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Microrchidia (MORC) is a highly 
conserved nuclear protein super-

family with widespread domain archi-
tectures that intimately link MORCs 
with signaling-dependent chromatin 
remodeling and epigenetic regulation. 
Accumulating structural and biochemi-
cal evidence has shed new light on the 
mechanistic action and emerging role 
of MORCs as epigenetic regulators in 
diverse nuclear processes. In this Point-
of-View, we focus on discussing recent 
advances in our understanding of the 
unique domain architectures of MORC 
family of chromatin remodelers and 
their potential contribution to epigen-
etic control of DNA template-dependent 
processes such as transcription and DNA 
damage response. Given that the deregu-
lation of MORCs has been linked with 
human cancer and other diseases, fur-
ther efforts to uncover the structure and 
function of MORCs may ultimately lead 
to the development of new approaches to 
intersect with the functionality of MORC 
family of chromatin remodeling proteins 
to correct associated pathogenesis.

Introduction

Microrchidia (MORC) is a relatively 
uncharacterized, highly conserved 
nuclear protein family from prokaryotic 
to eukaryotic cells.1,2 To date, there are five 
members of the MORC family in humans, 
namely, MORC1 (also called MORC, 
ZCW6 or CT33), MORC2 (ZCW3, 
ZCWCC1, KIAA0852 or AC004542.
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C22.1), MORC3 (ZCW5, ZCWCC3, 
NXP2 or KIAA0136), MORC4 (ZCW4, 
ZCWCC2, FLJ11565 or dJ75H8.2) and 
the divergent SMCHD1 (structural 
maintenance of chromosomes flexible 
hinge domain containing 1) (KIAA0650) 
with chromosome condensation protein 
SMC-type hinge domains in addition 
to the MORC module (www.genecards.
org).1,3-5

Emerging evidence shows that mem-
bers of the MORC protein superfamily 
exert tissue-specific expression patterns 
with a wide range of biological functions  
(Table 1). In this context, it was ini-
tially thought that MORC1 is primarily 
expressed in male germ cells and regu-
lates mammalian germ cell development 
and meiosis.3,6 However, recent studies 
provided the evidence that MORC1 is 
frequently expressed in multiple myeloma 
cells7 and is frequently mutated in pri-
mary and metastatic estrogen recep-
tor-positive lobular breast cancers.8 
In contrast, MORC2 is ubiquitously 
expressed in human cells and tissues.4,16,17 
Gene expression profiling studies revealed 
that the levels of MORC2 expression are 
upregulated in breast cancer tissues and 
in situ carcinomas, as compared with 
adjacent normal breast tissues,9 and asso-
ciated with the recurrence of triple-nega-
tive breast cancer.10

Promyelocytic leukemia-nuclear body 
(PML-NB) is a dynamic subnuclear 
macromolecular structure formed by 
PML and Sp100 proteins and has been 
implicated in the regulation of diverse 
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Domain Architectures of MORCs

GHKL-type ATPase domain. One char-
acteristic of the MORC protein family is 
the presence at the N-terminus of a highly 
conserved GHKL (DNA gyrase, hsp90, 
histidine kinase and DNA mismatch 
repair enzyme MutL) domain combined 
to a carboxyl-terminal S5 domain1-3,27 
(Fig. 1A). The GHKL domain contains 
conserved ATP binding motifs, and the 
S5 domain usually provides a conserved 
basic residue that functions similarly to 
the arginine or lysine finger observed in 
various phosphorylation reaction.1 Thus, 
the GHKL+ S5 domain constitutes an 
active GHKL-type ATPase module that 
is involved in ATP binding and hydrolysis 
and plays crucial roles in DNA metabo-
lism and signaling transduction.1,2,28 In 
contrast, the ATPase subunits of the well-
characterized, four classes of chromatin 
remodeling complexes including SWI/
SNF (SWItch/sucrose nonfermentable), 
ISWI (imitation switch), CHD (chro-
modomain, helicase, DNA binding) and 
INO80 (inositol requiring 80) contain a 
common Snf2-like ATPase domain29,30 
(Fig. 1B). Interestingly, the GHKL-type 
ATPase is also found in other prokary-
otic and eukaryotic chromatin-related 
proteins, such as heat shock protein 90,31 
DNA repair proteins of the MutL fam-
ily,1,32,33 the ATPase subunits of the topoi-
somerases,34 SMCHD family member 
GMI1 (gamma-irradiation and mitomy-
cin C induced 1) in Arabidopsis thaliana35 
and defective in meristem silencing 11 

