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Introduction

The overall anatomical structure of the mature vertebrate 
brain has been highly preserved throughout evolution, 
although the degree of development of particular domains 
can vary enormously between species. From fish to mam-
mals, the brain can be divided into three main areas accord-
ing to their position along the antero-posterior axis: the 
fore-, mid-, and hindbrain. The anterior forebrain includes 
the telencephalon (cortex, hippocampus, and basal ganglia), 
hypothalamus, prethalamus as well as the eyes and visual 
tracts (optic chiasm). The posterior forebrain comprises the 
thalamus, epithalamus, and pretectum [59, 128, 129]. The 
entire brain has a common origin during early embryonic 
development in a single-layered pseudostratified epithelium 
called the neural plate (NP). The NP becomes molecularly 
distinct to surface ectoderm (destined to form the skin) 
soon after gastrulation when neural induction takes place. 
Subsequently, it is divided into domains along the antero-
posterior and medio-lateral axes characterized by specific 
gene expression patterns, which will eventually give rise to 
brain structures at later stages of development [121, 130]. 
Using embryological techniques such as single cell labeling 
and cell transplantations or genetic approaches (i.e., genetic 
tracing using mouse lines expressing Cre recombinase), the 
origins of the distinct components of the mature brain have 
been mapped in the early NP [25, 27–29, 63, 123, 159]. 
Such studies have also demonstrated a remarkable degree 
of conservation between species at early embryonic stages, 
despite the considerable differences in the shape and size of 
their mature brain structures.

The focus of this article is to revise the major findings that 
have contributed in the generation of a model of how the fore-
brain is formed during the early stages of development and 
in particular, the mechanisms underlying anterior forebrain 
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formation. We have attempted to provide a historical  
perspective of the milestones that provided the foundations 
to this model and to link these with more recent discoveries. 
We aim to discuss findings obtained from studies in different  
animal models, often first describing the results obtained 
from the initial experiments regardless of the species and 
commenting on the degree of conservation in other experi-
mental models. We will discuss the relevance of essential 
signaling centers as well as critical signals involved in the 
process of anterior forebrain formation, paying special 
attention to the WNT/β-catenin pathway. To learn about the 
numerous intrinsic factors that are also essential for normal 
anterior forebrain development we refer the readers to other 
published review articles [9, 59, 76].

Neural induction and antero-posterior axis formation: 
a historical perspective

The study of anterior NP (ANP) specification, neural induc-
tion, and antero-posterior (AP) axis formation are intimately 
linked. Experiments by Hans Spemann and Hilde Mangold 
[134] demonstrated that an entire ectopic axis extending 
from the forebrain to the spinal cord could be induced in a 
host newt embryo by a group of cells from the dorsal blas-
topore lip (Fig. 1). This ectopic axis was complete in that a 
neural tube encompassing forebrain (i.e., ectopic eyes) and 
spinal cord had developed over an ectopic notochord and 
was flanked by somites. Newt species with white or dark 
pigments were used to discriminate the contribution of the 
host and the donor tissues to the ectopic axis. The ectopic 
neural axis was comprised of mostly host cells, demonstrat-
ing that the donor cells have inducing properties and was 
named “the organizer”. Moreover, the abilities of the organ-
izer were stage dependent, as dorsal blastopore lip cells from 
younger embryos were capable of inducing an entire ectopic 

neural axis (brain and spinal cord), but older ones gave rise 
to ectopic axes lacking the eyes. This gave support to a 
model whereby the activities of the organizer can be divided 
into the “head” and “trunk” organizers, with early activities 
inducing anterior neural identity and late activities only pos-
terior neural fates. This concept, however, was challenged 
many years later by another developmental biologist, Pieter 
Nieuwkoop [106], who carried out an ingenious transplan-
tation experiment using the urodele embryo. He inserted 
pieces of naive ectoderm along the rostro-caudal neural axis 
of the host embryo and later analyzed the presence of ante-
rior (forebrain) or posterior neural structures. He observed 
that forebrain structures developed at the distal tip of the 
flap and posterior structures at the base, matching the neural 
identity of the level at which it was initially inserted in the 
host. This led him to postulate the “induction-transforma-
tion” model, whereby neural tissue is initially induced with 
anterior character and subsequently caudalized by signals 
from the organizer with transforming activity.

