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Abstract
Stresses on blood cellular constituents induced by blood flow can be represented by a continuum
approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet
activation and aggregation are on the order of nm. The coupling of the disparate length and time
scales between molecular and macroscopic transport phenomena represent a major computational
challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with
the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based
on particle methods are better suited. We present a top-scale model to describe bulk flow of
platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics
and present a novel and general no-slip boundary condition that allows the description of three-
dimensional viscous flows through complex geometries. Dissipative phenomena associated with
boundary layers and recirculation zones are observed and favorably compared to benchmark
viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-
grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane
with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits,
and are transported with the flow, flipping and colliding with the walls and interacting with other
platelets.
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INTRODUCTION
Platelet-mediated thrombosis is a complex biochemical process that involves platelet
activation, aggregation and adhesion.3,6 Platelets interact with other blood constituents
regulating thrombus formation and lysis through the complex coagulation cascade in the
hemostatic system of blood.5,29 Over the last decades there has been a considerable effort to
model these processes by computer simulations. The most common class of models treats
blood as a homogeneous continuum and describes blood flow based on Navier-Stokes
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equations solutions. Some modeling strategies consider platelets as individual particles and
shear stress occurring along their trajectories is correlated with platelet activation.23,52

Others consider platelets as interconverting phase fields which in conjunction with proteins
relevant to thrombosis are described by coupled diffusion-convection-reaction equations: a
multitude of models exist, ranging from simpler ones (e.g. Fogelson21, Sorensen et al.46,47)
to extensively detailed models with dozens of chemical species describing the entire
coagulation cascade.30 Most consider one-way coupling, i.e. the flow influences the
biochemistry, whereas some others incorporate a two-way coupling, i.e. the biochemistry
alters the nature of the fluid.2 Although these traditional continuum-based models can
simulate platelet transport, aggregation, adhesion, and interactions with agonists/inhibitors
of activation, a major drawback is the need for various constitutive relations or,
alternatively, simplifying assumptions. At the same time, by considering blood as a
continuum (representing a gap from the 10 nm to the 100 μm between microscopic
experimental biochemistry and the macroscopic scales of fluid dynamics phenomena), these
models are unable to describe the behavior of the blood's individual constituents and active
cells, their interactions, and their effect on its rheological properties.

To gain an insight into the nature of the fundamental processes of platelet activation,
aggregation and adhesion, it is advantageous to develop models and methods able to
simulate directly the disparate length scales of the problem at hand and study the functional
and mechanistic relationships among the intervening players of thrombosis, particularly
platelets, red blood cells, and the fibrin network. Several numerical methods have been
developed in recent years with the objective of simulating deformable bodies flowing
immersed in a fluid. Analytical solutions demonstrating the migration to regions of lower
shear stress in severely simplified settings date back to 1970s,10,51 but only advances
associated with the recovery of Navier-Stokes equations using lattice-gas Boltzmann method
have extended the ability to simulate large numbers of particles suspended in fluids.1,31,32

These methods have shown encouraging results in depicting the complex rheological
behavior of blood and its finite-sized constituents, particularly red blood cells and platelets.
Fluid-solid interaction is usually achieved with the definition of a collision function to
account for the momentum exchange and impose interaction forces on both fluid and
suspended particles, and multiple different approaches have been employed ranging from
lattice-spring models,9 two-dimensional spring meshes,13 combinations with the finite
element method for the solid domain,36 to immerse boundary methods.11,12,22,48,49 A
limitation of these methodologies is associated to its multiple and non-unique formulations,
which render their advantages difficult to assess and can result in their difficult
development, implementation, and extension. Usually, highly expensive simulations in three
dimensions are common and prohibitive, and inherent fluctuations and instabilities in the
resolution of the particulate motion due to the discrete nature of the lattice can occur.

Multi-scale strategies with particle-based methods, such as molecular dynamics (MD) and
dissipative particle dynamics (DPD) have been successfully employed to simulate complex
processes at molecular levels and various hydrodynamic phenomena of viscous fluids at
low-to-high Reynolds numbers at the mesoscopic level and have been touted as appealing
alternatives to develop models describing the heterogeneous nature of blood flow and its
interacting particulates, e.g. Boryczko et al.7, Filipovic et al.20, Fedosov and Karniadakis.17

Recent advancements in high performance computing, parallel processing, and the rapid
growth of computer power has led to the development of large-scale simulation techniques
to overcome the challenges resulting from the enormous computational requirements of such
approaches. Techniques for correct application of no-slip boundary conditions have been
recently developed.18,34 The DPD paradigm possesses important properties at the
mesoscopic scale: complex fluids with heterogeneous particles can be modeled, allowing the
simulation of processes which are otherwise very difficult, if possible at all, to tackle by
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continuum approaches. The DPD approach has demonstrated to be a powerful tool to
simulate complex blood flow behavior, red blood cells interaction, platelet activation,
aggregation, adhesion, and to investigate platelet-mediated thrombosis.7,16,20,35,43,44

