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Abstract

Background: Blood glucose (BG) prediction plays a very important role in daily BG management of patients with diabetes
mellitus. Several algorithms, such as autoregressive (AR) models and artificial neural networks, have been proposed for BG
prediction. However, every algorithm has its own subject range (i.e., one algorithm might work well for one diabetes patient
but poorly for another patient). Even for one individual patient, this algorithm might perform well during the preprandial
period but poorly during the postprandial period.
Materials and Methods: A novel framework was proposed to combine several BG prediction algorithms. The main idea of
the novel framework is that an adaptive weight is given to each algorithm where one algorithm’s weight is inversely
proportional to the sum of the squared prediction errors. In general, this framework can be applied to combine any BG
prediction algorithms.
Results: As an example, the proposed framework was used to combine an AR model, extreme learning machine, and support
vector regression. The new algorithm was compared with these three prediction algorithms on the continuous glucose
monitoring system (CGMS) readings of 10 type 1 diabetes mellitus patients; the CGMS readings of each patient included 860
CGMS data points. For each patient, the algorithms were evaluated in terms of root-mean-square error, relative error, Clarke
error-grid analysis, and J index. Of the 40 evaluations, the new adaptive-weighted algorithm achieved the best prediction
performance in 37 (92.5%).
Conclusions: Thus, we conclude that the adaptive-weighted-average framework proposed in this study can give satisfactory
predictions and should be used in BG prediction. The new algorithm has great robustness with respect to variations in data
characteristics, patients, and prediction horizons. At the same time, it is universal.

Introduction

Nowadays, increasing numbers of people are suffering
from diabetes mellitus. As of 2011, over 360 million

people around the world were estimated to have diabetes.
Type 1 diabetes mellitus (T1DM) and type 2 diabetes melli-
tus are chronic diseases, and their conventional therapies are
mainly dependent on diet management, physical exercise,
exogenous insulin infusion, and drug administration. These
therapies can be optimized by self-monitoring blood glu-
cose (BG) approximately three or four times per day. Such
therapies are suboptimal, and BG concentrations often ex-
ceed the safe range (70–180 mg/dL). Chronic hyperglycemia
(BG >180 mg/dL) causes many irreversible complications,
such as neuropathy, retinopathy, and cardiovascular dis-
eases; in contrast, even short-term hypoglycemia (BG <70
mg/dL) could lead to dramatic adverse effects such as dia-
betic coma, brain damage, and even death. Therefore, daily
BG management is a significant challenge for a patient with
diabetes.

In the last 10 years, new horizons have opened with the
availability of continuous glucose monitoring system (CGMS)
devices. These are minimally invasive portable devices, which
allow fine monitoring of interstitial glucose concentrations in
a quasi-‘‘continuous’’ way, providing highly frequent mea-
surements (every 1–5 min in general) of glucose concentra-
tions for several days (indicated for 3–7 days; however,
glucose sensors sometimes remain effective much longer1).
These CGMS devices incorporate real-time alarms when the
measurement exceeds the safe range threshold.1,2

Using general guidelines that patients follow in their daily
life, some diabetes management systems have been proposed
to further assist patients in self-managing their disease, such
as CareLink personal software (Medtronic, Northridge, CA),
which is a secure, Web-based therapy management software
that allows patients to easily store their information and al-
lows a healthcare professional access to it.3 One of the most
essential components of a diabetes management system is the
BG prediction scheme. It is evident that accurate BG predic-
tion could facilitate patients to take appropriate measures in
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crucial situations such as hypoglycemia. Therefore, several
BG prediction methods have been reported recently.

These reported methods can be mainly divided into two
groups. The first group includes mathematical models that
simulate the underlying physiological dynamics of the
glucose–insulin regulatory system.4 However, the use of such
methods is limited because of the inherent complexity of the
glucose–insulin dynamic system. The second group includes
data-driven methods,5–7 which can predict glucose concen-
tration based only on measured data. Data-driven techniques
mainly depend on measured data and do not require any
previous knowledge about the physiology of diabetes. These
techniques exploit the information hidden in the data to learn
glucose response to various stimuli.

