(s)|D ≥ t] can be
further shown to be decreasing in t, where t ≥ s. This result is intuitive, because our model
implies that the subject-specific event occurrence rate is positively correlated with the risk of
failure event; subjects who survive longer tend to have lower event occurrence rates.

4. ESTIMATION PROCEDURE AND ASYMPTOTIC PROPERTIES
4.1 A Brief Review

Let subscript i be the index for a subject, i = 1, 2, …, n. For subject i, let Xi denote the time-
independent covariate, Zi denote the subject-specific latent variable, Yi denote the observed
terminating time for observing the event process Ni(·), Di denote the failure time, and Δi =
I(Di ≤ Yi) denote the censoring indicator. We further let mi denote the number of recurrent
events occurring before time Yi and ti1, …, timi denote the observed event times for subject
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i. For ease of notation, we use mi and tij, i = l,2, …, n, j = 1,2, …, mi, to denote either
random variables or realized values. Assume that {(Xi, Zi, Ni(·), Di, Ci)} are iid, so that the
observed {(Xi, Zi, mi, (ti1, …, timi), Yi)} are also iid.

Under assumption (M3), Y and N(·) are independent given the values of Z and X. The
estimation procedure of WQC (2001) can then be adopted to estimate Λ0 and α. A key step
of their estimation procedure is to observe that, conditional on (xi, yi, zi, mi), the observed
event times, {ti1, ti2, …, timi}, are the order statistics of a set of iid random variables with the
density function πi(t), where, for zi > 0,

Note that πi(t) depends on neither zi nor xi, and it is a truncated density function of λ0(t)
with observations truncated from the right side of yi. As a result, the conditional likelihood
function Lc given (xi, yi, zi, mi), where

does not require information on xi and the unobserved zi. Although the data are correlated,
computationally the conditional likelihood has the form of the nonparametric likelihood for
independently right-truncated data. The nonparametric maximum likelihood estimator

(MLE) of Λ0, , based on randomly truncated data is known to have a product-limit
representation (Wang, Jewell, and Tsai 1986),

where {s(l)} are the ordered and distinct values of the event times {tij}, d(l) is the number of
events occurring at s(l), and R(l) is the total number of events with event time and
observation terminating time satisfying {tij ≤ s(l) ≤ yi}.

It follows from E[mi|Xi, Yi, Zi] = Ziexp(Xiα)Λ0(Yi) that

Thus a class of estimating equations for α is defined as

(1)

where , γT = (ln(μZ), αT), and wi is a weight function depending on (Xi, γ, Λ0).
An estimate of α,  can be obtained by solving the estimating equation with Λ0(Yi) replaced

by .
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It is clearly seen that the estimation focus of WQC (2001) was placed on the recurrent event
process where the occurrence of the failure event is treated as a nuisance. In Section 4.2 we
consider inferential results for the failure event as well as the joint model.

4.2 A Borrow-Strength Method
Let  and ε represent the sample empirical means and the limit of average expectation.
More specifically, for any function a of (X, Y, Z, Δ), let

 and

, assuming existence of the limit.

Conditional on {(Xi, Yi, Zi), i = 1,…, n}, under (M2) the score function derived from the
partial likelihood can be expressed as

(2)

U defines a functional of four empirical processes for each fixed β. It is known that under
mild regularity conditions, U(β) converges almost surely to  for each fixed β, where

Under (M3) and minor regularity conditions, it can be proved that the two equalities

and

hold when β satisfies (M2). It follows that  if β is the true regression parameter. By
applying the Cauchy–Schwartz inequality to the derivative of , it can be further shown that
the true regression parameter is the unique root (zero-crossing) of .

In reality, we are not able to observe the value of Z, and thus cannot have the direct use of
the score function U. Conditioning on (Xi, Yi, Zi), the expected value of mi is
Ziexp(Xiα)Λ0(Yi). It is natural to estimate Zi by

where  and  are obtained from the estimation procedure discussed in the previous
section. We propose a “borrow-strength estimation procedure” as follows. First, compute the
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individual frailty value . Next, estimate the empirical processes in the score function (2) by

plugging in , and, in the final step, use this working score function to estimate β.