In the present study, we extend on our previous efforts of modeling viscous fluid flow in
constricted 3D geometries representing stenosed conduits.19 Instead of the coarse-grained
MD formulation we have previously employed (with modified Lennard-Jones potentials),
we use the DPD formulation to better describe viscous flow behavior. We validate the
operating range of the approximation of incompressible flow by analyzing the resulting fluid
density and viscosity, and velocity and shear stress profiles with the counter Poiseuille flow
for multiple velocities.4 To depart from the cumbersome methodology which employs layers
of frozen particles and is known to introduce computational aberrations on the
approximations of boundary layers,41 we adapt the no-slip boundary condition of Willemsen
et al.50 to develop a general boundary condition that allows the description of any complex
three-dimensional wall enclosing the DPD fluid constructed with triangular meshes. The no-
slip boundary condition methodology consists of the inclusion of fictitious particles beyond
the wall with reversed velocity to develop an equilibrated shear layer and thus naturally
enforcing zero velocity at the wall plane – Willemsen et al.50 method was restricted to two
dimensional problems with walls aligned with one Cartesian axis, and to our knowledge, has
never been further pursued for developing a more general three-dimensional setting and
seems naturally suited to enforce no-slip boundary conditions to complex DPD fluids with
immersed finite-sized particulate. Platelets in suspension are modeled as ensembles of
bound particles constituting an enclosed membrane with an ellipsoid shape following
previously published particle models for red blood cells,39,42 and their self-orbiting motions
under shear (Jeffery's orbits28) and platelet–platelet and platelet-wall interactions when
flowing through a stenosis are observed and analyzed. This current modeling effort (flow of
platelet suspensions) is part of a full multiscale approach to flow-mediated thrombosis
composed of: (i) a bulk-scale model of bulk flow of platelet suspensions with platelets
modeled as coarse-grained ensembles of bound particles (presented here); (ii) a cellular-
scale model based on coarse-grained MD where a single platelet undergoes microstructural
changes due to flow-induced activation (microstructural cytoskeleton rearrangement, growth
of pseudopodia, change of shape from discoid to spherulitic); and (iii) two-way couplings of
both scales, i.e. flow field information passed down from (i) to (ii) and platelet activation
effects brought up from (ii) to (i). Our modeling choice of considering platelets alone and at
different volume fraction than in blood, although not certainly directly applicable to in vivo
physiological situation, is motivated with its natural aptness for experimental validation.
This setting is the basis of our model validation strategy to be conducted by correlation with
real-time observation of gel-filtered platelet suspensions in micro-fluidic channels. Although
this in vitro experimental model certainly does not truly mimic the in vivo scenario, it is
extremely well behaved and controllable to analyze the mechanistic effect of fluid stresses in
platelet activation, aggregation and adhesion and flow-mediated thrombosis.

METHODS
Dissipative particle dynamics (DPD) is a mesoscopic particle-based simulation method.
Details of the DPD formulation have been extensively described (Hoogerbrugge and
Koelman,27 Espanol,14 Groot and Warren24). Briefly, each particle represents “molecular
clusters” rather than individual atoms and interacts with surrounding particles through three
simple pair-wise-additive forces: conservative (repulsive), dissipative (friction), and random
(Brownian). Particle motion is governed by Newton's law. The DPD formulation is
described in full detail the Appendix.
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In the current work we adapt LAMMPS45 to simulate platelets hemodynamics. The
fundamental quantities of the DPD system are its characteristic length rc (particle radius of
influence), particle mass m, and energy kBT. Dimensionless quantities are employed with
respect to these parameters for comparison with Navier-Stokes solutions.25 Following Lei et
al.,34 we work with systems of number density n = 3.0, and we set k = 0.25, a = 25.0, σ =
3.0, γ = 4.5 such that compressibility of water, an approximation of blood plasma, is
obtained.24

Viscosity and equation of state of the DPD fluid
We employ the methodology of Backer et al.3 to determine empirically the dynamic
viscosity μ of the DPD fluid by fitting the parabolic velocity profiles developed in periodic
Poiseuille flow to the analytical solution of the Navier-Stokes equations. A system of size
40×20×20 (all lengths are dimensionless with respect to rc) is divided into two regions onto
each concurrent body forces (ranging from g = 0.001 up to g = 0.2, dimensionless with
respect to kBT/rc) are imposed. Ordinary periodic boundary conditions support the formation
of parabolic flow fields (Fig. 1) and no adverse features incur as no solid boundaries need to
be introduced. Fully developed flow velocity profiles are obtained after 400,000 time steps

of Δt = 0.005 (time is dimensionless with respect to ) by locally averaging
quantities for 5,000 time steps in cubic bins of size 2. The stress tensor is computed with a
stress volume formulation at the particle level with the Irving-Kirkwood model (cf. Fan et
al.15) and pressure is one third of its trace. As an alternative comparison of the measured
viscosity, we employ a theoretical estimate of viscosity obtained by Marsh et al.37 with a
analytical description of the DPD system with Fokker-Planck equations.