Several specific data-driven methods have been used for BG
prediction, including time series analysis,8 regression predic-
tion,5,9 gray system,10 expert system,11 artificial neural net-
works,12 and support vector machine.13 Researchers have
performed several studies on glucose prediction. Sparacino
et al.8 used a first-order autoregressive (AR) model with
adaptive coefficients to predict glucose concentrations up to
30 min ahead. First-order AR can produce acceptable predic-
tions, but it introduces a significant delay between predicted
and measured values. A high-order AR model was further
studied,8,9 but the prediction performance was not satisfactory.
Allam et al.12 proposed a radial-basis-function neural network
model to predict subcutaneous glucose concentrations. Some
more studies in this field can be found in the literature.14–16

Every prediction algorithm has its own advantages and
disadvantages (i.e., it uses some specific aspects of informa-
tion but ignores some other useful aspects). Therefore, the use
of only one particular method for BG prediction can give one-
sided results. Therefore, a framework is needed to combine
various prediction methods such that their disadvantages are
minimized and advantages are maximized.

Dassau et al.17 and Buckingham et al.18 proposed a hypo-
glycemia prediction algorithm (HPA) combination framework.
The core of the framework is a set of individual HPAs that are
combined into one algorithm by using a voting scheme. The
HPA system proposed in this study17 includes five prediction
algorithms: linear projection, Kalman filter, hybrid infinite im-
pulse response filter, statistical prediction, and numerical logical
algorithm. When a new CGMS datum is available, each alarm
will run independently and produce an alarm if a hypoglycemic
event is predicted. When the number of hypoglycemia alarms is
above a preset threshold (e.g., three out of five), then the voting
alarm will be triggered. The HPA system can evidently improve
the hypoglycemia prediction performance; however, it can
combine only hypoglycemia alarms and cannot combine all the
BG prediction information continuously.

In this study, a novel framework was proposed to combine
several BG prediction algorithms continuously. The main idea
of the novel framework was that an adaptive weight was
given for each algorithm, where one algorithm’s weight was
inversely proportional to the sum of its squared prediction
errors. In general, this framework can be applied to combine
any BG prediction algorithm. Its main purpose is to improve
the prediction accuracy as much as possible by integrating the
advantages and eliminating the disadvantages of various
forecasting methods. As an example, the proposed frame-
work was used to combine the AR model, extreme learning
machine (ELM), and support vector regression (SVR). The

new algorithm was compared with these three prediction al-
gorithms on the CGMS readings of 10 patients with T1DM.

Adaptive-Weighted-Average Framework

Various patients have different BG characteristic; therefore,
their CGMS readings have different stochastic characteristics.
At the same time, CGMS readings are affected by diets, ex-
ercises, insulin delivery rates, sensor noises, etc. Every algo-
rithm has its own scope of application, and no algorithm
could be the best in all situations; therefore, a combination
framework is needed.

A combined prediction was proposed in the literature,19 and
the weighting provides minimum estimates when the models
are independent and the forgetting factor is not used. In this
study, we used the essence of combined prediction with BG
prediction. To the authors’ best knowledge, this is the first time
that the weighting combination has been used for BG prediction.

The detailed description of the adaptive-weighted-average
framework is as follows. There are n different BG prediction
algorithms and their corresponding prediction values at time
k; these are denoted as ŷi(k)(i¼ 1, 2, . . . , n). The proposed
framework integrates n prediction values with time-varying
weights. Then the most important thing is to calculate the
weights at different times. Obviously, an algorithm’s weight
should be proportional to its prediction performance (i.e., the
prediction performance should be better, and the weight
should be larger). The sum of squared prediction errors
(SSPE) is a good index of prediction performance. Hence SSPE
was used in this study to determine the time-varying weight.

At time k, the prediction errors of the ith algorithm at all
times before k can be obtained as follows:

ei( j)¼ ŷi( j)� y( j) (i¼ 1, 2, . . . , n; j¼ 1, 2, . . . , k) (1)

where ei( j) is the prediction error of algorithm i at time j. The
following index was used to evaluate the prediction perfor-
mance of algorithm i:

Si(k)¼ +
k

j¼ 1

ak� je2
i ( j) (i¼ 1, 2, . . . , n) (2)

where S denotes the SSPE and a 2 (0, 1) is a forgetting factor,
which is used to balance the contributions of current and
historical measurements.