Note that the estimate of Λ0(t), and hence of Zi, is obtained from the entire collection of

recurrent event data, and that  captures the subject-specific characteristics under model

(M1)–(M3). The proposed estimator  has desirable moment properties; as we show in the

next section, the two processes  and 
converge almost surely to the limits ε{Zexp(Xβ)I(Y ≥ s)} and ε{Zexp(Xβ)I(Y ≥ s)} for each
fixed β. Therefore, this strength-borrowing method allows the working score function to
attain the same limit  as if the latent variable were observed. The zero-crossing of the
working score function serves as an estimator of the zero-crossing of , that is, β. To be
specific, the working score function  of U is given by

(3)

with the usual convention that 0/0 = 0. We show in Section 5 that  converges to  almost

surely in a neighborhood of β. We then estimate β by , where  = 0.

If Z were observed, then the Breslow estimator  of the baseline cumulative hazard
function, H0, would be

which is a functional of two empirical processes. Under the conditional independence
assumption of C and D, given (X, Z), we can show that the baseline cumulative hazard
function, H0(t), is the limit of .

As with the estimation procedure for the regression parameters, we propose an estimator of
H0(t) as

(4)

The limit of the estimator  can be shown to be the functional of the limits of the two

processes in (4), that is,  almost surely. We study the asymptotic normality of

the proposed estimator  in the next section.

5. LARGE-SAMPLE PROPERTIES
To study the large-sample properties of the proposed estimators, we impose the following
regularity conditions:

(A1) Pr(Y ≥ T0, Z > 0) > 0.

(A2) X is uniformly bounded.

(A3) EZ2 < ∞.

Huang and Wang Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2013 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A4) G(u) = E[ZI(Y ≥ u)] is a continuous function for u ∈ [0, T0].

Under these regularity conditions, the large-sample properties of  and  were established
by WQC (2001). Let tij denote the jth event time of the ith subject, and define the functions

G(t) = E[Z1I(Y1 ≥ t)], R(t) = G(t)Λ0(t), , and, for i = 1, …, n,

Under regularity conditions (A1)–(A4), it has been shown that

, for inf{y: Λ0(y) > 0} < t < T0, and that

 converges weakly to a normal distribution with mean 0 and variance

.

Define V* to be the joint probability measure of (w, , m, Y) and

Then the left side of the estimating function (1) can be expressed as .

Assuming that E[∂e1/∂γ] is nonsingular, we have , where

fi(α) is the vector function E[−∂e1/∂γ]−1ei without the first entry, and  converges

to a multivariate normal distribution with mean 0 and variance .

Note that in the WQC model, the baseline cumulative intensity function was not assumed to
satisfy Λ0(T0) = 1 as we assumed in (M1). The aforementioned asymptotic representations
have been modified to accommodate the current model assumptions.

The weak convergence of  and

 follow from the classical central limit theorem and
example 2.11.16 of van der Vaart and Wellner (1996). The two empirical processes
converge weakly to a mean-0 normal distribution, , and a mean-0 Gaussian process, .

Furthermore, letting V denote the joint probability density function of (X, Y, m) and arguing
as in the proof of theorem 1 of WQC (2001), we are able to show that

,
where
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with the usual convention 0/0 = 0. Note that the ψ3i’s are uncorrelated random variables,
because ψ3i(t, b) depends only on observed data from the ith individual. It follows from the

law of large numbers that  almost
surely, for each fixed b. Furthermore, by the central limit theorem, the process converges in
finite dimension to a mean-0 Gaussian process  on the time interval [0, T0]. The
explanatory variable X is assumed to be bounded, and without loss of generality we assume
that X is a semi-positive definite matrix. Because items in ψ3i(t; b) are monotone processes
for each b, the process ψ3i(t; b) is tight and converges weakly to  (see example 2.11.16 of
van der Vaart and Wellner 1996). Similar arguments hold for

 almost surely, and the

process  has the

asymptotically iid representation , where ψ4i is defined by

Moreover, the process converges weakly to a mean-0 Gaussian process, denoted by .