Because of the potential for a breakdown of the incompressible fluid flow approximation
with DPD systems (otherwise inherent in continuum based methods for simulating viscous
blood flow), we determine a “speed of sound” in the DPD fluid.18 This is conducted
empirically by analyzing the propagation velocity of pressure pulses with a system of size
200×10×10 (as described above) and applying periodic boundary conditions. The number
density is n = 3.0, except in the region 98.0 ≤ x ≤ 102.0 where n = 6.0 is applied. The spatial
domain is divided into layers of size 2 (in the x direction) and particle velocity is averaged at
teach time step. For comparison, speed of sound is alternatively computed with c2 = ∂p/∂ρ at
constant temperature14 – an equation of state, pressure as a function of density p(ρ), is
determined in a cube of size 10 with periodic boundary conditions applied until equilibrium
is achieved (with n ranging from n = 3.0 up to n = 8.0).

No-slip boundary conditions in complex geometries
We consider complex walls with a connected mesh of triangular elements, each representing
a planar solid wall onto which no-slip conditions are applied. Only particles with the
triangular wall inside their radius of influence are subjected to this solid boundary condition.
Inward normals and isoparametric transformations are defined with consistent counter-
clockwise node numbering. Penetration of particles into the wall is prevented by specular
reflection. Double and triple reflections on adjacent triangles might occur because the
connected mesh enclosing the DPD fluid is concave, and are considered. To enforce no-slip
and the development of boundary layers, we adapt the methodology of Willemsen et al.50

for each triangular element in a local sense. The methodology is described in full in the
Appendix. Fictitious particles are generated by reflecting fluid particles across the triangular
plane (filling the empty space beyond it) and viscous and random interaction forces between
the current particle and the fictitious particles are included in the DPD pair-wise
computations. The velocities of the fictitious particles are inverted such that equilibrated
shear layers are developed across the wall and velocity is zero on the wall (Fig. 2).
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Velocities of individual particles near the wall are not generally parallel to the wall, but the
resultant average transversal component of the velocity field is approximately zero. If the
wall is moving (as in Couette flow), twice the wall velocity is summed.50 A small random
parallel shift is added since in DPD no viscous interaction occurs between particles with
orthogonal velocity difference and relative position.50 In order to eliminate the pressure
imbalance experienced by particles within the region of influence of the wall (as space
beyond it is empty), a normal force that mimics the effect of fluid fictitiously occupying the
empty space is added: assuming a uniform density in this region, the normal repulsive force
is given f = aπn(1–h)3(1+3h)/12, where h is the normal distance of the particle to the wall.50

Complex geometries
Meshes of complex wall geometries are constructed using Gambit (Fluent Inc, New York).
Curved shapes need a sufficiently fine mesh; on the other hand, planar walls necessitate only
one triangle. Rectangular channels need only 2 triangles per wall (top and bottom) and a
three dimensional mild stenosis (64% stenosis with R = 10 and entry/exit length of 12R for
fully development) is defined with 2,106 triangular elements (Fig. 3). Periodic boundary
conditions along the flow direction (on planes y = 0 and y = 140) are imposed. Body forces
mimic pressure gradients driving the flow (g = 0.005 for Poiseuille flow simulation and g =
0.015 for the stenosis respectively). Top and bottom wall velocities of ±2 were considered
for Couette flow boundary conditions.

Fluid particle seeding for the initial condition of the rectangular channels of size 40×10×10
(periodic on y and z directions, width D = 40) employs a lattice of size rc with 3 particles per
element (one particle in the middle of each lattice leftward face) and results in 12,000
particles. Whenever the domain assumes complex shapes, a mesh generator is employed and
we seed particles on the vertexes of a uniform tetrahedral mesh of the stenotic channel such
that n ≈ 3.

Platelet Model
Each platelet is modeled with 444 particles on a triangular mesh of an ellipsoid of size
4×4×2 (an oblate spheroid). This configuration is adapted from existing red blood cell
particle models to the platelets’ usual discoid shape.39,42 Harmonic bonds in between
platelet particles and dihedral angles between adjacent triangles are defined (with potentials
VB = Kb(r– r0)2 and VD = Kd (1 + cos ϕ) respectively, where r is bond length and ϕ the angle
between two adjacent triangles). We consider equilibrium length as the average of bond
length in the initial configuration, r0 = 0.3, and bond and dihedral energies of Kb = 104 and

Kd = 102 (non-dimensional with respect to  and kbT respectively). Harmonic bonds
confer a solid like behavior and an elastic ability to recover from deformation, whereas
dihedral angles grant the membrane with in-plane bending stiffness. The tightly bound
platelet membrane particles prevent fluid particles from penetrating the platelets and result
in a positive response to the pressure force the fluid exerts on their exterior. We have
conducted parametric studies to determine the coarse-grained platelet model, particularly to
set up its number of particles, their initial spatial locations and bond mapping, and the
specific forms of bond and dihedral potential energies and their constants. Once the
geometric aspects of the platelet model were fixed (with a triangular mesh of 444 particles,
2652 bonds and dihedrals per platelet) and the specific forms of bond and dihedral potential
energies were chosen (harmonic potentials), constants Kb and Kd were obtained with
parametric and sensitivity analyses such that the behavior of the platelet model possesses the
hallmarks of suspension flows and is consistent with pre-existing limited experimental
results of micropipette aspiration26 and atomic force microscopy.33 We incorporate 117
platelets with random orientation inside the stenotic channel at the vertexes of another
tetrahedral mesh of the fluid domain, resulting in a total system of 153,162 particles.
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RESULTS
DPD simulations demonstrate the hallmarks of viscous fluid behavior and adequate
hydrodynamic characteristics: the system expands to fill void spaces, transmits shear
stresses across shear layers, and maintains a clearly defined p vs. ρ equation of state. Free
expansion at constant temperature of the DPD fluid allows the determination of an equation
of state (Fig. 4), which shows a strong correlation with a quadratic form as previously
reported by Groot and Warren,24 increases with increasing density as expected, and at n =
3.0 yields c = 3.8180. Alternatively, pressure wave propagation speed was determined
empirically as c = 4.2978 (Fig. 5). Marsh et al.37 estimate for the viscosity of the DPD fluid
results in μ = 1.7531. Backer et al.3 have shown that, although the estimate is useful for
parameter determination and is able to describe general trends, it deviates considerably from
the actual viscosity inferred with the periodic Poiseuille flow method by fitting velocity
profiles to the Poiseuille analytical solution, which results in the consistent value of μ =
1.4971 when g < 0.04 and maximum velocity remains small or similar when compared with
the measured “speed of sound” (Figs. 6 and 7). We observed a breakdown of the Poiseuille