The larger value of Si(k) indicates poor prediction perfor-
mance, and correspondingly the weight for the ith algorithm is
smaller. In other words, the weight wi(k) for the ith algorithm
should satisfy the following relationship:

wi(k)1 1

Si(k)
(i¼ 1, 2, . . . , n) (3)

Because the sum of all weights should be equal to 1, all the
weights must be normalized as follows:

wi(k)¼ 1

Si(k)= +
n

j¼ 1

1

Sj(k)
(i¼ 1, 2, . . . , n) (4)

Finally, the combined BG prediction should be evaluated as
follows:

ŷ(k)¼ +
n

i¼ 1

wi(k)ŷi(k) (5)
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Using the adaptive-weighted-average, the framework
gives different degrees of trust to different BG prediction al-
gorithms. The main purpose of the novel framework is to
comprehensively use the information provided by various
algorithms as much as possible to improve the prediction
accuracy. Every algorithm assumes that the data satisfy cer-
tain conditions in the forecasting process so that the infor-
mation in the data is not completely exploited. The proposed
method that combines several algorithms can exploit the in-
formation as much as possible. In comparison with every
single algorithm, the new framework is more systematic,
comprehensive, and scientific.

Example

As an example, the above-mentioned framework was used
to combine the AR model, ELM, and SVR because these three
methods are very popular for BG prediction. To make this
study self-contained, some brief introductions of these
methods are given in the following sections.

AR model forecasting

The AR model is the simplest model structure for describ-
ing a dynamic system. It is formulated as follows9:

y(k)¼ +
m

i¼ 1

�ai(k)y(k� i)þ e(k) (6)

where m denotes the order of the AR model and �ai(k) denotes
coefficients. It is generally assumed that E[e(k)] = 0 and
var[e(k)]¼ r2.

The AR prediction model is a linear model that infers with a
future signal ŷ(kþ L) by using a weighted combination of
history signals before time k:

ŷ(kþ L)¼ +
m

i¼ 1

ai(k)y(k� i) (7)

where L is the prediction horizon. The coefficients ai can be
calculated using the least squares method,5 and then the
model can be subsequently used for predicting glucose con-
centrations.

The AR prediction model is easy to implement and can
make complete use of all data. It contains few calculations and
can dynamically determine the model parameters. The order
of the AR model plays an important role in prediction;
however, choosing the correct order is an open problem.
Therefore, the AR model is suitable only for short-term
forecasting.10

ELM model forecasting

The input weights and hidden layer biases of single hidden
layer feedforward networks (SLFNs) can be randomly as-
signed if the activation functions in the hidden layer are in-
finitely differentiable. After the input weights and hidden
layer biases are chosen, SLFNs are in fact a nonlinear map-
ping, and the output weights, which link the hidden layer and
the output layer of the SLFNs, can be analytically determined
through simple generalized inverse operation of the hidden
layer output matrices. Based on this theory, ELM was pro-
posed.20

The procedure to train an ELM can be summarized as
follows.20–22 Given a training set X¼f(xi, yi)jxi 2 Rn,
yi 2 Rm, i¼ 1, . . . , Ng an activation function g(w � xþ b), and a
hidden node number ~N, the following steps are performed:

Step 1: Randomly assign input weight wi and bias
bi, i¼ 1, . . . , ~N.

Step 2: Calculate the hidden layer output matrix H, where

H¼
g(w1 � x1þ b1) . . . g(w ~N � x1þ b~N)

..

. . .
. ..

.

g(w1 � xN þ b1) . . . g(w ~N � xN þ b ~N)

2
64

3
75

N · ~N

(8)

Step 3: Calculate the output weight b by using Eq. 9:

b¼H{Y (9)

where b¼
bT

1

..

.

bT
~N

2
64

3
75

~N · m

and Y¼
yT

1

..

.

yT
N

2
64

3
75

N · m

.

ELM has several interesting and significant features that are
different from the traditional popular gradient-based learning
algorithms (e.g., feedforward neural networks20,23). The learn-
ing speed of ELM is extremely fast, and it has good general-
ization performance. More important is that the ELM learning
algorithm is much simpler than most learning algorithms for
feedforward neural networks.24 Many gradient-based learning
algorithms can be used for feedforward neural networks with
more than one hidden layer, whereas the ELM algorithm at its
present form is still only valid for SLFNs. Fortunately, it has
been proved that SLFNs can approximate any continuous
function and implement any classification application.24 Thus,
reasonably speaking, the ELM algorithm can be efficiently used
in many applications, including BG prediction.