Some basic principles derived from these experiments 
have survived to date. Structures with similar activities to 
the amphibian organizer were identified in other vertebrate 
species including chick (Hensen’s node), zebrafish (embry-
onic shield), and mouse (node). In these, the transplantation 
of the organizer led to similar results to those in amphib-
ians [124, 138, 153]. However, it came as a surprise that 
transplantation of the mouse node gave rise to an incom-
plete axis lacking the anterior forebrain [10, 145]. The pos-
sibility existed that the difficulty of such transplantations in 
the small mouse embryo may affect the results and so, the 
inability of inducing a full axis may be a “technical flaw”. 
Even in Xenopus, where these experiments are easier due 
to the larger embryo size, only a small proportion develop 
a full neural axis upon dorsal blastopore lip transplantation. 
An alternative explanation may be that the transplanting 
node only contained the posterior inducing activity, as does 

Fig. 1   Dorsal blastopore lip tissue of the early gastrula displays 
organizing activity. Excision of dorsal blastopore lip tissue from the 
pigmented newt Triturus taeniatus and transplantation in the region 
of presumptive ventral epidermis in a non-pigmented Triturus crista-
tus early gastrula. The donor tissue induces a secondary invagination 
in the host embryo and exerts organizing activity to surrounding host 

tissues. A secondary embryo forms where the donor tissue contrib-
utes mainly to notochord and prechordal mesoderm structures and 
re-organizes the normally ventral surrounding host tissues, which 
are dorsalized into neural tube and mesoderm (adapted from Gilbert, 
Developmental Biology)
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the late or trunk organizer of the amphibian embryo. How-
ever, even the transplantation of cells from the “tip of the 
primitive streak” at early streak stages (early gastrula organ-
izer, EGO), which contains precursors of the node, failed to 
induce a full axis [145].

The answer to this discrepancy observed in the mouse 
was simpler: the node/EGO did not contain all the infor-
mation required to induce an entire neural axis because 
the anterior visceral endoderm (AVE) was necessary for 
anterior neural tissue to develop (Fig. 2) [146]. There have 
been numerous reviews on the subject, so we will just sum-
marize some major findings that have provided support to 
this idea [11, 12, 94, 135, 143]. The AVE was found to 
contain a group of cells, which express several genes rel-
evant for head formation (i.e., Otx2, Lhx1, Foxa2, Cer1, 
Lefty1, and Dkk1 among others) and was patterned prior to 
any signs of primitive streak formation. Moreover, genetic 
evidence demonstrated the requirement of several of these 
genes specifically in the AVE for normal antero-posterior 
axis formation and anterior forebrain development [1, 38, 
70, 71, 101, 114, 117, 127, 151, 161]. This was in addition 
to a critical role for some of these genes within the anterior 
neural plate (e.g., Otx2) [1, 17, 117]. Tissues equivalent to 
the mouse AVE, according to their location and molecu-
lar expression patterns, exist in embryos of chick (hypo-
blast), zebrafish (dorsal syncytial layer), and Xenopus 

(yolky cells of the vegetal pole), suggesting a conserved 
role in the vertebrate embryo [58, 65, 136]. Currently, it 
is broadly accepted that the AVE plays a critical role in 
the establishment of the AP axis and during anterior neural 
plate induction [86, 118, 157]. However, the formation of 
the anterior neural plate does not exclusively rely on AVE 
activities and there must be cooperation with other signaling  
centers such as the gastrula organizers and axial mesendo-
derm underlying the developing anterior neural plate. As 
proposed by Nieuwkoop, the synergism of these signaling  
centers aims to protect the anterior region of the epiblast 
from posteriorizing signals, which would otherwise bestow 
caudal neural character (i.e., any neural tissue that is not 
anterior forebrain). Therefore, neural tissue develops ante-
rior character unless exposed to caudalizing signals. His 
induction-transformation model appears to match normal 
neural patterning more closely than the head-trunk organ-
izer hypothesis.

The influence of extrinsic signals in anterior neural 
induction

It is broadly accepted that anterior neural induction requires 
the inhibition of the BMP, TGFβ, and WNT/β-catenin path-
ways. This model has been built from a bulk of evidence  

Fig. 2   Specification of tissues involved in patterning the anterior 
forebrain in the post-implantation mouse embryo and establishment 
of the anterio-posterior axis. AVE cells are induced to form by sig-
nals from the epiblast acting on VE at the distal tip of the embryo by 
5.5 dpc. AVE cells migrate anteriorly at 5.5 dpc, reach the boundary 
between the epiblast and extra-embryonic ectoderm in approximately 
5–6 h and then start to move laterally. At 6.5 dpc, the PS elongates 
and the anterior movements of the ADE/AME displace and intermin-
gle with the AVE. The forebrain domain including future anterior 

and posterior forebrain is patterned within the anterior portion of the 
presumptive neural ectoderm that overlies AVE and ADE/AME tis-
sues. By 7.5 dpc, the prospective anterior forebrain neural ectoderm 
overlies the ADE/AME and posterior neural tissue is underlied by the 
notochordal plate. VE visceral endoderm, AVE anterior visceral endo-
derm, ADE anterior definitive endoderm, AME anterior mesendo-
derm, np notochordal plate, PS primitive streak, AF anterior forebrain 
primordium, Ec neural ectoderm
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based on gene expression, loss- and gain-of-function experi-
ments, chimeric analyses, and embryological data in Xenopus,  
zebrafish, chick, and mouse.