the underlying mechanism of MORC4 in 
the development and progression of lym-
phoma remain unexplored.

SMCHD1 belongs to the structural 
maintenance of chromosome (SMC) gene 
superfamily that plays fundamental roles 
in higher-order chromosome organization 
and dynamics.22,23 Protein sequence anal-
ysis revealed that mouse Smchd1 shares 
86% sequence identity with its human 
homolog.24 SMCHD1 has been recently 
identified as a causal genetic determinant 
of facioscapulohumeral dystrophy type 
215 as well as a potential tumor suppressor 
in human cancers.24 It is noteworthy to 
mention that SMCHD1, like MORC3,12 
is a potential substrate of sumoylation,25 
but whether and how the sumoylation 
modification plays a role in the regulation 
of SMCHD1 function under physiologi-
cal and pathophysiological conditions 
remains to be tested.

The accumulating structural and bio-
chemical evidence has provided new per-
spective about the mechanism of action 
and functions of MORCs. In particular, 
MORCs are becoming increasingly rec-
ognized as new epigenetic regulators of 
fundamental biological processes.4,26 In 
the following sections, we discuss recent 
advances in our understanding of the 
domain architectures of MORCs, the 
intriguing roles of MORCs in epigen-
etic regulation of transcription and DNA 
damage response, and the potential con-
nection between these two processes.

cellular functions, including transcrip-
tion, DNA repair and tumor suppres-
sion.18-20 Interestingly, MORC3 has been 
shown to localize on PML-NBs and to 
induce p53-dependent premature senes-
cence through regulating p53 activation 
and localization into PML-NBs.11 More 
recent studies demonstrated a two-step 
mechanism involved in the co-localiza-
tion of MORC3 with PML-NBs.12 In this 
context, MORC3 functions as a “molec-
ular clamp” through the ATPase cycle 
to form MORC3 nuclear domains in a 
PML-independent manner. MORC3 also 
associates with PML via its sumoylation 
modification.12 Given that many of the 
proteins that accumulate in PML-NBs 
are putative epigenetic factors such as his-
tone methyltransferases, histone deacety-
lases or DNA methyltransferases,21 it is 
conceivable that MORC3 is likely to be 
an epigenetic regulator in diverse biologi-
cal processes. In addition, it is interesting 
to note that the expression of MORC3 
is significantly altered in normal periph-
eral blood leukocytes following treat-
ment with chemotherapy agents, but its 
suspected role in chemotherapy response 
remains to be determined.13 In contrast, 
MORC4 mRNA is widely expressed at 
low levels in normal tissues, with highest 
expression levels in placenta and testis.14 
Recently, MORC4 has been identified as 
a potential lymphoma biomarker, as it is 
highly expressed in about 66% diffuse 
large B-cell lymphomas patients and in 
multiple B-cell lymphoma-derived cell 
lines.14 However, the functional role and 

Table 1. Expression patterns of MORCs

Expression patterns Functions References

MORC1

Specific expression in male germ cells Spermatogenesis 3, 6

Frequent expression in multiple myeloma cells Unknown 7

Mutation in lobular breast tumors Unknown 8

MORC2 Upregulation in breast cancer tissues and in situ carcinomas
Association with the recurrence of triple-negative breast 

cancers
9, 10

MORC3
Co-localization with PML-NBs

Regulation of p53 activity and induction of cellular senes-
cence

11, 12

Altered expression following chemotherapy agent treatment Unknown 13

MORC4
High expression in diffuse large B-cell lymphomas patients 

and in multiple B-cell lymphoma-derived cell lines
Unknown 14

SMCHD1 Ubiquitous expression in mammalian cells
A causal genetic determinant of FSHD2 15