We establish the consistency of  as follows. Define the two functions

and

We can easily verify that  and  are derivatives of An(b) and A(b), and that β is the

unique maximum of A. Furthermore,  can be shown to be the unique maximum of An.

From the foregoing discussions, the four processes in  has the -convergence rate; hence
the four processes converge almost surely to their limits. Applying lemma 3 of Gill (1989)
and the chain rule, we can show that the functional defined by  is continuous with respect
to the supremum norm under regularity conditions (A1)–(A4). Then, for some compact

neighborhood  of β, as n → ∞,  almost surely. Applying Taylor
expansion and using the fact that An(β) = A(β) = 0, we have that

, where β* lies between b and β. Now it is clear that

as n → ∞,  almost surely.

Define  and , that is,
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and

We can show that  and Γ(b) are both negative definite, and it follows that An and A are
concave. By Lenglart’s theorem (appendix II in Andersen and Gill 1982), the unique

maximum of An, , converges in probability to the unique maximum of A, that is, β. Hence,

we establish the consistency of .

Note that  are correlated because these values are estimated from the entire
collection of recurrent event data; therefore, martingale theory does not apply to the working

score function, . In this article we study the large-sample properties of  and  by
empirical process theories and the functional delta method. For convenience, we denote a2 =
aaT for any vector a. We present asymptotic theories in Lemmas 1–3, with the proofs given
in Appendix B, and summarize these results in Theorem 1.

Lemma 1. Under regularity conditions (A1)–(A4) and the assumption that Ψ = E [∂e1/∂γ] is

nonsingular,  is the sum of asymptotically uncorrelated random variables;

, where ψi(β) is defined in Appendix B. Moreover,

 converges weakly to a normal distribution with mean 0 and variance–covariance
matrix Σ(β) = E[ψi(β)2].

Note that the variance–covariance matrix Σ can be consistently estimated by , where

 is defined in Appendix B. To study the large-sample property of , we further define

 and .

Lemma 2. Assume that Ψ and Γ = Γ (β) are both nonsingular. Then, under regularity

conditions? (A1)–(A4), , where ψ(β) is defined in

Appendix B. Thus  converges weakly to a normal distribution with mean 0 and
variance–covariance matrix Γ−1Σ(Γ−1)T, which can be consistently estimated by

.

Lemma 3. Under regularity conditions (A1)–(A4) and by assuming that Ψ and Γ are
nonsingular, the cumulative hazard function, H0(t), can be expressed as the sum of

asymptotically uncorrelated random variables, ,
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where t ∈ [0, T0] and φi(t) is defined in Appendix B. Then  converges
weakly on [0, T0] to a mean-0 Gaussian process with variance–covariance function E[φ1
(t1)φ1 (t2)].

Along with the results stated in Section 4.1 and following directly from Lemmas 2 and 3, we
state the main asymptotic theorem.

Theorem 1. Assume that Γ and Ψ are nonsingular. Under regularity conditions (A1)–(A4),
for each fixed s, inf{y: Λ0(y) > 0} < s < T0, and fixed t, t ∈ [0, T0], the random vector

 converges weakly to a multivariate normal

distribution with mean 0 and variance–covariance matrix , where the ηi’s are
uncorrelated random vectors defined by ηi = (fi(α), Γ ψi, (β), Λ0(s)bi(s), φi(t)).