SVR model forecasting

SVR is an attractive approach for modeling. Based on the
unique theory of the structural risk minimization principle,
SVR estimates a function by minimizing an upper bound of
the generalization error.25

Supposing that there are training data f(xl, yl), . . . (xi, yi), . . .
(xn, yn)g, where xi parameters are input patterns and yi pa-
rameters are the associated output values, the basic idea of
SVR is to map the data x into a higher-dimensional feature
space via a nonlinear mapping and perform a linear regres-
sion in this feature space:

f (x)¼wT/(x)þ b (10)

where /(x) is the feature and w and b are coefficients of SVR.
The optimal coefficients can be determined by solving the
following minimization problem26:

min
1

2
+
n

i, j¼ 1

(a�i � ai)
TK(xi, xj)(a

�
j � aj)

� +
n

i¼ 1

[a�i (yi� e)� ai(yiþ e)]

s:t: +
n

i¼ 1

(ai� a�i )¼ 0 ai, a�i 2 [0, C] (11)
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where K(xi, xj)¼/(xi)
T/(xj) is the kernel function and C

is the regularization parameter. There are some kernel
functions such as linear kernel, polynomial kernel, and
gauss kernel. They are inner products in a very high
dimensional space (or infinite dimensional space) but

can be computed efficiently by the kernel trick even
without knowing /(x).

According to Karush-Kuhn-Tucker theory,26 the coeffi-
cients ai, a�i , b can be obtained, and the regression function can
be define as:

FIG. 2. Prediction performance of the four algorithms between 3,050 and 3,200 min. AR, autoregressive; CGM, continuous
glucose monitoring; ELM, extreme learning machine; SVR, support vector regression. Color images available online at
www.liebertonline.com/dia

FIG. 1. Blood glucose prediction results of subject 7 produced by the four algorithms (prediction horizon = 30 min). AR,
autoregressive; CGM, continuous glucose monitoring; ELM, extreme learning machine; SVR, support vector regression. Color
images available online at www.liebertonline.com/dia
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f (x)¼ +
n

i¼ 1

(ai� a�i )K(xi, x)þ b (12)

SVR has been widely applied to time series forecasting.27

However, there still exists an open problem in the practical
application of SVR (i.e., selecting parameters to achieve the
best prediction performance).

The combined predictor

The BG prediction values from AR, ELM, and SVR methods
are denoted as ŷ1, ŷ2 and ŷ3, respectively. Next, the final BG
prediction by using the proposed adaptive-weighted-average
framework is shown in Eq. 13:

ŷ(k)¼w1ŷ1(k)þw2ŷ2(k)þw3ŷ3(k) (13)

Some tests of the proposed method have been performed in
the following section.

Experimental Results and Discussions

To study whether a real-time CGMS can improve gly-
cemic control and the quality of life in patients with T1DM,
the JDRF CGM Study Group conducted a randomized clin-
ical trial that included approximately 450 subjects with
T1DM.28 Ten subjects were selected randomly from the co-
hort. By using the CGMS readings of these 10 subjects, the
new algorithm and three individual algorithms were com-
pared systematically.

Sparacino et al.8 proposed a first-order AR prediction
model with time-varying parameters determined using
weighted least squares. Gani et al.5,9 clinically evaluated

subject-specific AR models with 30 model orders to im-
prove BG management. The results of Zhao et al.29 show
that the best order of the AR model is 7. The experiment
results obtained in this study indicate that the best order of
the AR model is 5, so the AR model order is fixed at 5 in this
study.

Every time series has 860 points with 5-min sampling pe-
riod (in total, 4,300 min). These first 500 points (2,500 min) for
each subject were used for training ELM, and the other 360
points (1,800 min) are validation data. The BG prediction re-
sults between 2,700 and 4,200 min are shown in Figures 1–6.
For ELM, the input node number was 3, and the hidden layer
node number was 25.

Other parameters of SVR were set as C = 50 and e = 0.5. In
addition, local optimization was performed to improve the
prediction performance. According to the prediction perfor-
mance at time k, one kernel function was selected from the
different kernel functions linear kernel, polynomial kernel,
and gauss kernel.

Except for weights, all other parameters of the proposed
method were to the same with those of the individual algo-
rithms.

To quantify the prediction performance, the following in-
dices were used:

1. Root-mean-square error (RMSE) was used to evaluate
the prediction performance. The definition of RMSE is
given in the following equation11:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

k¼ 1

(ŷ(k)� y(k))2

N

vuuut

FIG. 3. Prediction performance of the four algorithms between 3,700 and 3,850 min. AR, autoregressive; CGM, continuous
glucose monitoring; ELM, extreme learning machine; SVR, support vector regression. Color images available online at
www.liebertonline.com/dia
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2. The relative error analysis is defined as follows:

e¼
+
N

k¼ 1

ŷ(k)� y(k)
y(k)

N
· 100%

where ŷ(k) and y(k) are the predicted and measured
values at time k, respectively.

