
Neuron

Article
In the Mind of the Market: Theory of Mind
Biases Value Computation during Financial Bubbles
Benedetto De Martino,1,2,* John P. O’Doherty,1,3 Debajyoti Ray,3 Peter Bossaerts,1,3,4 and Colin Camerer1,3
1Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
2Department of Psychology, Royal Holloway University, London TW20 0EX, UK
3Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
4Department of Finance, David Eccles School of Business, University of Utah, Salt Lake City, UT 84112, USA

*Correspondence: benedettodemartino@gmail.com

http://dx.doi.org/10.1016/j.neuron.2013.07.003

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.
Open access under CC BY license.
SUMMARY

The ability to infer intentions of other agents, called
theory of mind (ToM), confers strong advantages
for individuals in social situations. Here, we show
that ToM can also be maladaptive when people
interact with complex modern institutions like finan-
cial markets. We tested participants who were in-
vesting in an experimental bubble market, a situation
in which the price of an asset is much higher than its
underlying fundamental value. We describe a mech-
anism by which social signals computed in the dor-
somedial prefrontal cortex affect value computations
in ventromedial prefrontal cortex, thereby increasing
an individual’s propensity to ‘ride’ financial bubbles
and lose money. These regions compute a financial
metric that signals variations in order flow intensity,
prompting inference about other traders’ intentions.
Our results suggest that incorporating inferences
about the intentions of others when making value
judgments in a complex financial market could lead
to the formation of market bubbles.

INTRODUCTION

In February 1637 in Amsterdam, the cost of a single exotic tulip

bulb reached a price equal to ten times what a skilled craftsman

earned in a year. The price of the same bulb collapsed a few days

later. The dramatic rise and fall of tulip bulb prices is a famous

historical example of a financial bubble (Kindleberger and Aliber,

2005). A bubble is conventionally defined by active trading of an

asset at prices that are considerably higher than its intrinsic

fundamental value. Examples of modern bubbles include Japa-

nese stocks in the 1990s, the US high-tech sector in the late

1990s, and housing prices, which rose and crashed in many

countries from 2000–2008. All of these bubbles (especially the

housing crash) caused long-lasting macroeconomic disruptions

(Shiller, 2005).

Modern bubble episodes have also led to a substantial shift in

thinking about the capacity of prices to act as sober information
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aggregation mechanisms that guide efficient allocation of capi-

tal. Policy makers, academics, and market participants alike

are now more familiar with, and groping to understand, the

ways that prices can reflect pathological valuation and are

actively debating whether policy interventions can help (Akerlof

and Shiller, 2009).

Despite these dramatic historical andmodern examples, there

is no well-accepted theory of how bubbles start and end. One

common definition of bubbles is rapid price appreciation fol-

lowed by a crash (Brunnermeier, 2008). However, this definition

has no predictive power for identifying an ongoing bubble, since

it does not identify a bubble before it crashes. Furthermore,

fundamental asset values are rarely known with precision, so it

is difficult to identify a bubble if bubbles are defined as prices

above an elusive fundamental value.

One way to learn about bubbles is to observe trading in an

experimental market for artificial assets that have a known

fundamental value. In these markets, price variation cannot be

explained by changes in fundamentals. In fact, several carefully

controlled economics experiments have shown that certain clas-

ses of asset markets do generate price bubbles quite regularly,

even when intrinsic values are easy to compute and are known

to traders (Smith et al., 1988; Camerer and Weigelt, 1993; Porter

and Smith, 2003; Lei et al., 2004). The nature of bubbles has also

been intensely investigated in theory (Abreu and Brunnermeier,

2003; Yu and Xiong, 2011), but empirical reasons why bubbles

arise and then crash are still not well understood in economics

(Xiong, 2013).

Recent work in neuroeconomics has shown how financial

decision theory can be informed by neuroscientific data (Bos-

saerts, 2009). In particular, studies have started to dissect the

neural mechanisms by which risk processing (Preuschoff et al.,

2008), anticipatory affect (Knutson and Bossaerts, 2007; Kuhnen

and Knutson, 2005), fictive learning signals (Lohrenz et al., 2007),

inference about information possessed by other traders (Brugu-

ier et al., 2010), and mental accounting of trading outcomes (C.