6. SIMULATIONS AND DATA ANALYSIS
6.1 Monte Carlo Simulations

We conducted studies to assess the performance of the proposed estimators. For all
simulation studies, we generated 1,000 simulated dataseis, each with n = 200 and n = 500
independent subjects. The explanatory variable X was generated from a Bernoulli
distribution with P(X = 0) = P(X = 1) = .5, and the subject-specific latent variable Z was
generated from a discrete (poisson with mean 10) and a continuous (gamma with mean 10
and variance 50) distribution. Given X = x and Z = z, the subject’s underlying recurrent
event process {N(t), t ∈ [0, 10]} is a nonstationary Poisson process with the corresponding
intensity function zλ0(t) exp(xα), and the subject’s failure time D has a hazard function
zh0(t) exp(xβ). To examine the performance of proposed estimators under different choices
of (α, β) and (λ0(·), h0(·)), we also consider combinations corresponding to (α, β) = (0,0) and
(−1, −1.5) and the following two sets of functions for λ0(t) and h0(t).

• Scenario I: λ0(t) = 1/10, and h0(t) = t/400;

• Scenario II: h0(t) = (t + 1)/10, .

Finally, the censoring time C is either a exponential variable with mean 10 when x = 1 or a
exponential variable with mean 300/z2 when x = 0. Given (x, z), the triplets (N(·), D, C) are
mutually independent.

Suppose that the censoring time C is the potential dropout time. The justification for such a
design for the censoring variable is as follows. Suppose that the frailty is an unobserved
health indicator. In the control group (X = 0), sick patients with a high occurrence rate of
recurrent events drop out early due to large values of frailty; in the treatment group (X = 1),
in contrast, because the treatment has effectively reduced the event occurrence rates, the
dropout is noninformative for both the recurrent event process and the failure time.

As summarized in Table 1, the average death rate ranges from 13% to 28%, the average
length of follow-up period ranges from 3.9 to 4.91, and the average number of observed
recurrent events ranges from 1.57 to 3.65 in the conducted simulation studies. Noted that the
average follow-up time is approximately the same under different choices of (λ0, h0), but the
average number of observed events is smaller under Scenario II. The result of simulation
studies is summarized in Table 2. For each simulation study, the empirical bias, standard
error, and correlation coefficient of proposed estimators were calculated based on 1,000
samples. Figures 1 and 2 show the estimates and the pointwise 95% confidence intervals of
the baseline cumulative intensity function and baseline cumulative hazard function. As
shown in Table 2 and Figures 1 and 2, the proposed estimator performs reasonably well; that
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is, the empirical bias in the estimates of regression parameters are small, and the averages of

 and  are almost indistinguishable from the true curves. Note that the parameter
estimates under Z ~ poisson(10) have smaller standard errors than those under Z ~

gamma(2, 5), and the empirical correlation coefficients between  and  are smaller under
the assumed Poisson distribution; this is because the poisson(10) distribution has smaller
variability than the gamma(2, 5) distribution; that is, the defined population is more
homogeneous under Z ~ poisson(10).

With data generated by model (M1)–(M3), it is interesting to see results from the use of a

popular but incorrect model, that is, the proportional hazards model, ,
for the failure time data. Using the partial likelihood method (Cox 1972), Table 2 also
reports the average and empirical standard error of the 1,000 estimates of β*. Note that using
the Cox proportional hazards model, which incorrectly assumes the independent censoring
assumption, results in biased estimation of the treatment effect. This phenomenon can be
explained as follows. In the simulated control group (X = 0), sicker patients with higher
hazards tend to drop out at earlier times; thus risk sets are likely to consist of healthier
patients at later time points. As a result, the estimates given by the Cox proportional hazards
model based on comparisons of subjects within risk sets under-estimate the treatment effect
when treatment reduces the risk of death and conclude that treatment is associated with
increased risk of death when the treatment does not affect the mortality rate.

6.2 Data Analysis
A Denmark registry dataset recorded the initial and recurrences of hospitalizations and
associated patient information from 8,811 patients whose first schizophrenia-related
hospitalization occurred between April 1, 1970 and March 25, 1988 (Eaton et al. 1992a,b).
The catchment area for the register is the entire nation of Denmark. The dataset provides a
large collection of repeated psychiatric measurements as well as recorded hospitalization
episodes. All death records in Denmark are linked into the register.