Tumor suppressor 24

PML-NBs, promyelocytic leukemia-nuclear bodies; FSHD2, facioscapulohumeral muscular dystrophy type 2.
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retains the histone H3 binding interface 
and predominantly functions as a meth-
ylated H3K4 binding domain, similar 
to the conventional PHD domain2,37-39,41 
(Table 2).

In addition to MORCs, the ZF-CW 
domain is also present in other chro-
matin-related factors (www.uniprot.
org/uniprot), such as Arabidopsis thali-
ana histone-lysine N-methyltransferase 
ASHH2,42 HSI2 (high-level expression of 
sugar-inducible gene 2), HSL1 (HSI2-like 
1),43,44 methyl-CpG-binding domain-con-
taining protein 1 (AtMBD1), AtMBD2, 
AtMBD3, AtMBD4, AtMBD12,45,46 

epigenetic marks on DNA.4,40 In this con-
text, another widespread domain of the 
MORC proteins is a carboxyl-terminal 
PHD-X/ZF-CW domain40 (Fig. 1A). 
The ZF-CW domain is a motif of about 
60 amino acids comprising at least four 
cysteine (C) and two tryptophan (W) res-
idues that is frequently found in proteins 
involved in epigenetic regulation.37,38,40 
This domain is an N-terminally trun-
cated version of the zinc-binding PHD 
(plant homeodomain) finger domain that 
lacks the first and third metal-chelating 
dyads of the binuclear treble clef fold.37,41 
Despite this structural modification, it 

(DMS11) in Arabidopsis thaliana.36 It has 
been shown that the MORC ATPase is 
involved in gene silencing in Arabidopsis 
thaliana26,36 and in the regulation of chro-
matin architecture in response to DNA 
damage signals in human cells4 (Table 2). 
Thus, the GHKL-type ATPase module is 
becoming a new player in epigenetic regu-
lation of transcription and DNA damage 
response in plants and mammals.

PHD-X/ZF-CW domain. In addi-
tion to the GHKL-ATPase domain, dif-
ferent members of the MORC family 
show fusions to other domains that play 
a critical role in recognizing different 

Figure 1. Comparison of the domain architecture between the MORC family (A) and the well-characterized four classes of chromatin remodeling com-
plexes (B). (A) Members of the MORC family contain a conserved GHKL-type ATPase domain at their N-terminus, a PHD-X/ZF-CW domain in their midst 
and varied coiled-coil domains. In addition, MORC2 protein contains a chromo-like domain at its carboxy-terminus. (B) The ATPase subunits of the 
four classes of chromatin remodeling complexes including SWI/SNF (SWItch/sucrose non-fermentable), ISWI (imitation switch), CHD (chromodomain, 
helicase, DNA binding) and INO80 (inositol requiring 80) contain a common Snf2-like ATPase domain and other functional domains as indicated.29,30

Table 2. Domain architectures of MORCs

Domain architectures Functions References

GHKL-type ATPase domain
Gene silencing in Arabidopsis thaliana 26, 36

DNA damage response 4

PHD-X/ZF-CW domain Histone recognition module for methylated histone H3 lysine 4 37–39

Chomo-like domain Unknown -

Coiled-coil domain Unknown -
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to extracellular and intracellular stimuli. 
Interestingly, our recent study revealed 
that signaling-dependent phosphoryla-
tion of MORC2 at lysine 739 that local-
izes between the PHD-X/ZF-CW domain 
and the chromo-like domain controls its 
ATPase activity responsible for chromatin 
remodeling in response to DNA damage 
signals, but he mechanastic detail remains 
elusive.4