Frydman, personal communication) shape financial decisions.

However, the neural mechanisms underpinning the formation

of a financial bubble are still unknown. Understanding of these

mechanisms could prove critical in distinguishing between alter-

native hypotheses, each requiring different macroeconomic

interventions.
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This study, which combines experimental finance settings

together with behavioral modeling and neuroimaging methods,

aims to identify the neural coding scheme at the core of bubble

formation. We focus here on how the representation of assets

trading values in ventromedial prefrontal cortex (vmPFC), a brain

region heavily involved in representing goal value (Rangel et al.,

2008; Boorman et al., 2009; Chib et al., 2009; Hare et al., 2009;

Levy and Glimcher, 2012), are modulated by formation of a

bubble. Our hypothesis is that the increase in prices observed

in bubble markets is associated with the neural representation

of inflated trading values in vmPFC,whichproduces anenhanced

susceptibility to buying assets at prices exceeding their funda-

mental value. We test the hypothesis that the inflated values are

caused by participants’ maladaptive attempts to forecast the in-

tentions of other players in a fast-growing market. In particular,

we propose that the more dorsal portion of the prefrontal cortex

(dmPFC), a region well known to represent the mental state of

other individuals (also known as theory of mind; ToM) (Frith and

Frith, 2003; Amodio and Frith, 2006; Hampton et al., 2008), is

involved in updating the value computation in vmPFC, stimulating

the formation of a financial bubble. In order to clarify the role

played by intentions in modulating activity in these brain regions

during financial bubbles, we introduce a computational concept

from financial theory. This metric captures the dynamic changes

from a steady, regular arrival of buying and selling orders to a

more variable arrival process (perhaps signaling the start of a

bubble, as orders arrive rapidly due to excitement, or an impend-

ing crash, when orders arrive slowly as traders hold their breath)

that can signal the presence of strategic agents in a market. Ac-

tivity in medial prefrontal regions is correlated with this index

more strongly in bubble markets than in nonbubble markets

and is associated with the individual’s propensity to ride the

financial bubble.

RESULTS

Experimental Markets
Twenty-one participants were scanned while trading in experi-

mental markets. Trading activity in six actual experimental mar-

kets (collected in previous behavioral studies; Porter and Smith,

2003) was replayed over a 2-day scanning schedule. On each

day, the participants traded in three experimental markets.

Each market was divided into fifteen trading periods. During

each trading period, the scanned participants observed a fast-

motion visual representation of the prices of offers to sell (asks)

and offers to buy (bids), which were actually inputted by the

participants who had taken part in the original behavioral

experiments.

Subjects started with a cash endowment of $60. The screen

was frozen at random intervals (2–3 times each period). At these

freeze points, participants were allowed to stay (do nothing) or

buy or sell one, two, or three shares at the current market price

by pressing a keypad. After the choice was inputted, an update

of the participants’ portfolio (number of the shares held and cash)

was presented on the screen. This was followed by a variable

resting phase. At the end of each of the fifteen periods, the

trading activity was interrupted, and participants were shown

the dividend paid to the shareholder for that period.
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The traded assets paid a dividend worth an expected value of

$0.24 in each period to subjects who held those assets. There-

fore, the intrinsic expected value of buying and holding assets

was initially $3.60. The assets’ intrinsic value (fundamental value)

declined by $0.24 after each period (since there were fewer

future dividends lying ahead). The asset value in period t was

therefore $0.24 3 (15 � t + 1) (see Experimental Procedures

for more details).

Three of the six sessions used in the study were nonbubble

markets; in those sessions, the market prices were tracking

the fundamental value of the asset closely (Figure 1A). The other

three sessions were bubblemarkets, in whichmarket prices rose

well above the intrinsic value in later periods (Figure 1B; Figure S1

available online).