approximation for higher g and  values corresponding to increasing Reynolds
numbers (computed with the averaged maximum velocity at the centerline of the parabolic
velocity profile, μ and n of the DPD fluid, and the width of the channel D): the parabolic
shape is lost, shear stress is badly estimated, and mild to severe density gradients appear in
the DPD solution (Fig. 6). The apparent viscosity determined by fitting to the Poiseuille
solution (Fig. 7) increases, and DPD underestimates the velocity and shear stress profiles if
the consistent value of viscosity obtained for lower regimes is considered for the exact
solution (not shown). The no-slip boundary condition does not introduce any difficulty and
boundary layers are appropriately developed – the steady state Poiseuille and Couette flow

benchmarks are properly approximated for regimes with  (Fig. 8).

The coarse-grained model for platelets shows appropriate phenomenological response. The
deformable membrane keeps its discoid shape after equilibration with the surrounding fluid
particles while preventing them from crossing in. When suspended under shear flows, we
observe a multitude of platelet motions that can be identified as the three-dimensional
counterparts of the well-known Jeffery's orbits of a two-dimensional ellipsoid under shear
(Fig. 9 and Movie S1): the platelet turns and spins along its axes on the direction of shear.28

Portion of this movement is certainly dictated by the random component of the DPD forces
and the complex nature of the system (e.g. the instantaneous 3D orientation of the platelet),
but periods of ordered and consistent flipping on its axes are clearly observed (Fig. 9).
Simulations of suspensions of multiple platelets flowing across a stenosis show remarkable
behavior. Platelets are transported with the flow (with Reynolds number of Re ≈ 20
computed with averaged maximum velocity at the centerline of the inlet cross-section, μ and
n of the DPD fluid, and inlet diameter D), flipping and colliding with the wall and with other
platelets. Platelets accelerate through the stenosis core flow, while near wall platelets and
those trapped in the recirculation zones show lower characteristic velocities and longer
residence times (Figs. 10 and 11, Movie S2). Platelet axial velocity is steady with
approximate value of 0.50 on the wider portion of the channel and accelerates through the
neck of the stenosis up to 1.20 (Fig. 11). We do not observe any accumulation or rarefaction
of fluid in any region and density remains approximately constant everywhere. When only
fluid is considered (no platelets suspended), the DPD flow fully satisfies the continuity

equation, i.e.  describing constant flow rates at each cross section of the
channel at all cross-sections (not shown). When individual platelet velocities are considered
for computing an average representative velocity across corresponding cross-sections (based
on platelet centroid velocity), one obtains 50 ≈ 43.2, an acceptable estimation/validation of
the behavior of the heterogeneous flow of platelet suspensions (considering that continuity is
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only valid for homogeneous incompressible fluids, and only marginally applicable for an
highly heterogeneous platelet suspension such as modeled by the DPD approach).

DISCUSSION
Our particle based model considers platelets as deformable finite bodies, a significant
advantage over previous studies with platelets as point particles with no surface of
volume,41 and results in a built-in two-way coupling between platelets and fluid. Coarse-
grained finite-sized platelet models allow for a natural specification of diverse platelet-
platelet, platelet-wall interactions,38 and with other relevant constituents of blood,
particularly fibrinogen polymerizing into the fibrin network.8 As opposed to the model of
Yun et al.,52 which considers platelets as finite-sized rigid ellipsoids, ours deform in
response to the surrounding environment.

Flow-induced platelet activation occurs in response to stress on platelet constituents, which
can be represented to a certain extent by the continuum approach up to the μm-level;
however, the molecular mechanisms of platelet activation and shape change are on the order
of nm. Coupling of such disparate length and timescales between molecular and
macroscopic transport phenomena represents a major computational and modeling challenge
when using traditional continuum-based approaches. A multi-scale approach based on
particle models for bridging the gap between macroscopic flow scales and the cellular scales
is a more efficient approach. In conjunction with the top-scale model present here (Fig. 10)
where multiple platelets suspended in viscous fluid interact with the fluid, the enclosing
walls and with each other, we are currently developing a cellular-scale model employing
molecular dynamics with nm length scales (bottom-up model). A single platelet is modeled
with multiple sub-constituents (cytoskeleton, a finite thickness lipid bilayer as membrane,
and cytoplasm) evolving during activation as pseudopodia grow and the platelets lose their
natural discoid shape. Coupling of the two models represents a true multi-scale fundamental
model of flow-induced thrombogenicity – information is passed between both scales:
individual platelet activation at the top-scale is obtained from evolution of the cellular scale
occurring in response to environment conditions at the top-scale and communicated down to
the cellular-scale.