Functions of MORCs

MORCs and transcription. Accumulating 
evidence suggests that MORCs play a 
conserved role in transcription (Table 3). 
In this context, two Arabidopsis genes, 
AtMORC1 (also known as CRT1) and 
AtMORC6 (also known as DMS11) are 
involved in heterochromatin condensa-
tion and gene silencing in Arabidopsis 
thaliana.26 Arabidopsis thaliana CRT1 
(compromised for recognition of Turnip 
Crinkle virus) is a prototypic eukaryotic 
member of the MORC superfamily with 
a conserved GHKL-ATPase motif.27,89 It 
has been recently shown that CRT1 binds 
DNA, exhibits endonuclease activity, and 
has important nuclear functions during 
immune response.88 In contrast, DMS11 
is a GHKL-type ATPase that is also 
involved in RNA-directed DNA meth-
ylation in Arabidopsis thaliana.36 In this 
context, DMS11 interacts with DMS3, 
which lacks ATPase motif, and provides 
the missing ATPase function for DMS3, 
and consequently, cooperate in the RNA-
directed DNA methylation pathway to 
promote transcriptional repression.36

Similarly, MORC2 has been shown 
to repress carbonic anhydrase IX (CAIX) 
gene expression in gastric cancer cells 
through interacting with and recruiting 
histone deacetylase 4 (HDAC4) onto the 
CAIX promoter.16 In addition, MORC3 is 
a nuclear matrix-associated protein with 
RNA binding activity, raising the pos-
sibility that MORC3 might have a novel 
function in nuclear RNA metabolism.5 In 
support of this notion, MORC3 associates 
with SUMO-2 and is required for tran-
scriptional repression.85

Consistent with the above observa-
tions, SMCHD1 has a critical role in 
epigenetic gene silencing.22 In this con-
text, SMCHD1 localizes to the inactive 

subunits SMARCC1 and SMARCC2, 
AT-rich interactive domain-containing 
protein 4A (ARID4A), ARID4B, chro-
modomain Y-like protein 2 (CDYL2), 
testis-specific chromodomain protein Y 
1 (CDY1), CDY2, M-phase phospho-
protein 8 (MPHOSPH8), male-specific 
lethal 3 homolog (MSL3) and mortality 
factor 4 like 1 (MORF4L1).51-53 These 
proteins have been widely documented 
with respect to dominant functions in 
chromatin remodeling and the regula-
tion of gene expression in health and 
disease.51-53 However, the function and 
mechanism of action of the chromo-like 
domain in MORC2 protein have not yet 
been elucidated.

Coiled-coil domain. The coiled-coil 
domain typically consists of two to five 
α-helices wrapped around each other into 
super-helical structures and is found in 
about 10% of all protein sequences.55-57 
Accumulating evidence has suggested that 
the coiled-coil domain is an important 
structural determinant for the regula-
tion of protein-protein and protein-DNA 
interaction,57-66 protein stability,67,68 pro-
tein functional activation,65,69 subcellular 
localization,65,70-72 gene transcription,73,74 
DNA damage response75-78 and signaling 
transduction.66,79-83 Interestingly, MORC1 
and MORC2 contain the predicted three-
stranded coiled-coil domain that is absent 
in both MORC3 and MORC4 pro-
teins.40 Instead, MORC3 and MORC4 
have an additional two-stranded coiled-
coil motif near their carboxyl-terminus40 

(Fig. 1A). However, the implication of 
these conserved coiled-coil domains in 
emerging MORC functions remains to be 
investigated.