3. Clarke error-grid analysis (CEGA)30–32 is a popular
method to evaluate the BG prediction performance. In
brief, a larger percentage in Zone A means better pre-
diction performance.

4. The ‘‘clinical usefulness’’ of the predicted profile was
quantified using the J index.33 The J index was pro-
posed to optimally design a prediction algorithm by
considering two key factors—the regularity of the pre-
dicted profile and the time gained due to prediction.
The J index can be reliably used as a criterion for
comparing different prediction methods.

Figure 1 shows the prediction performance of the four al-
gorithms with 30-min prediction horizon, where the dotted
line indicates CGMS readings and the star line indicates BG
values predicted by the proposed algorithm. For clarity, Fig-
ure 2 shows the prediction performance between 3,050 and
3,200 min: the CGMS data in this time are steady, and the SVR
provides a good prediction performance of the three algo-
rithms. The new framework tends to trust the SVR forecast-
ing. The new framework provided the best prediction
performance because of the time-varying weights. Figure 3
shows the prediction performance between 3,700 and
3,850 min. The rate of change in this time is violent. At ap-

proximately 3,800 min, both AR and SVR show large predic-
tion errors in the same direction. The ELM also has an error
but in the opposite direction. At this time point, the proposed
framework has a satisfactory performance, and the delay of
the new algorithm is close to those of AR and SVR. The RMSE
values of the AR, ELM, and SVR algorithms and the new
framework are 26.1, 20.5 – 1.7, 50.9, and 19.0 – 0.3, respec-
tively, and the corresponding relative error values are 9.5,
9.8 – 0.4, 17.1, and 7.3 – 0.1, respectively. It is clear that the new
framework has the best prediction performance.

A comparison of the prediction performance between the
proposed framework and the three individual algorithms
shows that the prediction performance of the adaptive-
weighted-average framework is far superior to that of the
three algorithms in most situations studied herein. The
framework makes the best use of the advantages and by-
passes the disadvantages by adjusting the time-varying
weight. As shown in Figure 1, the AR model forecasting has a
strong tracking ability, and the delay between the prediction
and the true value is acceptable. The ELM model forecasting
has a good accuracy, and its prediction is steady and smooth.
When the data were smooth, SVR model forecasting had a
good prediction performance. The framework inherits the
advantage of AR, ELM, and SVR. It has a better accuracy but a
smaller delay. At the same time, the framework bypasses the
disadvantages. For example, when the rate of change of BG is
large, the accuracy of SVM is poor.

Figure 4 shows the weights of the adaptive-weighted-
average framework. It can be seen that the weight is time
varying (i.e., when dealing with different data, the framework
tends to trust different algorithms). For example, from 3,050 to
3,200 min, the weight w3 is far ahead of the others; this means
the SVR plays an important role in this period.

FIG. 4. Time-varying weights in the combined framework (prediction horizon = 30 min). The ‘‘�’’ line represents the weight
of autoregression, the ‘‘ · ’’ line represents the weight of extreme learning machine, and the ‘‘+’’ line represents the weight of
support vector regression. Color images available online at www.liebertonline.com/dia
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Figures 5 and 6 show the BG prediction results of the four
algorithms with prediction horizons of 15 and 45 min, re-
spectively. The comparing relationships of these algorithms in
these two cases (prediction horizon = 15 and 45 min) are sim-
ilar to those of the case when prediction horizon = 30 min.

Figure 7 shows the prediction performance of different
prediction horizons. It is clear that the proposed frame-
work is better than the other three algorithms in terms of
RMSE (mg/dL), relative error, J value, and CEGA (% in
Zone A).