Table 3 summarizes numbers of hospital admissions and deaths for subgroups by gender and
age of onset. Comparing crude proportions seems to suggest that patients whose first
hospitalization occurred after age 20 tend to have fewer hospitalizations but are more likely
to die before the end of study. The hospitalizations and survival experiences do not look
very different in males and females based on these summary statistics.

We apply the proposed joint model to the Denmark schizophrenia cohort data and
investigate the effects of gender and age of onset on the rate of hospitalization and the risk
of death. The gender indicator is set to be 1 for male and 0 for female, and the indicator of
age onset is set to be 1 for under 20 years of age and 0 for 20 years old and older.

To estimate the standard errors of , , , and  at selected time points, we adopted
a nonparametric bootstrap method for clustered data by repeatedly sampling 8,811 subjects
with replacement, using subject as the sampling unit, from the schizophrenia cohort data.
The results of the data analysis are summarized in Table 4. Estimates of Λ0(t) and H0(t), and
their pointwise 95% bootstrap confidence intervals are given in Figure 3. Table 4 shows that
patients with early onset (age ≤ 20 years) are hospitalized more often (21% higher) and have
a lower risk of death (57% lower) than patients with later onset. Moreover, being a male
decreases one’s rate of hospitalization episodes by 16% (≈ 1 − e−.18) and risk of death by
10% (≈ 1 − e−.11). The estimated covariate effects are statistically significant, except for the
gender effect on the risk of death, which is marginally significant. It is interesting to see that
age of onset has opposite effects on hospital admissions rate and the hazard of death; this is
not surprising, however, because young patients tend to have longer life expectancy. Also,
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the analysis confirms the theory in schizophrenia that patients with early onset age tend to be
hospitalized more often than those with later onset age.

In the case of a degenerate frailty, the Cox proportional hazards model gives estimates of −.
74 [standard error (SE) = .12] and −.14 (SE = .06) for the effects of early onset and gender.
The direction of covariate effects estimated in the Cox proportional hazards model are
consistent with the estimates under the proposed model.

7. DISCUSSION
Frailty models are commonly adopted in modeling multivari ate survival time data (Clayton
1978; Oakes 1982) and in jointly modeling repeated measures and survival time data
(Henderson, Diggle, and Dobson 2000; Lin, Turnbull, McCulloch, and Slate 2002). In this
article, we propose a semiparametric joint model for the recurrent event process and failure
time data. A latent variable (frailty) is assumed to act as a multiplicative factor in both the
intensity function and the hazard function, and hence induces the correlation between the
event process and the failure time. Unlike the usual setting of frailty models, where a
parametric distribution is assumed for the frailty, a specific feature of our model is that the
frailty distribution is treated as a nuisance parameter and no parametric assumptions were
imposed. Additionally, via the use of frailty, the proposed model relaxes the independent
censoring condition for observing both the recurrent event process and the failure time data.

For a semiparametric model like (M1)–(M3), model checking is expected to be a difficult
task in general. In this article we do not intend to develop methods for formal model
checking, we simply suggest possible approaches for validating model assumptions. A
rigorous study of model checking methods will be done elsewhere. To test the assumption of
a common baseline intensity function shared by all subjects, we use the fact that, under (M1)
and conditioning on (mi, xi, yi, zi), tij are iid with the cdf F(t)I(0 ≤ t ≤ yi)/F(yi). Define Vij =
F(tij)I(0 ≤ tij ≤ yi)/F(yi); then Vij are order statistics of iid uniform(0, 1) random variables.

Let ; then a necessary condition to validate the assumption of

sharing a common intensity function is to check whether the empirical distribution of { :j
= 1, …, mi; i = 1, …, n} is approximately uniform(0, 1) distribution. To check on the
proportional rate and hazards model assumption imposed by (M1) and (M2), replace Z with

 to derive the Schoenfeld residuals (Schoenfeld 1982). If the assumption of proportional
hazards holds, then the derived residuals are expected to randomly scattered around 0 and to
gradually converge to 0 over time.