Collectively, recent structural and bio-
chemical studies have defined MORCs as 
potential epigenetic regulators of many 
basic biological processes. It is becoming 
increasingly clear that crosstalk between 
different structural domains plays an 
important role in the regulation of pro-
tein functions. One case in point is the 
human chromatin remodeler CHD4, 
whose PHD and chromo domains asso-
ciate with its ATPase motif and regulate 
its ATPase activity.84 However, it remains 
unclear whether and how these structural 
domains of MORCs act in concert to gov-
ern their biological functions in response 

human lysine-specific histone demethyl-
ase 1B (KDM1B) (also known as LSD2 or 
AOF1),47,48 zinc finger CW-type PWWP 
domain protein 1 protein 1 (ZCWPW1)37 
and ZCWPW2. Recent studies have 
shown that HSL1 interacts with histone 
deacetylase 19 (HDA19) through its 
ZF-CW domain and recruits HDA19 to 
repress the expression of seed maturation 
genes in seedlings.43 In addition, KDM1B 
contains a unique N-terminal ZF-CW 
domain that is not present in KDM1A 
(also known as LSD1 or AOF2)47,49 and 
is required for its demethylase activ-
ity and transcriptional repression activ-
ity.49,50 Furthermore, structural and 
biochemical evidence has shown that the 
ZF-CW domains of ASHH2, ZCWPW1, 
MORC3, MORC4 and HSI2 proteins are 
novel histone recognition modules with 
specifically for methylated histone H3 
lysine 4,37-39 but their binding preference 
for the histone H3 methylation status may 
vary in different proteins.38 These observa-
tions suggest that the ZF-CW domain is 
involved in chromatin regulation through 
the recognition of epigenetic signals.37

Chomo-like domain. The chromo-like 
domain is a widely distributed sequence 
motif comprising about 40–50 amino acids 
and is involved in the epigenetic regulation 
of heterochromatin function and euchro-
matic gene expression.51-53 Computational 
analysis of MORC2 sequence, through a 
hidden Markov model search using the 
JACKHMMER program (hmmer.janelia.
org) for further conserved domains that 
might have previously eluded detection, 
recognized a novel chromo-like domain 
that recovers the first chromo-like domain 
of histone methylase SETDB154 (Fig. 1A). 
All elements comprising the core SH3-
like fold of the chromo-like domains are 
conserved in the version of the domain 
found in MORC2,41 suggesting that it 
is likely to bind to lysines in histones. 
Chromo-like domain is widely present in 
various chromatin-associated proteins in 
humans (www.uniprot.org/uniprot), such 
as the chromodomain-helicase-DNA-
binding (CHD) protein family members 
(CHD1–9), chromobox protein homolog 
(CBX) family members (CBX1–8), his-
tone acetyltransferases KAT5 and KAT8, 
histone methyltransferases SUV39H1 
and SUV39H2, SWI/SNF complex 
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complex in recognition and signaling of 
DSBs in the context of chromatin remains 
to be investigated in the future.4 In addi-
tion, it has been well documented that the 
INO80 chromatin remodeling complex is 
recruited to DSB sites through its inter-
action with γH2AX.96,97 Thus, it will be 
interesting to examine whether MORC2-
containing chromatin remodeling com-
plex is recruited to DNA damage sites and 
whether this recruitment depends on its 
interaction with γH2AX.

Another interesting finding is that 
MORC2 exerts a histone exchange activ-
ity that enables to replace the nucleosomal 
H2AZ-H2B dimer with the canonical 
H2A-H2B dimer in a phosphorylation- 
and ATPase-dependent manner.4 However, 
the functional implication of MORC2-
mediated histone exchange in DSB repair 
or other basic biological processes remains 
largely unknown. Interestingly, a recent 
study revealed that the p400 remodel-
ing ATPase utilizes its ATPase activity to 
exchange histone H2AZ onto nucleosomes 
at DSBs.98 Moreover, the H2AZ exchange 
promotes specific patterns of histone 
modification and regulates the loading of 
the DSB repair complexes at DSBs, thus 
contributing to DSB repair.98 Similarly, 
the INO80 chromatin remodeling com-
plex also has a histone-exchange activity 
that exchanges nucleosomal H2AZ-H2B 
with free H2A-H2B dimers to promote 
genome stability.99 In S. cerevisiae, the 
SWR1 chromatin remodeling complex 
catalyzes ATP-dependent exchange of 
nucleosomal histone H2A for H2AZ  
(S. cerevisiae Htz1) that is closely linked 
to the tight regulation of transcription and 