Historically, experiments in Xenopus had a major 
impact on the origin of this model. Animal caps that are 
cultured as intact explants become surface ectoderm, but 
if cells are disaggregated, hence released of extrinsic cues, 
they become neural ectoderm of anterior identity [55]. 
This has been one of the pillars sustaining the “default” 
model of neural induction, which suggests that at pre-gas-
trula stages, the default fate of naive ectoderm is usually 
neural (i.e., brain) rather than surface (i.e., skin) ectoderm 
[86]. In fact, treatment of dispersed animal cap cells with 
BMPs could convert them into epidermis [155]. These ini-
tial findings have been confirmed in different experimen-
tal models, including zebrafish [15, 44] and mice. Mouse 
embryos deficient for the BMP receptor 1A (Bmpr1a−/−), 
the main receptor for BMP2 and 4, exhibit premature 
neural induction at pre-gastrula stages with expression 
of anterior markers Hesx1 and Six3 [35]. This is a simi-
lar phenotype to that observed in Nodal−/− mutants, and 
indeed Bmpr1a−/− embryos show no expression of Nodal 
[21, 35]. These findings fit well with the concept that inhi-
bition of BMP/TGFβ signaling is a prerequisite for neu-
ral induction. BMP inhibitors such as noggin and chordin 
are expressed in the vertebrate organizers and play a role 
in neural induction by preventing BMP signaling [6, 118, 
162]. This is beautifully exemplified in Xenopus, where the 
simultaneous depletion of noggin, chordin, and follistatin 
function by means of specific morpholinos, prevents the 
acquisition of neural fates demonstrating the critical role 
of BMP signaling inhibition during normal neural induc-
tion [66]. In addition, this research shows that there is a 
significant degree of functional redundancy, which may 
complicate the interpretation of data obtained in different 
animal models when addressing the requirement of spe-
cific signaling pathways [105].

Despite the robust evidence supporting the inhibition of 
BMP signaling for neural induction to occur, it was shown 
that this is not sufficient to induce an entire ectopic neural  
axis containing anterior and posterior components. The 
ability of Cerberus, a secreted inhibitor of nodal, BMP, and 
WNT molecules to induce an ectopic full axis when over-
expressed in Xenopus confirmed the necessity to repress 
the BMP/TGFβ and WNT pathways for head formation 
to occur [16, 51, 64, 115]. WNT molecules were found to 
exert caudalizing activity on neural tissue. For instance, 
treatment of chick ectodermal explants fated to become 
anterior forebrain could be transformed into posterior neu-
ral tissue by exposure to WNT molecules [108] and Wnt8c 
over-expression in mouse embryos caused an expansion of 
midbrain markers at the expense of anterior forebrain [116]. 
These data suggest that once neural tissue has been induced, 

it must be protected from caudalizing activities that would 
bestow posterior identity, as proposed by Nieuwkoop.

Other molecules, such as retinoic acid (RA), were also 
shown to act as caudalizing factors, by promoting poste-
rior fates in the neural plate [39]. In vivo, retinoic acid is 
synthesized from vitamin A (retinol) by the action of reti-
nol dehydrogenases, which are expressed in the posterior 
regions of the embryo, but not in the anterior neural plate at 
the time of neural induction. In contrast, enzymes such as 
CYP26, a cytochrome P450 enzyme that degrades RA, is 
expressed at high levels in the anterior neural plate [56, 78].  
This differential expression of synthesis and degradation 
enzymes is thought to create a RA signaling gradient along 
the AP axis (high-anterior and low-posterior) [90]. Fibro-
blast growth factors (FGFs) have also been shown to have 
caudalizing action on neural tissue in chick and Xenopus 
[97] and in mouse, exposure of prospective anterior fore-
brain tissue to FGF4 resulted in lack of expression of ante-
rior forebrain markers and expansion of posterior markers 
[33].