In this article we proposed a borrow-strength procedure by first estimating the value of the
latent variable from recurrent event data, then using the estimated value in the failure time
models. The central idea of estimation is to use moment properties of  so that the partial
score functions, with Z or , attain the same convergence function. The proposed  requires
no parametric assumption on Z and is easy to compute. As opposed to this approach, an
alternative choice is to estimate Z by the posterior mean of Z given the observed recurrent
event data; however, as discussed in Proposition 1, the posterior mean does not have an
explicit form in our model setting, and thus is not a useful choice in theory or application.

The proposed estimation procedure is not without constraints. It is applicable only to time-
independent covariates. In some applications, it would be desirable to develop estimation
procedures that allow for both time-invariant and time-dependent covariates. Also, the
propositions and trajectories described in Section 3 help understand the general relationship
between the recurrent event process and the failure time. However, the probability formulas
established in Section 3 cannot be made explicit unless the unknown parameters in the
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formulas are known or estimable, and accomplishing such a task requires more parametric
modeling and alternative estimation procedures. Such work will be considered elsewhere in
the future. Finally, the proposed time-to-events models assume that a common baseline
intensity/rate function is shared by all subjects and that the intensity/rate function does not
change after the occurrence of an event. To characterize the possible change in the risk of
event occurrence after each event time, techniques for time-between-events models by, say,
Prentice et al. (1981) and Chang and Wang (1999), can be adopted.
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APPENDIX A: PROOFS OF PROPOSITIONS

Proposition 1
The probability density function of the event history given the value of the frailty and the
termination time can be expressed as

where f(N(y)|z, y) is the probability density function of the number of observed recurrent
events given the value of the frailty and the termination time. Consequently,

Thus we can write the posterior mean of Z, given the observed recurrent event data, as

Proposition 2
For 0 ≤ t ≤ t + s ≤ T0, the survival function of the residual life time after time t, given the
event history before and up to time t, can be expressed as

, where
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and, similarly,

We then simplify the formula

Proposition 4
Following (M3), the mean function of the recurrent event conditional on the failure time can
be expressed as

(A.1)

The partial derivative of the right side term in (A.1) with respect to t can be derived as

The partial derivative can be shown to be nonpositive by applying the Cauchy–Schwartz
inequality, and, as a result, the mean function in (A.1) is decreasing in t, t ≥ s.

APPENDIX B: PROOFS OF LEMMAS

Proof of Lemma 1
Straightforward algebra yields
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Because the mapping of  from the four empirical processes, under the regularity
conditions, is compactly differentiable with respect to the supremum norm and the four
empirical processes converge weakly to their limits, we apply the functional delta method to

 and establish its asymptotic representation , where

Note that the ψi’s are uncorrelated random variables, because ψi depends only on the

observed data of the ith individual. Following the classical central limit theorem,  is
asymptotically normal with mean 0 and variance–covariance matrix Σ(β) = E[ψi(β)2]. Define

 by substituting empirical processes for their limits in ψi, and define

, where ψi*(β) is the average over

. It can be shown that the second moment of  exists, and it follows

from the strong law of large numbers that  converges to its limit, Σ(β), uniformly.

Arguing as in the proof for the consistency of , we can show that the functional defined by

 satisfies  almost surely. By the consistency of , as well as the

continuity of Σ(b) at β, we are able to show that  is a consistent estimator of Σ(β).

Moreover, in terms of the notations used before, we can rewrite the limit of  as

Proof of Lemma 2

Define , that is,

It can be shown that  defines a functional of four empirical processes. Arguing as in the

proof of consistency of , we can show that  in a neighborhood  of β, where
Γ(b) is the derivative of  and
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Applying Taylor expansion, we have , where β* lies on the

segment between  and β. In light of the consistency of , and therefore β*, for β, as well as

the continuity of Γ(β) at β,  converges to Γ(β) almost surely. By Slutsky’s theorem,

 converges to a normal distribution with mean 0 and covariance matrix Γ(β)−1Σ(β)
{Γ(β)−1}T, where Σ(β) = E[ψ1(β)ψ1 (β)T]. Arguing as before, Γ(β) can be consistently

estimated by , and, as a result,  is a consistent variance estimator.