signals, MORCs have been predicted to be 
a component of the DNA damage response 
signaling network in addition to its role 
in transcription3 (Table 3). In support of 
this notion, CRT1 (AtMORC1) has been 
shown to enhance tolerance to DNA-
damage agent mitomycin C, indicating 
that CRT1 is involved in DNA damage 
repair.88 Our recent study discovered that 
MORC2 is activated via phosphorylation 
by extracellular DNA damage signals and 
facilitates an ATPase-dependent chroma-
tin remodeling following DNA damage 
induction, thus promoting DNA double-
strand break (DSB) repair and cell sur-
vival4 (Fig. 2).

The histone variant H2AX is a key 
chromatin component in cellular responses 
to DSBs and, in particular, the phosphor-
ylation of H2AX (termed γH2AX) by 
the phosphatidylinositol 3-kinase-related 
kinases (PIKKs) ataxia telangiectasia 
mutated (ATM), ataxia telangiectasia and 
Rad3 related (ATR) and DNA-dependent 
protein kinase (DNA-PK) is a specific and 
key coordinator of DDR signaling.91-94 
Our laboratory has recently demonstrated 
that MORC2 promotes the induction of 
γH2AX following DNA damage, but has 
no any effect on the expression and activa-
tion of the ATM, ATR, DNA-PK protein 
kinases.4 Similarly, the well-characterized 
SWI/SNF chromatin remodeling com-
plex regulates DNA damage-induced 
γH2AX induction, but does not affect 
the expression of the above mentioned 
PIKK kinases, or their activation and/
or recruitment to DSBs.95 Thus, a func-
tional crosstalk between the MORC2-
containing complex and the SWI/SNF 

X chromosome and has a critical role in 
the maintenance of X inactivation and 
the hypermethylation of CpG islands 
(CGIs).22 A recent study further pointed 
out that inactive X chromosome CpG 
island methylation occurs via either 
Smchd1-dependent or independent path-
way.86 In this context, a subset of CGIs 
is methylated at a relatively fast rate fol-
lowing the onset of X inactivation that is 
independent of the chromosomal protein 
Smchd1 in many cases. In contrast, meth-
ylation of other CGIs proceeds relatively 
slowly and requires Smchd1.86 Smchd1 
has been recently identified as an epigen-
etic modifier of the D4Z4 metastable epi-
allele and as a causal genetic determinant 
of facioscapulohumeral dystrophy type 
2.15 Interestingly, a recent study identified 
Smchd1 as a tumor suppressor in onco-
gene-driven models.24 Lack of Smchd1 
is not inherently oncogenic, but loss of 
Smchd1 accelerates Eμ-Myc-driven B-cell 
lymphomas by deregulating expression of 
a subset of Polycomb-repressive complex 
2 and mixed lineage leukemia fusion 
protein target genes.24 However, lack of 
Smchd1 does not affect overall telomere 
length in mice.90 Interestingly, DMS3, 
a protein with homology to Smchd1 in 
Arabidopsis thaliana, has been shown to 
be required for RNA-mediated DNA 
methylation.87 In support of this notion, 
the GHKL ATPase DMS11 physically 
interacts and cooperates with DMS3 
in the RNA-mediated DNA methyla-
tion pathway to promote transcriptional 
repression.36