Solid boundaries enclosing DPD systems with appropriate no-slip boundary conditions
poses a major challenge for DPD simulations and diverse methodologies have been
developed over the years, each with their own advantages and problems. Solid walls
modeled as layers of frozen particles15,19 introduce severe density fluctuations near the wall
and may allow the penetration of fluid particles.41 Other methodologies employ adaptive
forces,34,40 but their generalization to complex geometries is quite cumbersome. We
develop a general no-slip boundary condition for broad application to complex shaped walls
by adapting the methodology proposed by Willemsen et al.50 and the concept of equilibrated
shear layers (Fig. 2). Solid wall boundaries should address the following conditions: (i)
prevent penetration of fluid particles; (ii) enforce no-slip condition and develop a boundary
layer; and (iii) prevent imbalances that lead to spurious inhomogeneous fluctuations of
density and pressure. Our methodology satisfies these conditions, shows accurate behavior
as compared with the Poiseuille and Couette flow benchmarks (Fig. 8), and is easily applied
to complex geometries by using triangular meshes (Fig. 3).

As our goal is to employ the DPD formulation to approximate incompressible fluid flow, in
particular the resulting density, velocity and stress fields resolved with spatial and temporal
averaging of the particle simulations. We conducted simulations of benchmark solutions
(Poiseuille and Couette flow) under different velocity regimes and we observed that the
approximation of incompressible fluid flow breaks down whenever velocities are
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comparable to or higher than the speed of sound of the DPD system (Fig. 6). Fedosov et
al.18 have observed a deviation from the Navier-Stokes solution on lid-driven cavity flow
and reported the existence of a velocity limit, particularly associated with compressibility
effects. Our analysis was conducted with periodic Poiseuille flow such that its culprit cannot
be attributed to adverse features due to the introduction of no-slip boundary conditions.
Although parabolic profiles in Poiseuille flow can be achieved over a range of flow rates (up

to Re 750), we observe a significant increase of apparent viscosity when  (as
determined by fitting the velocity profile to the analytical solution, Fig. 7). A considerable
breakdown of the approximation of the linear shear stress profile is noted, as well as mild to
severe gradients in density (Fig. 6). A finite limit on shear stress in DPD systems seems to
exist, beyond which parabolic profiles may not be obtained. Under such conditions we have
observed in our stenosis model sharp profiles usually associated with shear-thickening
fluids, and the development of a clearly defined shock wave for extreme pressure
differentials. These effects might be attributed to the compressibility of the DPD system and
result in a breakdown of the approximation of the hydrodynamics of incompressible fluids.
In order to approximate accurately incompressible fluids subjected to higher Reynolds
number flows, a larger system with a higher characteristic length and covering greater
computational distances (such that the ratio rc/D is smaller) will be required, resulting in a
significant increase in the number of particles and computational costs.

Our current modeling effort is hampered by several limitations. Our coarse-grained platelet
model does not capture in full extent the behavior of platelets in suspension. We model
platelet membranes as ensembles of bound particles composing a membrane with
sufficiently extensional and bending stiffness (platelets behave almost rigidly prior to
activation), but the lack of experimental data on the mechanical response of an individual
platelet curtails the development of more accurate and rigorous modeling. Notwithstanding,
our coarse-grained model compares favorably with existing data sets of platelet mechanical
deformation, and demonstrates appropriate rheological behavior – self-orbiting motions in
shear flow and other hydrodynamic and physiologic characteristics in a stenosis model.
Platelets are known to interact biochemically with each other and with walls and we have
not included such effects at the current stage. The major limitation of our current study for
the in vivo description of thrombosis is the absence of red blood cells and other key players
in the complex rheological behavior of blood and their role in flow-mediated thrombosis and
platelet activation, aggregation, and adhesion. Platelets and red blood cells interact, and in
order to have a rigorous description of blood flow, it is necessary to account for their
presence and such interactions. Consequently, our simulations should not be observed as
depicting the physiologic settings of blood flow in the vasculature – in fact, we are modeling
a complex heterogeneous fluid composed of an incompressible fluid phase and suspended
particulate which can be viewed as a suspension of platelets flowing in a stenotic channel
with inert walls.