Proof of Lemma 3

Define the functions  and .

 is a continuous functional of two processes because the denominator is bounded
away from 0. The almost-sure convergence of the two processes can be established from the

previous discussions. It can be shown that  almost

surely. Then the consistency of  for H0(t) follows the strong consistency of  for β.

A Taylor expansion of  about β gives

(B.1)

where  depends on t and lies on the line segment between  and β. By a similar argument

used earlier, we can show that , converges in probability to ∂H0(t; b)/∂b|b=β

for t ∈ [0, T0]. Moreover, the functional delta method applied to  yields

Following Theorem 2, , and, by definition, H0(t,β) =
H0(t). From (B.1), the estimator of the baseline cumulative hazard function can be expressed
as

where φi(t) is defined by
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Because φi(t) is a linear combination of monotone processes with bounded second moments,

the weak convergence of  follows from example 2.11.16 of van der
Vaart and Wellner (1996).
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Figure 1.

Plots of Estimated  and  With Pointwise 95% Confidence for n = 200. Scenario I:

λ0(t)= 1/10, and h0(t) = t/400; Scenario II: λ0(t) (t + 1)/60,  (—-, true curve; –
– – – –; empirical average;………, pointwise 95% confidence intervals).
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Figure 2.

Plots of Estimated  and  With Pointwise 95% Confidence for n = 500. Scenario I:

λ0(t)= 1/10, and h0(t) = t/400; Scenario II: λ0(t) (t + 1)/60,  (—-, true curve; –
– – – –; empirical average;………, pointwise 95% confidence intervals).
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Figure 3.

Plots of  and  for the Denmark Schizophrenia Cohort Data, With Pointwise 95%
Bootstrap Confidence Intervals, (a) Baseline cumulative rate function; (b) baseline
cumulative hazard function (—, estimates;…….., 95% pointwise CI).
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Table 1

Summary of the Simulated Data

Z ~ poisson(10) Z ~ gamma(2, 5)

(α, β) P(death) Y m P(death) Y m

Scenario I: λ0(t) = 1/10, h0(t) = t/400

(0, 0) .27 3.90 3.64 .26 4.44 3.40

(−1, −1.5) .14 4.41 2.34 .14 4.91 2.19

Scenario II: λ0(t) = (t + 1)/60, h 0(t) = t ∕ 200

(0, 0) .28 3.80 2.40 .26 4.35 2.26

(−1, −1.5) .15 4.36 1.59 .14 4.87 1.58

NOTE: P(death) is the average death rate; Y is the average terminating time; m is the average number of recurrent events.
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Table 3

Hospital Admissions and Deaths for Different Subgroups

No. of hospital admissions since entry

Subgroup
No. of

patients
No. of
deaths 0 1 2 3 4 5 ≥ 6

Male 3,318 368 984 581 394 331 200 157 671

 (%) 100 11.1 29.7 17.5 11.9 10 6 4.7 20.2

Female 5,493 685 1,392 945 636 470 363 279 1,408

 (%) 100 12.5 25.3 17.2 11.6 8.6 6.6 5.1 25.6

Onset age ≤20 1,065 76 187 130 144 90 82 59 373

 (%) 100 7.1 17.6 12.2 13.5 8.5 7.7 5.5 35.0

Onset age >20 7,746 977 2,189 1,396 886 711 481 377 1,706

 (%) 100 12.6 28.3 18.0 11.4 9.2 6.2 4.9 22.0
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Table 4

Summary of Denmark PCR Data Analysis

Risk factor Estimate SE 95% bootstrap CI

Hospital admissions

Onset age ≤ 20 .19 .04 (.10, .27)

Gender −.18 .04 (−.26, −.09)

Death

Onset age ≤ 20 −.84 .13 (−1.10, −.62)

Gender −.11 .07 (−.25, .01)

NOTE: SE, standard error of estimates from the 200 bootstrap samples; 95% bootstrap CI, (2.5%, 97.5%) quantiles of the 200 estimates.
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