FIG. 5. Prediction performance of the four algorithms (prediction horizon = 15 min). AR, autoregressive; CGM, continuous
glucose monitoring; ELM, extreme learning machine; SVR, support vector regression. Color images available online at
www.liebertonline.com/dia

FIG. 6. Prediction performance of the four algorithms (prediction horizon = 45 min). AR, autoregressive; CGM, continuous
glucose monitoring; ELM, extreme learning machine; SVR, support vector regression. Color images available online at
www.liebertonline.com/dia
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FIG. 7. Prediction performance of the four algorithms (between the different prediction horizons): (a) root-mean-square
error (RMSE) values under different prediction horizons; (b) relative errors under different prediction horizons; (c) J values
under different prediction horizons; and (d) percentage values in Clarke error-grid analysis Zone A under different prediction
horizons. Color images available online at www.liebertonline.com/dia

Table 1. Root-Mean-Square Error Values for 10 Subjects

Subject

1 2 3 4 5 6 7 8 9 10

AR 29.5 11.3 42.6 25.4 18.5 25.4 26.1 14.9 13.6 16.5
SVR 43.5 14.2 61.7 38.2 26.3 38.2 50.9 28.5 18.6 16.9
ELM 33.4 – 1.2 18.8 – 4.9 33.9 – 0.8 20.4 – 1.9 20.7 – 2.1 20.5 – 1.7 20.5 – 1.7 11.8 – 0.3 13.0 – 0.7 14.4 – 0.4
New 22.8 – 0.2 9.7 – 0.2 23.5 – 0.8 18.6 – 0.3 15.6 – 0.2 18.7 – 0.4 19.0 – 0.3 11.4 – 0.4 11.8 – 0.4 12.7 – 0.1

Fifty groups of Monte Carlo simulations were run for both extreme learning machine (ELM) and the new algorithm. Data are mean – SD
values.

AR, autoregressive; SVR, support vector regression.

Table 2. Relative Errors for 10 Subjects

Subject

1 2 3 4 5 6 7 8 9 10

AR 13.2 6.8 28.7 9.9 7.7 9.9 9.4 10.0 10.1 6.7
SVR 15.7 8.1 30.2 14.3 9.6 14.3 17.1 15.1 13.8 6.8
ELM 14.5 – 0.5 13.5 – 3.0 23.9 – 0.6 9.1 – 0.2 8.1 – 0.4 9.1 – 0.2 9.8 – 0.4 8.6 – 0.4 10.0 – 0.3 6.2 – 0.4
New 8.6 – 0.1 5.9 – 0.1 16.6 – 0.7 8.0 – 0.1 6.2 – 0.1 7.8 – 0.1 7.3 – 0.1 7.5 – 0.3 8.7 – 0.3 5.1 – 0.1

Fifty groups of Monte Carlo simulations were run for both extreme learning machine (ELM) and the new algorithm. Data are mean – SD
values.

AR, autoregressive; SVR, support vector regression.
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Tables 1–4 summarize BG prediction accuracy for the 10
subjects in terms of RMSE (mg/dL), relative error, J value, and
CEGA (% in Zone A). Because of the randomness of ELM, 50
groups of Monte Carlo simulations were run for both the ELM
and the new algorithm.

Tables 1–4 indicate that the prediction performances of the AR
model forecasting and ELM forecasting are similar. For example,
for the average RMSE in Table 1, the AR model forecasting and
ELM forecasting show good performance in different subjects,
and the prediction performance of the SVR forecasting is poor.
The adaptive-weighted-average framework is far ahead of the
other three algorithms with respect to the four indices. Tables 1, 2,
and 4 show that the prediction performance is better and the
predictive accuracy is higher while the indices are smaller. For
almost all cases, the three indices provided by new algorithm are
smaller than the other algorithms. In Table 3, the J value of the
new framework is far less than that of the others. According to a
previous study,33 the lower the J value, the better the prediction
performance, and the smaller the delay between the prediction
and measures. In all, there are 4 · 10 = 40 different cases in Tables
1–4, and the proposed framework showed the best prediction
performances in 37 cases (i.e., it produced the best prediction
performance in 92.5% of situations).

Thus, the adaptive-weighted-average framework has the
best BG prediction performance among the four algorithms in
different cases because the framework absorbs the advantages
of the three individual algorithms and bypasses their disad-
vantages. In contrast, the proposed framework has great ro-
bustness not only with respect to data variations but also with
respect to prediction horizon variations.

Conclusions

The adaptive-weighted-average framework proposed in this
study has several significant advantages. First, it has a wide
range of applications (i.e., it has great robustness with respect

to variations on data characteristic, patients, and prediction
horizons). Second, according to the experimental results, the
adaptive-weighted-average framework achieves the best pre-
diction performance compared with the individual algorithms.
More important is that the adaptive-weighted-average frame-
work is universal (i.e., it can combine any prediction algo-
rithm). It is hoped that this framework could be used in clinical
practice to integrate other prediction algorithms.
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