SUMMARY AND CONCLUSIONS
The hydrodynamic characteristics of viscous fluid flow obtained with the DPD methodology
were studied and compared favorably with continuum based viscous flow solutions. To
enable DPD simulation in complex 3D geometries such as found in the vasculature, we have
developed a no-slip boundary condition tailored to render in a feasible manner complex
three-dimensional geometries enclosing the DPD fluid. A breakdown of the validity of the
incompressibility approximation was observed with increasing velocities, possibly due to the
inability of DPD particles ensembles to support and transmit properly large shear stresses,
indicating that larger simulations must be considered to extend beyond the low Reynolds
number microfluidic flows to the arterial scales with their characteristics medium-to-high
Reynolds number flows.
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We further present a top-scale model of platelet suspension flowing in three-dimensional
stenotic channels. The platelets are modeled as coarse-grained finite-sized ensembles of
particles. We were able to observe well-established blood particulates unique dynamics such
as self-orbiting motions of platelets under shear associated with Jeffery's orbits, as well as
favorable platelet-wall and platelet-platelet interactions in flow inside the stenosis.

Our current and future studies include validation of our multiscale modeling effort to
account for platelet morphological and functional changes upon activation. This is achieved
by interfacing the current DPD mesoscale model with a cellular nano-to-microscale model
of flow-induced platelet activation (including the platelet cytoskeleton and bilayer
membrane, based on a coarse grained molecular dynamics model) in a fully coupled
multiscale approached. The multiscale model will be further developed to include other key
players of blood rheology (particularly red blood cells and fibrin polymerization), and is
intended to capture platelet activation, aggregation and adhesion and others aspects of flow-
mediated thrombosis in an attempt to render physiologic applicability to our multiscale
model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Dissipative particle dynamics formulation
Dissipative particle dynamics is a mesoscopic particle method,24,27 where each particle
represents a molecular cluster rather than an individual atom, and can be thought of as a soft
lump of fluid. The DPD system consists of N point particles of mass mi, position ri and

velocity vi. DPD particles interact through three forces: conservative , dissipative 

and random  forces given by

(1)

(2)

(3)

where eij = rij/rij, with rij = ri – rj and rij = (rij · rij)1/2, is a unit vector in the direction of
particles i and j, and vij = vi – vj is the relative velocity of particle i with respect to particle j.
The coefficients γ and σ define the strength of dissipative and random forces, respectively.
In addition, ωD and ωR are weigtht functions, and ξij is a normally distributed random
variable with zero mean, unit variance and ξij = ξji. All forces are truncated beyond the
cutoff radius rc, which defines the length scale in the DPD system. The conservative force is
given by
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(4)

where aij is the conservative force coefficient between particles i and j. The random and
dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem in
order for the DPD system to maintain equilibrium temperature T.14 This leads to

(5)

(6)

where kB is the Boltzmann constant. The choice for the weight functions is

(7)

where k = 1 for the original DPD method. However, other choices (e.g. k = 0.25) have been
used in order to increase the viscosity of the DPD fluid.15,18 To mimic the effect of a
pressure gradient driving the flow of particles, a body force, given by

(8)

acts in particles located within certain regions of space. Particle i can have  bonds with
other particles. If particle i is bound to particle k, there exists a force in particle i acting in
the eik direction with magnitude determined by the gradient of the harmonic bond potential

(9)

where  is the force constant and r0 is the distance when the force is null. Torsional

energy is added with the definition of proper dihedrals: Particle i can be part of 
dihedrals. If particles i,j k, and l form a proper dihedral, two planes with normal vectors m
and n can be defined with particles i, j and k, and j, k, and l, respectively, i.e.

(10)

(11)

The torsional angle is defined as

(12)

with the sine and cosine of the torsional angle being given by

(13)
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(14)

The harmonic dihedral potential is defined as

(15)

where  is the torsion constant, ϕ0 is the angle of minimum potential, and nijkl is the
multiplicity of minima in a full rotation. Finally, the forces exerted in particle i due to the
harmonic bond and dihedral potentials are obtained with the computation of the gradient of
the potentials, on which the chain rule is useful, i.e.

(16)

(17)

The time evolution of velocities and positions of particles is determined by Newton's second
law of motion

(18)

(19)

which are integrated using the modified velocity-Verlet algorithm.24 Fluid particles will

have no bonds or dihedrals associated to them, i.e.  if particle i is a fluid particle
In our simulations, we consider: (i) all particles have the same mass (i.e. mi = m for all i),
(ii) share equal conservative force coefficients (i.e. aij = a for all i and j), (iii) a negative
pressure gradient is directed along the ey direction (i.e. gy = g and gx = gz = 0), (iv) all bonds

and dihedrals are equal (i.e. share the same functional form of potential, with ,

, nijkl = 1 and ϕ0 = 0).

No-slip boundary condition implementation
We have generalized and implemented Willemsen et al.50 no-slip boundary condition into a
three dimensional framework. The boundary condition is composed of three distinct
components: (i) inclusion of an additional conservative force to balance void space beyond
the wall, (ii) inclusion of additional dissipative and random forces due to interaction with
fictitious particles, and (iii) specular reflection of particles crossing a solid wall. Let us

consider a particle i located at  and let us consider a triangular wall P

composed of vertices (P1,P2,P3), each with coordinates  for j = 1, 2, 3
(Fig. 12 (a)). With the objective of treating triangles with any orientation, we define a
isoparametric transformation from the (x, y, z) coordinate system into a general coordinate
system (ξ,η,ζ) and triangle P becomes triangle P¯ composed of vertices (P¯1,P¯2,P¯3) with
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coordinates  for j = 1, 2, 3 given by (0,0,0), (1,0,0), and (0,1,0),
respectively, in the general coordinate system (ξ,η,ζ) (Fig. 12 (b)). In order to compute the
transformation from P to P¯, it is useful to define vectors u = P2 – P1, v = P3 – P1, n = (u×v)/|
u×v|, ū = u/|u| and v¯ = (v – (ū·v)ū)/|v – (ū·v)ū| such that (ū,v¯,n) form an orthonormal basis.
Vectors u and v correspond to two edges of triangle P, ū is an unit vector aligned with one
triangular edge and n is a unit normal defining the interior side of the triangular wall
(defined by counter-clockwise numbering of triangular vertices). The Jacobian J of the
transformation is given by