FGF signaling has also been involved in the initiation 
of neural induction. Activation of FGF signaling has been 
proposed to be required prior to or independent to the inhi-
bition of BMP signaling [43, 77, 88, 140]. Likewise, WNT 
signals have also been proposed to be required for neural 
induction in chick embryos [7, 112, 156]. However, there 
is also evidence suggesting that FGF signals are dispensa-
ble for the process of neural induction [154]. FGF signal-
ing plays multiple and often contrasting roles in the early 
embryo as well as in pluripotent stem cells, and conclu-
sions may vary depending on the particular experimental 
conditions and the assays used [81, 152]. Reconciling, at 
least partially, these discrepancies, elegant experiments 
have led to propose a model by which the activation of the 
FGF and WNT signaling pathways inhibits BMP signal-
ing by promoting phosphorylation of Smad1 in a region of 
the molecule leading to its degradation and reduced nuclear 
localization [7, 40, 48, 113]. These findings are in line with 
experiments showing that inhibition of Smad1 and Smad2 
is sufficient to induce neural character [23]. Together, these 
studies suggest that the activation of both the FGF and 
WNT pathways converge with the inhibition of BMP sign-
aling at the levels of Smad1 and reinforces the idea that 
BMP signaling inhibition may be a conserved requirement 
for neural induction. They also suggest that there may be 
some species-specific differences regarding the temporal 
requirement of FGF signaling for neural induction. It will 
be important in the future to delineate the role of these spe-
cific pathways (e.g., retinoic acid, TGFβ, BMP, FGF, and 
WNT) and we anticipate that in vitro neural differentia-
tion experiments using mouse embryonic and epiblast stem 
cells may provide important insights [26, 41, 54, 84, 102, 
104, 131, 137, 142].
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Signals from both the AVE and gastrula organizers  
are required for normal anterior neural induction

The experiments described above led to a working model 
and identified major molecular players deployed during 
anterior neural induction. It is now clear that there is an 
involvement of at least two signaling centers for normal 
anterior neural induction, the AVE and the gastrula organiz-
ers. Relevant questions to further comprehend anterior neu-
ral induction are when during normal development, is the 
inhibition of the BMP/TGFβ and WNT pathways required? 
And which tissues do signals responsible for their inhibition 
derive from?

The visceral endoderm (VE) derives from a few cells 
lining the inner cell mass and the blastocoel cavity of the 
implanting 4.5  dpc mouse embryo (Fig.  2). At 5.0  dpc, 
VE is a single cell epithelial sheet surrounding the naive 
epiblast, fated to give rise to the embryo proper and the 
extraembryonic ectoderm. At this stage, the precursors of 
the AVE are molecularly identifiable at the distal tip of the 
conceptus (distal visceral endoderm, DVE) by the expres-
sion of genes such as Hex, Lefty1 (a secreted inhibitor of 
Nodal) and Cer1 (an inhibitor of Nodal as well as WNT and 
BMP molecules) [11]. They are induced at the distal tip of 
the egg cylinder through the co-operative inductive action 
of the Nodal and MAPK signaling pathways, whose action 
is restricted to the distal tip by repressive signals from the 
extra-embryonic ectoderm [19, 24, 119]. Recent elegant lin-
eage tracing experiments have demonstrated that the AVE is 
derived from specific primitive endoderm cells of the pre-
implantation blastocyst [144]. At the onset of gastrulation 
(6.5 dpc in the mouse), the AVE is located in the antero-
proximal region of the embryo underneath the embryonic/
extraembryonic border. This final location of the AVE 
requires the antero-proximal movement of the DVE cells by 
cell intercalation into the VE cell layer [149, 150]. There-
fore, it is clear that prior to the onset of gastrulation, the 
AVE has had ample opportunity to affect the patterning of 
the overlying anterior epiblast. However, it seems unlikely 
that the AVE can induce permanent neural character on its 
own; mouse embryos deficient for either Wnt3 or Ctnnb1 
(encoding β-catenin), express AVE markers, but there is no 
activation of neural markers in the epiblast and therefore, no 
neural induction [62, 89, 94]. Corroborating these genetic 
data, ectopic transplantation of chick hypoblast can induce 
naïve ectoderm to express transient expression of neural 
markers, suggesting a priming effect during neural induc-
tion, but the stabilization of neural character requires BMP 
inhibitors and/or organizer activities [2].