Behavioral Results
Our initial approach was to quantify how participants’ choices

(i.e., buy, sell, or stay) were influenced by market parameters

such as bid and ask prices and fundamental values. We per-

formed an ordered logistic regression using participants’

choices (i.e., buy, sell, or stay) as dependent variables and mar-

ket prices and fundamental values as independent variables. The

parameter estimates showed that in both the bubble and non-

bubble markets, the participants’ behavior was significantly

modulated by prices and fundamental values, but that those

two factors explained less variance in the bubble markets data

(pseudo R2 = 0.27; Bayesian information criterion [BIC] =

2,089) than in nonbubble (pseudo R2 = 0.33; BIC = 1,840).

Notably, there was a significant difference between bubble and

nonbubble market coefficients computed for prices (t test: t =

3.48; p < 0.05) and for fundamental value (t test: t = 4.24; p <

0.001). Coefficients for prices and fundamentals together with

a summary statistics are presented in Table 1. These results sug-

gest that during financial bubbles, participants’ choices are less

driven by explicit information available in the market (i.e., prices

and fundamentals) and are more driven by other computational

processes, perhaps imagining the path of future prices and likely

behavior of other traders.

To further investigate this issue, we measured how the neural

representation of value changes when participants trade assets

in bubble markets compared with nonbubble markets (using

fMRI). Our hypothesis was that the increased trade volume in

bubble markets should be associated with an inflated represen-

tation of portfolio profits. We reasoned that if the formation of

bubbles is a consequence of inflated value representation, a

brain region that codes for parametric changes in trading values

should have increased activity when participants trade in bubble

markets.

Value Computation
To test this hypothesis, we constructed a parametric variable

that captured the trial-by-trial variance in the value of each par-

ticipant’s trading position. We called this variable current portfo-

lio value (CPV), a combination of the value in cash and in shares

held by a participant (or trader) at each point in time (CPV[t] =

cash + [shares 3 fundamental value at time t]). CPV was used

as a parametric regressor in a general linear model to isolate

changes in blood-oxygen-level-dependent (BOLD) signal
ron 79, 1222–1231, September 18, 2013 ª2013 The Authors 1223



Figure 1. Task

(A) Structure of the task: at the beginning of each period, participants were shown amessage stating the period number and the value of their portfolio (shares and

cash). This was followed by a video showing an intuitive graphical replay of the order (asks and bids) and trade flow. The orders were arranged by price level (see

illustrative diagram on the right corner). Whenever a trade occurred, the best bid (if a sale) or best ask (if a purchase) briefly (0.5 s) changed color to green, after

which the circle disappeared. The circles constantly rearranged to ensure that the best bid and ask circles were closest to the midpoint of the screen (for more

details see Bruguier et al., 2010). After a variable time interval (3–6 s), the screenwas frozen for 5 s, and subjects used their initial endowment of $60 to either buy or

sell (1, 2, or 3 shares) or stay by pressing a keypad. At the end of the choice period, an update screen summarized their current portfolio (i.e., cash and shares).

This was followed by a resting period (3–6 s). At the end of each period (15 periods in total), a dividendwas randomly extracted from (0¢ 8¢ 28¢ 60¢), and subjects

paid for the number of shares held (in the case of short selling, subjects had to pay the cost of the dividend for the number of negative shares held). The dividend

for that period was displayed to the subjects with an update of their portfolio.

(B and C) Asks (red) and bid (blue) plotted against the fundamental prices (dotted line) for one of the three nonbubble markets (B) and one of the three bubble

markets (C) replayed during the experiment. In the nonbubble markets condition (B), asks and bids track the fundamental price over time, while in the bubble

markets condition (C), asks and bids deviate from the fundamental prices. All six of the markets used in the study are plotted in the Supplemental Information.
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underpinning the increased representation of trading values dur-

ing bubble markets compared to nonbubble markets. This anal-

ysis yielded a significant interaction in ventromedial prefrontal

cortex (vmPFC peak [3, 53, �2], t = 3.48; p < 0.05 small volume

correction [SVC] for multiple comparison), a brain region that

plays a key role in encoding the goal values that are used to

guide choice (Figure 2A; for a complete list of activations see

also Figure S1). We therefore confirmed, consistent with our

initial hypothesis, that the parametric representation of the port-

folio value (CPV) was increased during bubble markets. This is

illustrated by the pattern of activity in vmPFC (percent BOLD

signal changes) in response to increasing levels of CPV in both

bubble and nonbubble markets (Figure 2B).
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We next reasoned that if inflated trading values represented in