(20)

and the transformation matrix M is given by

(21)

The first step of the boundary condition infers if particle i is within the region of influence of
the triangular wall, defined as a layer of thickness rc above the triangular wall (Fig. 12 (b)) –
if outside, the particle does not suffer the influence of the wall, but if inside, it does, and
hence, additional interactions in the force computation must be included. Three additional
interaction forces will be added to particle i: dissipative and random interactions with
fictitious particles beyond the wall and a conservative force that balances particle i with the
void space existing beyond the wall.

The position of the particle i with respect to vertex P1 is given by vector mi = ri – P1, which
transforms to the general coordinate system simply by m ¯i = Mmi and results in coordinates

. The necessary conditions for particle i to be inside the region of influence of

triangular wall P are , , , and  (Fig. 12 (b)).

The additional conservative force introduced to particle i due to the boundary condition is

quite straightforward – note that  is the normal distance of particle i to the wall and n is a

unit vector normal to the wall (and directed inwards), thus  with  (cf. Methods
- No-slip boundary conditions in complex geometries).

Particle i has M neighbors, i.e. particles k located at rk with k = 1,2,..,M whose distance to
particle i is lower than cut-off radius rc. These neighbor particles k will originate fictitious
particles k̃ with which particle i interacts if the fictitious particle lays within one cut-off

radius of particle i. Thus, the normal distance of particle i to the wall  will dictate the
thickness of the layer of neighbors that must be reflected beyond the wall, i.e.

 (Fig. 2). The transformation is applied to all neighbor particles k, i.e. mk =

rk – P1 and m¯k = Mmk such that  is the normal distance to the wall of neighbor particle k.

If , then a reflected fictitious particle k̃ will be considered and dissipative and
random interactions between fictitious particle k̃ and particle i included. The location of
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fictitious particle r̃k is given by  where hr is the random shift parallel to
triangular wall P (Fig. 2). The random shift hr is generated with the aid of two random
numbers, the random shift distance hr and the random shift orientation θr both being
generated with independent Gaussian random number generators with zero mean and
variance rc and π respectively, and is given by

(22)

Random interaction forces are determined simply by distance between fictitious particle k̃
and particle i, i.e. rik̃ = ri – r̃k, whereas dissipative interaction forces take into account the
relative velocity between both, i.e. vik̃ = vi – ṽk. The velocity ṽk of the fictitious particle k̃ is
the reflected velocity of neighbor particle k with the tangential component reversed, and is
given by ṽk = –vk – 2(vk · n)n (Fig. 2). A similar methodology is employed to account for

the interaction between particle i and its corresponding fictitious particle ĩ if . To
conclude, the additional conservative, random and dissipative interaction forces added to
particle i by the imposition of the no slip boundary condition on triangular wall P are

(23)

where M ̃ is the number of fictitious neighbors of particle i introduced.

Lastly, specular reflection of particles that cross the triangular wall P is enforced. We
employ the same transformation to evaluate the location of a given particle i with respect to
the wall and we define a layer of thickness rc above the wall (as for the force calculations)
but with a clearance of size rc beyond the triangle edges (Fig. 12 (b)) to account for the
possibility of particles that are slightly offset with triangle P but traveling towards it. Particle
i is inside the region of possible reflection on triangular wall P if satisfies all of these

conditions: , , , and

 (Fig. 12 (b)). The location of particle i in the current time step  and

previous time step  define the line of its trajectory, i.e.  with λ ∈]– ∞,
∞[. We identify the location in the trajectory of the intersection point between the line and
the triangular wall plane by evaluating λ with

(24)

which will translate into a valid intersection if 0 < λ < 1. Once λ is determined, the location

of the intersection point is given by . The intersection point is not
guaranteed to be in the triangular region, thus we employ the transformation once again to
obtain mp = pi – P1, m¯p = Mmp and evaluate if the intersection point is indeed in the

triangular wall, i.e. if and only if , , and  (note that in this case

).

Soares et al. Page 13

Ann Biomed Eng. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



If so, the particle should be reflected, i.e. its reflected current position  is updated by

adding to  twice the normal component of the trajectory beyond the wall (Fig. 12 (c)),
i.e.

(25)

and the velocity is also updated by subtracting twice the normal component (Fig. 12 (c)), i.e.