Cell intermingling in the epiblast of the pregastrula 
mouse embryo is very high [49] and fate map analyses have 
shown that the most antero-proximal region of the epiblast 
overlying the AVE at these stages is not fated to give rise 

to the anterior neural plate. Rather, the prospective neural 
plate precursors are located in the antero-distal region of the 
embryo [85]. It is likely that the function of the AVE at these 
pre-gastrula stages is not only to “prime” the epiblast for 
anterior neural induction, but also to position the primitive 
streak, hence for the establishment of the AP axis. Genetic 
evidence from mouse mutants supports this idea. For exam-
ple, embryos lacking Cer1 and Lefty1 show abnormal AVE 
patterning concomitant with the formation of multiple 
ectopic primitive streaks [114]. In addition, embryological 
studies have shown that removal of the chick hypoblast also 
leads to the appearance of multiple primitive streaks [14].

In the mouse, at 6.5  dpc the PS forms in the posterior 
proximal region of the epiblast and will elongate during 
gastrulation so that by 7.5  dpc it reaches the distal tip of 
the embryo, where the node will form. Neural induction is 
thought to take place in the early/mid-streak stage embryo, 
when Otx2 expression starts to be restricted to the anterior 
region of the epiblast. A few hours later, expression of ante-
rior neural markers such as Hesx1 and Six3 becomes evi-
dent. The inducing activities of the tip of the PS and the 
gastrula organizers have been extensively studied in several 
species, including the mouse, and the evidence strongly sug-
gests that the AVE and the gastrula organizers act together to 
induce anterior neural character. For instance, the EGO can-
not induce anterior forebrain marker expression when trans-
planted to the lateral side of a host mouse embryo, but does 
so when combined with the AVE [145]. In agreement with 
the need for signaling activity from the AVE, the Otx2−/−, 
Foxa2−/−, and Lhx1−/− mutants have a molecularly iden-
tifiable EGO, but the AVE is not specified, resulting in an 
absence of anterior neural plate development [1, 5, 73, 117, 
126]. However, the EGO activity is also required; as previ-
ously discussed, mouse embryos deficient for either Wnt3 
or Ctnnb1, express AVE markers at pre-gastrula stages, 
but do not form a PS and so do not express the molecu-
lar activities typical of the gastrula organizers, resulting in 
failure to undergo neural induction [62, 89]. The EGO/node 
and its derivatives express many common genes, among 
them inhibitors of the TGFβ and WNT pathways such as 
Cer1, Dkk1, Nog (noggin), and Chrd (chordin), reinforcing 
the idea that they act synergistically during anterior neural 
induction. Of note, the activities required for anterior neural 
induction may still be present in the absence of discernible 
anatomical structures. This is exemplified in the Cripto−/− 
mutants, which fail to gastrulate and so, neither the primi-
tive streak or gastrula organizer are formed. However, genes 
normally expressed in the primitive streak and organizers 
are detected in the proximal region of the embryo. The 
AVE is also specified and typical AVE marker expression 
is observed at the distal tip of the mutant embryo. Despite 
this atypical arrangement of the AVE and organizer activi-
ties, anterior neural induction and patterning of the neural 
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plate takes place in these mutants, although this is along the 
proximo-distal rather than AP axis [36].

Some experiments, however, have shown that the AVE 
and the mid-gastrula organizer (MGO, located at the distal 
tip of the primitive streak at mid-streak stage) can in isola-
tion induce neural character. For instance, rabbit AVE is able 
to induce anterior neural character to naïve avian epiblast 
[74] and conversely, the MGO also appears to induce neural 
tissue in the absence of AVE [72]. There are several possi-
ble explanations for these findings, one being that the AVE 
or MGO may have the potential to induce anterior neural 
character when the experimental conditions are permissive. 
However, during normal development of the embryo both 
signaling centers are required. This is conceptually similar 
to the differences between regenerative and physiologi-
cal potential of somatic stem cells when assessed in either 
transplantations or in lineage tracing experiments [132].

Axial mesendoderm (AME) as a signaling center  
that maintains anterior neural character

Once the anterior neural plate has been induced, evidenced 
by the expression of anterior neural markers such as Hesx1 
and Six3 at early neural fold stages, it is important to ensure 
the maintenance of this character and prevent its posteriori-
zation. As with AVE at earlier stages, anterior axial mesen-
doderm (AME) tissue underlying the neural plate, plays a 
critical role in performing this function. The AME is a mixed 
population comprised of (1) anterior definitive endoderm 
(ADE), which is fated to give rise to the anterior foregut and 
its derivatives (e.g., liver, stomach, pancreas) [147]; (2) pre-
chordal plate, which refers to endodermal and mesenchy-
mal cells underlying the anterior region of the neural plate, 
which will form the anterior hypothalamus, telencephalon, 
and eyes; (3) notochordal plate, which gives rise to the noto-
chord, underlying the developing neural plate caudal to the 
anterior hypothalamus (Fig. 2). The term AME in mouse is 
usually used to refer to the ADE and mesodermal compo-
nent of the prechordal plate underlying the anterior neural 
plate. The origin of the AME is the gastrula organizers and 
the node. From the tip of the PS and subsequently from the 
node, a population of ADE cells expressing Cer1 and Hex 
move anteriorly within the VE to underlie the rostral neural 
epithelium [13, 147]. Notochordal plate cells derive from 
the node and will follow the ADE and prechordal plate, but 
its location is more restricted to the midline of the neural 
plate. Of note, within the mouse ADE, endoderm cells from 
the prechordal plate and notochordal plate initially move 
within the existing layer of VE and not underneath, there-
fore they need to intercalate with VE cells in their migration 
[141]. This causes part of the VE to become displaced into 
the extraembryonic region, mainly in the anterior portion 