vmPFC play a role in the formation of a financial bubble, activity

in this region should predict the behavioral tendency to buy

shares when their prices are above the fundamental values (a

behavior that stimulates and sustains the formation of a financial

bubble). To test this, we constructed an independent parameter

that quantified the participants’ tendency to ride the bubble. We

called this between-subject index ‘‘bubble susceptibility,’’ which

is the extra price paid by participants to purchase shares at pri-

ces above the fundamental value (see Experimental Procedures

for more details).

We then entered this bubble susceptibility index as a be-

tween-subjects covariate in the parametric general linear model
s



Table 1. Ordinal Logistic Regression

Market Parameter Bubble Markets Nonbubble Markets

Prices �0.011 (±0.002)* �0.020 (±0.004)*

Fundamental values 0.009 (±0.001)** 0.02 (±0.004)**

Summary Statistics Bubble Markets Nonbubble Markets

Pseudo R2 0.27 0.33

Bayesian information

criterion (BIC)

2,089 1,840

The dependent variable is an ordered variable (buy, stay, sell). The SEM

is reported within parentheses; bubble versus nonbubble markets:

*p < 0.05; **p < 0.001.
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(GLM) model described above. This analysis yielded a signifi-

cant correlation in vmPFC (peak [�6, 50, 1]; t = 3.44; p < 0.05

SVC for multiple comparisons). More precisely, activity in

vmPFC was a significant predictor of the behavioral tendency

to ride bubbles (Figure 3). Note that while the overall buying at

prices above the fundamental value was a relatively rare phe-

nomenon (see Figures S2 and S3), riding the bubble (in the

context of our experimental setup) was clearly a suboptimal

behavior, as demonstrated by the fact that those participants

with high susceptibly to ride the bubble had significantly lower

monetary earnings (p = 0.02), an effect due to only trading in

bubble markets (nonbubble markets: p > 0.1; bubble markets:

p = 0.005). Critically, low monetary earnings did not directly

correlate with activity in vmPFC (p = 0.19), excluding the possi-

bility that the correlation we identified in this region reflected

increasing susceptibility to reduced earnings (independent of

bubble susceptibility).

Theory of Mind
Our next step was to investigate the mechanism causing the

inflation in value representation observed in vmPFC during finan-

cial bubbles. The key difference between nonbubble markets

and bubble markets is that in nonbubble markets, the value of

a share is only determined by the fundamental value of the asset,

while in bubble markets, profitable trading depends on accu-

rately judging the intentions of other players in themarket. There-

fore, we hypothesized that the increase in value representation

during a bubble market was a consequence of the fact that

traders use inferences about the intentions and mental states

of other agents to update their value representation. This hypoth-

esis was supported by the fact that in our whole-brain analysis,

together with increased activity in vmPFC, we isolated a network

of brain regions that have previously been associated with theory

of mind (Siegal and Varley, 2002; Frith and Frith, 2006; Saxe,

2006), such as temporoparietal junction (L-TPJ; [�48, �52, 25],

t = 3.68), precuneus ([6, �43, 49], t = 4.9), and dorsomedial

PFC (dmPFC; [9, 50, 28], t = 3.47) (Figure 3A; for a complete

list of activations see also Table S1).

In particular, we focused on dmPFC because convergent evi-

dence suggests that this region of the prefrontal cortex plays a

primary role in human ability tomake inferences about themental

states (including intentions) of other agents (Siegal and Varley,

2002; Amodio and Frith, 2006), enabling strategic thinking

(Hampton et al., 2008). Furthermore, a previous study has shown
Neu
that in experimental financial markets, activity in this area corre-

lates with participants’ ability to predict price changes inmarkets

due the presence of informed insider traders in the market (Bru-

guier et al., 2010).