(26)

Finally, because we consider walls composed of multiple adjacent triangles defining a
concave surface, it is necessary to account for possible multiple reflections occurring in the
same time step (Fig. 12 (d)), i.e. a particle is reflected from one triangle in such a way that it
should be reflected by adjacent triangles. We implement such multiple reflections for the
cases on which the intersection point of the first reflection was located within one cut-off

radius inside the triangle (Fig. 12 (b)) determined by conditions , or

, or , each condition corresponding to
one edge of the triangular wall. In such case, the previous position is updated with the

intersection point, i.e. , and the same algorithm is performed with respect to the
corresponding adjacent triangles.
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FIGURE 1.
Exact solution of periodic Poiseuille flow. By applying two opposing body forces on all
fluid particles and periodic boundary conditions in all three directions, one obtains counter-
Poiseuille flow without the need to incorporate no slip boundary conditions and their DPD
associated issues. The properties of the fluid, in particular its viscosity, can then be
determined from the Poiseuille flow.
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FIGURE 2.
Schematic of the implementation of the no-slip boundary condition. Particles moving across
the wall are reflected with specular reflection. Particles within the zone of influence of the
wall have viscous and random interactions with fictitious particles such that an equilibrated
shear layer is developed and zero tangential velocity lies at the wall surface. An extra
repulsive force is considered accordingly to balance the empty space across the wall and
mimic existence of fluid.
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FIGURE 3.
Geometry of a three-dimensional stenotic channel. A 64% stenosis with entry length/exit
length 12R for fully developed flow is modeled using 2,104 triangular surfaces. No-slip
boundary conditions are imposed on each of the triangles constituting the wall.
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FIGURE 4.
Equation of state of the DPD fluid. Variation of pressure vs. density upon expansion at
constant temperature. Speed of sound in the DPD fluid is obtained indirectly as the square
root of the slope of the curve describing the equation of state 14, and at n = 3.0 results in c =
3.8180.
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FIGURE 5.
Propagation of a pressure pulse. A compression-type wave propagates through the fluid at
constant speed. Dissipation naturally occurs and the pressure pulse loses intensity and
spreads across space as it travels. Speed of sound is inferred directly and empirically from
the simulation resulting in c = 4.2978.
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FIGURE 6.
Velocity, shear stress and density profiles developed with periodic Poiseuille for different
body forces/pressure gradients/Reynolds numbers (dots – numerical simulations, lines –
exact solutions). We observe a breakdown of the approximation of incompressible fluid flow
as the maximum velocity increases and becomes comprarable or higher than c. Although
parabolic profiles are obtainable up to high velocities and Re 750, shear stress accros the
fluid is poorly approximated at this velocity range and mild density gradients develop as

.
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FIGURE 7.
Apparent viscosity calculated with periodic Poiseuille flow. Viscosity was determined by
fitting the observed velocity profile to the exact Poiseuille solution. We observe a constistent
increase in apparent viscosity as body force and maximum velocity increases, and the
aproximation of incompressible fluid breaks down.
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FIGURE 8.
Poiseuille and Couette flow in channels enclosed by solid walls. We have validaded our
methodology for imposing no-slip boundary conditions with the Poiseuille and Couette flow
benchmarks. The velocity profiles are well approximated. Shear stress profiles shows
excelent agreement with the analytical solutions for incompressible fluids (linear and
constant respectively) and density fluctuations near the wall do not occur remaing constant
across the channel (not shown).
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FIGURE 9.
Coarse-grained finite-size platelet modeled suspended in shear flow. We employ 444
particles, defined with a triangular mesh, to describe an ellipsoid platelet membrane
connected by harmonic bonds and harmonic dihedral angles. The model shows great
phenomenological behavior and we observe the platelet undergoing three-dimensional
counterparts of Jeffery's motions, flipping and spinning on its axes. Movie S1 of
supplemental material depicts a portion of the simulated platelet self-orbiting motion for
15,000 time steps.
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FIGURE 10.
Suspension of platelets flowing in a three-dimensional stenotic channel. The Reynolds
number of this flow is approximately 20 (computed with average maximum velocity at the
centerline of the inlet cross-section, μ and n of the DPD fluid and diameter D).
Extraordinary phenomenological behavior is observed - platelets are transported with the
flow, flipping and colliding with other platelets and the wall, accelerating across the stenosis
neck and becoming trapped in the recirculation zones distally. Movie S2 of supplemental
material depicts the transport of platelets in the stenotic channel during 5,000 time steps at 3
different stages of the simulation (for t = [0; 5,000Δt], t = [95,000Δt; 100,000Δt], and t =
[195,000Δt; 200,000Δt].
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FIGURE 11.
Axial velocity of platelet centroid vs. axial distance and radial distance. Platelet velocity is
higher across the stenosis neck and in core flow, whereas near-wall platelets and those
trapped in the recirculation zones (Fig. 10) have lower velocities and longer residence times.
Direct comparison of platelet centroid velocity with the continuity equation for
incompressible homogenous fluids results in a decent estimation/validation of the behavior
of platelets across the stenosis.
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FIGURE 12.
The generalization of Willemsen et al.50 no-slip boundary condition employs isoparametric
transformations from all triangular elements defining the complex wall geometry defined in
the coordinate system (x,y,z) into coordinate system (ξ,η,ζ) ((a) and (b)). Specular reflection
is enforced to particles that cross the wall by reflecting their normal position and normal
velocity component (c). Walls enclosing the DPD fluid are concave; hence an algorithm to
handle multiple reflections was developed (d).
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