of the embryo, but VE cells also become trapped and con-
tribute to the endodermal lining of the adult gut [79]. The 
notochord will form a rod before somitogenesis and will 
be situated between the endoderm and neuroectoderm as in 
other vertebrates.

The inducing activities of the anterior AME are well 
established [20]. Explant experiments have shown the 
capacity of these cells to induce and/or maintain anterior 
character (i.e., Otx2 expression) in the vertebrate embryo 
[45]. In chick, the specific ablation of the ADE results in 
forebrain abnormalities with lack of telencephalic and eye 
development [158]. Likewise, absence of Hex, a transcrip-
tion factor expressed in the ADE as it is formed from the tip 
of the PS, leads to patterning defects of the ADE and subse-
quent loss of anterior character (i.e., Hesx1 and Six3 expres-
sion) in the initially induced anterior neural plate [93]. The 
transcription factor Lhx1, and its co-factors Ssdp1 and Ldb1 
are also necessary for normal brain development [42, 107, 
126] and chimeric analyses have demonstrated its require-
ment in both the AVE and the AME [127]. The molecular 
activity of the anterior AME is thought to be similar to those 
of the AVE and gastrula organizers: to secrete inhibitors of 
the BMP/TGFβ and WNT pathways, hence protecting the 
anterior neural plate from posteriorizing signals. Supporting 
this notion, the AME expresses Dkk1, Cer1, Nog, and Chrd 
[34, 103, 163] and lack of these inhibitors, either single or in 
combination, is associated with defects in anterior AME and 
anterior forebrain specification [6, 34, 103, 162].

The role of the AME in protecting the ANP from cau-
dalizing signals is also important for the establishment of 
other signaling centers within the neural plate responsible 
for the expansion and further patterning of forebrain tissue. 
For further detail on the relevance of these local signaling 
centers within the ANP, we refer the reader to other reviews 
[96, 122, 157]. One such center was initially discovered 
from elegant experiments in zebrafish, whereby the removal 
of the most anterior neural plate cells (anterior neural bor-
der, ANB) caused severe forebrain truncations [61]. The 
relevance for the ANB was also demonstrated in mouse 
embryos by means of ablation experiments where FGF8 
was found to act as an essential signal for normal devel-
opment of the anterior forebrain [130], which was further 
confirmed in several genetic studies [100, 110, 111, 139]. 
In the Hex−/− mutants, which show severe forebrain defects 
including lack of the telencephalon and eyes, Fgf8 expres-
sion in the ANB is reduced or absent [93], and this appears 
to be caused by primary defects in ADE patterning. Cor-
roborating this notion, removal of anterior definitive endo-
derm in chick leads to reduced Fgf8 expression in the ANB 
and forebrain, including eye defects [158]. Neural crest cells 
have been shown to play a critical role in the maintenance of 
Fgf8 expression in the ANR and expansion of the forebrain 
region [30, 31]. Another important signaling center in the 
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forebrain is the zona limitants intrathalamica (zli), which is 
required for diencephalic development and is delineated by 
the expression of Shh [67, 82, 125]. It develops within the 
neural tube, specifically between the prethalamus and thala-
mus (ventral and dorsal thalamus, respectively), but its posi-
tion coincides with the boundary between the prechordal 
and notochordal plates [96, 122], suggesting that underlying 
tissues may also play a role in its formation.

In summary, the induction of the anterior neural plate 
and specification of the AP axis require the continued inhi-
bition of signals that would bestow the naïve epiblast of 
the pregastrula embryo with a non-neural or caudal neu-
ral character. AVE, gastrula organizers and anterior AME 
are sources of secreted inhibitors that ensure the protec-
tion of a population of epiblast cells from these signals. In 
addition, the AME is required for the proper positioning 
of local signaling centers within the anterior neural plate 
that are responsible for further growth and development of 
the area.