If activity isolated in dmPFC during bubble markets reflected

mentalizing ToM activity, then we would expect a measure of

neural signal change in that region during bubble markets to

be associated with individual-specific measures of ToM. To

test this hypothesis further, we retested a subset of participants

(n = 14) who had originally participated in the bubble experiment

using an online version of the eye gaze test to assess their ToM

skills (Baron Cohen et al., 2001). In this task, participants looked

at eye gazes and picked one of four terms that best described

the mental state of the person whose eyes were shown (see

Experimental Procedures). The task has correct answers, from

which we constructed an index of the ToM ability of each partic-

ipant. We then extracted the percentage of signal change in

dmPFC in response to CPV during bubble markets (in the

8 mm sphere centered at [9, 50, 28]) for each subject and found

a substantial correlation between that signal change and each

subject’s ToM ability index (Spearman rank correlation co-

efficient r = 0.57; p < 0.05) (Figure 4). Critically, no significant cor-

relation between dmPFC signal and the ToM index was found

during nonbubble markets (r = 0.32; p > 0.1). Furthermore, we

repeated the same analysis in vmPFC (in the 8 mm sphere

centered at [3, 53, �2]), which showed that activity in vmPFC

did not correlate with performance in the ToM task in either the

bubble (r = 0.06; p > 0.5) or the nonbubble markets (r = 0.09;

p > 0.5). Taken together, these findings supported our hypothe-

sis that the increased activity in dmPFC that we isolated during

the financial bubbles reflected a computation associated with

the participants’ tendency to make inferences about the mental

states of other players in the market. An intriguing possibility is

that participants during the financial bubble, rather than mental-

izing the intentions of individual players, would represent the

whole market as an intentional agent in the attempt to forecast

the future intentions of the market.

Notably, unlike in vmPFC, activity in dmPFC isolated in this

contrast did not correlate significantly (r = 0.009; p > 0.5) with

the individual’s susceptibility to ride a financial bubble, as

measured by the bubble susceptibility index. These results sug-

gested that the neural circuit that modulated the value represen-

tation in vmPFC (associated with the behavioral susceptibility to

ride a financial bubble) might be influenced by the social com-

putations instantiated in dmPFC during the update of partici-

pants’ CPV. In order to test this hypothesis, we then conducted

a psychophysiological interaction (PPI) analysis between vmPFC

and dmPFC. This analysis revealed that the functional coupling

between these two regions significantly increased during bubble

markets (p < 0.001; Figure 5), suggesting that investors might

update their portfolio profits in vmPFC by taking into account

the intentions of the other players in the market. We therefore

devised a model-based analysis to investigate this idea in

more detail.

Intentionality
To study how intentionsmodulatemarket traders’ computations,

we studied how subjects inferred intentional agency from
ron 79, 1222–1231, September 18, 2013 ª2013 The Authors 1225



Figure 2. Value Signals in vmPFC

(A) Increased response to parametric changes in

CPV in bubble markets versus nonbubble mar-

kets. vmPFC (peak [x, y, z] = [3, 53, 2]; Z = 3.02; p <

0.05 small volume FWE corrected) representation

of trading value is positively modulated in bubble

markets.

(B) Bar plot for the vmPFC response for three

levels of CPV (low, medium, high) for bubble

markets (red) and nonbubble markets (green).

Note that the bar plot is shown solely for illustrative

purposes (to clarify the signal pattern in vmPFC)

and is not used for statistical inference (which was

carried out in the SPM framework).
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changes in the arrival of buy and sell orders. Recall that subjects

see a fast-motion replay of all orders to buy (bids), and all orders

to sell (asks), whichwere entered in the original behavioral exper-

iments. Paying careful attention to this fine-grained sequence of

buy and sell orders could form a basis for predicting trader inten-

tions (a relative of sentiment in financial economics; Baker and

Wurgler, 2007). To translate this idea into a precise computa-

tional variable, we use a recent precise measure from financial

theory. The intuitive idea is that the presence of strategic agents

in a market can be inferred by a statistical change in the order

arrival process, from a homogeneous Poisson process to a

mixture process (where the arrival intensity switches randomly)

(Easley et al., 1997). The idea is that any increase in trader infor-

mation, or even a perception of such an increase, will change

order arrival. For example, orders may arrive more rapidly as

traders try to trade quickly before information leaks out, or orders

may thin out as traders place orders more cautiously, afraid of

being on the wrong end of a trade against a better-informed part-

ner (Easley et al., 2002).