MORC and DNA damage response 
(DDR). Given their nuclear localization 

Table 3. Functions of MORCs in transcription and DNA damage response

MORCs Functions References

Transcription

MORC2 Transcription repression of CAIX gene 16

MORC3 SUMO-mediated transcriptional repression 85

SMCHD1 X inactivation and CpG island hypermethylation 22, 86

DMS3 (Arabidopsis) RNA-mediated DNA methylation 36, 87

AtMORC1 (CRT1) Heterochromatin condensation and gene silencing 26

AtMORC6 (DMS11) Heterochromatin condensation and gene silencing 26

RNA-directed DNA methylation 36

DDR

MORC2 Chromatin remodeling and DNA repair 4

AtMORC1 (CRT1) Tolerance to DNA-damage agent mitomycin C 88

GMI1 (Arabidopsis) Repair of DNA double-strand breaks 35

CAIX, carbonic anhydrase IX; DMS, defective in meristem silencing; GMI1, gamma-irradiation and mitomycin C induced 1.
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analysis to delineate distinct non-redun-
dant roles of these proteins in various 
cellular responses await functional and 
biochemical evaluation. To this end, a 
recent report by the authors has provided 
a first-of-its-kind, detailed biochemical 
analysis supporting the role and chro-
matin remodeling functions of MORC2 
protein for optimal cellular response 
to genotoxic stress,4 and thereby estab-
lished a functional link between this 
novel nucleosome-dependent ATPase 
and genome-surveillance mechanisms 
(Fig. 2). Intriguingly, MORC2’s ATPase-
dependent chromatin remodeling function 
is dictated by upstream kinase dependent 
signaling in response to DNA-damage 
response and growth factor signaling.4 

manner and involved in the repair of DNA 
double-strand breaks, presumably, by 
homologous recombination.35 However, 
it remains unknown whether the mam-
malian SMCHD1 plays a role in DNA 
repair in addition to its known function 
in X-inactivation.35

MORCs: Moving Forward

The evolutionary contextual and gene 
neighborhood studies on prokaryotic 
MORCs and their eukaryotic relatives 
as well as recently emerging structural 
and biochemical evidence have defined 
MORCs as new players in epigenetic reg-
ulators of genome.1,2,4,26,37,38 Despite these 
great strides a detailed comprehensive 

genetic stability.100,101 Given these interest-
ingly observations, it will be important to 
examine whether and how the MORCs 
and other chromatin remodeling com-
plexes coordinately reorganize chromatin 
architecture in response to DNA damage 
and other stresses.

In addition, given that MORC3 local-
izes on PML-NBs,11,12 which are intrinsic 
elements of the cellular response to DNA 
damage,12,102 it would be exciting to exam-
ine whether MORC3 is implicated in DNA 
damage response in the future. In addition, 
GMI1, a GHKL-type ATPase domain 
containing protein in Arabidopsis and 
the homologs of mammalian SMCHD1, 
is induced by γ-irradiation in an ataxia 
telangiectasia mutated (ATM)-dependent 

Figure 2. Proposed model for the physiologic role of MORCs. MORCs control a variety of cellular and physiological functions in response to growth 
factor signaling, extracellular microenvironment, and genotoxic stress. Posttranslational modification of MORCs by upstream kinases might modulate 
their cellular functions. PAK1 phosphorylates MORC2 at serine 739 in response to both genotoxic stress and growth factor signaling and directs an 
effective DDR by an ATP-dependent chromatin remodeling event. Domain architecture of MORCs will provide essential insights into their specific and 
non-redundant roles in epigenetic regulation via recognition of various posttranslational modifications of histones or functional interactions with 
histone modifying enzymes. MORCs are deregulated in a variety of cancers and possibly function as a critical balance for efficient crosstalk between 
growth factor signaling and DDR. Collectively, these will contribute to adaptive survival strategies and therapy resistance often observed in cancer. 
DDR, DNA damage response.
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pathologic conditions. In closing, our 
understanding of the structural insights 
and physiological roles of eukaryotic 
MORCs and the contribution of the epig-
enome in the phenotypic outcome are 
likely to be merely the tip of the iceberg. 
Ongoing studies in our and other labora-
tories are addressing some of the emerg-
ing questions outlined here, with an aim 
to reveal molecular insights of the role of 
MORCs in transcription, chromatin loop-
ing, histone sensing and DNA repair.
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