Intrinsic regulation of cell competence: an additional 
level of protection of anterior neural character

In the previous section, we summarized a great deal of 
research pointing at the requirement for the anterior neural 
plate to be protected from signals that would transform it 
into posterior neural tissue. The activities of the AVE and 
gastrula organizers grant the epiblast anterior neural char-
acter, while the anterior AME acts to prevent its posterior 
transformation and refined patterning. This is achieved by 
the synergistic action of several secreted inhibitors. How-
ever, there are additional levels of protection within the  
neural plate itself, which prevent a posterior transformation of 
the ANP at stages when diffusion of secreted inhibitors from 
underlying tissues may be unable to reach this expanding  
region of the developing embryo.

Among the studied posteriorizing signals, it is the WNT/
β-catenin pathway that appears to be critical in prevent-
ing anterior neural character. In Xenopus embryos there 
is a high-caudal to low-rostral gradient of activated WNT 
pathway, consistent with observations in other vertebrates 
[68]. For instance, in transgenic mouse lines expressing 
lacZ under the control of TCF/LEF binding sites, it has been 
shown that the anterior neural plate is initially devoid of 
X-gal staining, demonstrating that the WNT/β-catenin path-
way is not activated in anterior neural precursors [4, 92]. 
Likewise, expression of the WNT/β-catenin target genes 
Axin2 and Sp5 is detected in posterior regions but not in the 
anterior-most part of the neural plate [3]. The necessity of 
the suppression of this pathway has been further analyzed in 
vitro and in vivo. As previously discussed, WNT molecules 
can transform cells initially fated to be anterior to acquire a 

caudal neural character [108]. In mouse embryos, genetic 
studies have demonstrated the need to negatively modulate 
the levels of WNT signaling for normal head formation  
[46, 47, 87, 116]. In zebrafish, mutations resulting in over-acti-
vation of the WNT pathway lead to posterior transformation  
of telencephalon and eye tissues in favour of diencephalic 
fates [57]. The expression of several secreted inhibitors able 
to bind either WNT molecules or their receptors is high in 
the anterior neural plate and AME. For instance, the ante-
rior neural border of the zebrafish embryo is the source of 
a secreted WNT inhibitor, tlc, which is required for normal 
telencephalic development [60, 61]. However, the presence 
of these inhibitors is not the only way to ensure low levels 
of WNT signaling in the anterior neural plate.

Two early anterior neural markers, Hesx1 and Six3, 
also contribute to inhibit the activation of the WNT path-
way in a cell autonomous fashion (Fig. 3). Six3−/− mutant 
embryos show anterior forebrain defects with impaired tel-
encephalic, eye, and hypothalamic development at 10.5 dpc, 
even though the anterior neural plate is initially specified 
at pre-somitic stages and expresses markers such as Hesx1 
[80, 109]. Failure to maintain anterior forebrain marker 
expression is associated with a rostral expansion of pos-
terior markers such as Pax3 and Wnt1. SIX3 can bind the 
Wnt1 promoter and inhibit Wnt1 expression in electropo-
rated chick embryos, suggesting that SIX3 may repress the 
expression of Wnt1 in anterior forebrain, preventing its pos-
terior transformation. The simultaneous removal of Six3 and 
Wnt1 in Six3−/−;Wnt1−/− embryos improves diencephalic 
development, however, the telencephalon and eyes fail to 
develop as in the Six3−/− mutants [83]. This suggests that 
SIX3 may be required for anterior neural plate development  
independently of its ability to repress Wnt1 expression  
[8, 22].

Very similar forebrain defects are observed in the 
Hesx1−/− mutants. Telencephalic vesicles and eyes are 
reduced or absent at early somite stages, but Six3 expres-
sion is unaffected at neural plate stages [32, 95]. The lack 
of anterior forebrain is caused by a posterior transforma-
tion of the anterior neural plate, which was evidenced by 
the rostral expansion of posterior markers such as Wnt1 
and Pax3. In addition, and confirming the change of fate 
of the ANP, genetic fate mapping studies on Hesx1Cre/−; 
R26YFP/+ (Hesx1 null-mutants) and Hesx1Cre/+;R26YFP/+ 
(normal) embryos have demonstrated that descendants of 
neural precursors initially fated to colonize the telencepha-
lon and eyes end up populating posterior regions of the neu-
ral plate such as the thalamus, epithalamus, and pretectum 
[3]. In Hesx1−/− embryos, ectopic activation of the Wnt/β-
catenin signaling pathway, evidenced by Axin2 and Sp5 
expression, is detectable at early somite stages prior to the 
onset of Wnt1 expression in the prospective midbrain/poste-
rior forebrain region of the neural plate or Fgf8 expression in  
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the ANR. This suggests that the observed reduction of the 
Fgf8 expression domain in the ANR and the expansion of the 
Wnt1 expression domain are a consequence of the ectopic 
activation of the WNT/β-catenin pathway in the ANP. At the 
molecular level, gene profiling of isolated anterior forebrain 
precursors has demonstrated the ectopic activation of the 
WNT pathway in Hesx1-deficient embryos relative to con-
trols [4]. Therefore, HESX1, as well as SIX3, may regulate 
the competence of the ANP making it unresponsive to the 
WNT molecules that are secreted at posterior levels (WNT1 
and WNT3a). The regulation of cell competence, i.e., the 
ability of a cell to either respond or not to a given signal, 
is an important factor in cell fate specification that usually 
attracts less attention than the function of the inductive sig-
nals themselves [91, 133, 148]. For example, the expression 
domains of Six3 and Irx3 (a member of the Iroquois family 
of homeoproteins with a role in neural induction and pattern-
ing) have been proposed to confer distinct competence to 
inducing signals to specify anterior versus posterior neural 
plate identity [52, 53, 75, 120]. Analysis of the Tcf7l1 (Tcf3) 
mutants supports the hypothesis that SIX3 and HESX1 may 
regulate cell competence within the anterior neural plate.

In mouse, Tcf3-deficient embryos undergo gastrulation, 
but exhibit variable degrees of defects, including primi-
tive streak and axis duplications, supernumerary neural 
folds, and neural patterning defects involving expansion 
of midbrain at the expense of forebrain and hindbrain tis-
sues [99]. At the molecular level, TCF3 acts as a repres-
sor of WNT/β-catenin targets in Xenopus and zebrafish 
[18, 37, 69]. Genetic evidence in mouse has demonstrated 
that the expression of a mutant TCF3 protein lacking the 
β-catenin-interacting domain rescues the gastrulation 
and neural plate defects observed in the Tcf3−/− [160]. 
In addition, the conditional ablation of Tcf3 within the 

anterior forebrain in Hesx1Cre/+; Tcf3loxP/loxP embryos 
leads to defects that are very similar if not identical to 
those observed in Hesx1−/− and Six3−/− mutants, such as 
small or absent telencephalon, hypothalamus, and eyes 
[4]. These data suggest that TCF3 is required for normal 
forebrain development as a transcriptional repressor of 
WNT/β-catenin targets. In addition, as Tcf3, Hesx1, and 
Six3 are mostly co-expressed in the anterior neural plate 
at presomitic stages, it seems plausible that the three may  
co-operate at the protein level, ensuring that anterior 
forebrain precursors do not activate the expression of 
WNT targets, which could confer a posterior identity. 
Supporting this notion, there is a genetic interaction 
between Hesx1 and Six3 as well as between Hesx1 and 
Tcf3, indicating that a minimum gene dose is required to 
maintain anterior neural plate identity [4, 50]. Although 
speculative, it is possible that Rx, another transcription 
factor may co-operate with Hesx1, Six3, and Tcf3 in the 
maintenance of anterior identity [98]. Together, these 
data suggest that there is an additional level of control 
of the WNT pathway involving the expression of tran-
scriptional repressors within the ANP that act to prevent 
an ectopic response to WNT signaling (Fig. 4). Further 
research will reveal the exact mechanisms by which these 
actions are mediated.

In conclusion, research over the last years has revealed 
the principles that regulate the development of the anterior 
forebrain at early stages of embryogenesis. There is a per-
fect interplay of signaling centers during normal morpho-
genesis of the embryo to ensure that the anterior forebrain 
is protected from caudalizing factors. This is initiated by 
the AVE, embellished by the ADE/AME, and reinforced by 
transcriptional repressors regulating cell competence within 
the anterior forebrain itself.

Fig. 3   Subdivision of the neu-
ral plate in discreet gene expres-
sion domains. a At presomitic/
early somite stages, in situ 
hybridization for Hesx1 (red) 
and Pax2 (purple), marking the 
anterior forebrain and posterior 
forebrain/midbrain precursors, 
respectively. b The anterior 
forebrain primordium express 
Hesx1 (red), and Pax3 (purple), 
delineates a posterior-lateral 
domain that gives rise to neural 
crest cells in an older embryo. 
Note that these domains do not 
overlap (adapted with permis-
sion from Disease Models 
and Mechanisms (Sajedi et al. 
(2008), Disease Models and 
Mechanisms 1 (4–5), 241–254)
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