We therefore constructed a statistic that measured the

dynamic of breaks in Poisson homogeneity during trading. We

called this metric Poisson inhomogeneity detector (PID). PID is

a statistic that increases as the evidence against a homogenous

Poisson order arrival process increases over the recent past.

Specifically, it tests whether the number of arrivals in the last in-

terval of 9 s conforms to a Poisson distribution with fixed arrival

intensity. This measure, first proposed and investigated by

Brown and Zhao (2002), has good statistical power (in small

samples) to reject the null hypothesis of homogenous arrival in

favor of the alternative that the arrival rates obtain from Poisson

distributions with different arrival rates across the M intervals.

Letting xi denote the number of arrivals in interval

iði = 1;.; MÞ, and

yi =

�
xi +

3

8

�1=2

; (Equation 1)

then the PID is defined as

PID= 4
Xi

m

ðyðiÞ � YÞ2; (Equation 2)

where Y equals the average (across M intervals) of the values of

yi. Under the null hypothesis, PID approximately follows a c2 dis-

tribution with M � 1 degrees of freedom. Taking M = 24, this
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means that the critical value corresponding to p = 0.05 is PID =

36. As PID grows, the evidence against the null hypothesis of

no change in arrival rate increases (Figure 6A; Figure S4).

Using this model, we were then able to construct a parametric

regressor for each subject, measuring inferred intention over

time. The regressor averaged the value of PID over the period

in which the subject observed the arrival of asks and bids in

the market (see Experimental Procedures).

Critically, this parametric regressor was uncorrelated with

either CPV (r = 0.06 ± 0.02) or the deviation in prices from the

fundamental values (r = 0.001 ± 0.09). Changes in PID were

then input as a parametric regressor in a general linear model

to test whether activity in vmPFC and dmPFC showed a greater

modulation to this metric during a contrast between bubble

markets versus nonbubble markets (analogously to the contrast

using CPV as modulator). We then extracted the signal in both

regions of interest (using an 8 mm sphere centered at [3, 53,

�2] for vmPFC and [9, 50, 28] for dmPFC). This analysis yielded

a significant result in both regions in medial prefrontal cortex

(vmPFC: t = 1.83, p < 0.05 and dmPFC: t = 1.77, p < 0.05). We

then tested how this activity in medial prefrontal cortex covaried

with the susceptibility to ride the bubble (i.e., correlation with

bubble susceptibility index). A significant correlation in most of

the medial prefrontal cortex (Figure 6B), including the two re-

gions of interest, vmPFC (r = 0.46; p < 0.001) and dmPFC (r =

0.68; p < 0.001), was isolated as a result of this analysis (Fig-

ure 6C; for a complete list of activations, see also Table S1).

DISCUSSION

Understanding why financial bubbles occur is a challenging

problem that has been intensively investigated, with no clear

results. Several scholars have recently started to explore the

neural mechanisms underpinning human behavior during finan-

cial interactions (Knutson and Bossaerts, 2007; Kuhnen and

Knutson, 2005; 2011; Lohrenz et al., 2007), along with psycho-

physiological (Lo and Repin, 2002) and hormonal measures

(Coates and Herbert, 2008). However, nothing is known about

the neural computation underpinning traders’ behavior during

financial bubbles. Here, we show that neuroscientific data can

help make sense of market behavior that is anomalous for stan-

dard financial theory (Yu and Xiong, 2011) by emphasizing the

role played by traders’ theory of mind in artificially inflating the

value of portfolio profits.
s



Figure 3. Bubble Susceptibility Index

(A) Activity in vmPFC is positively modulated by

the individual propensity to ride a financial bubble.

Between-subject regression analysis entering the

bubble susceptibility index (i.e., the extra price

paid by participants to purchase shares at prices

above the fundamental value during the whole

experiment) as a covariate for the increase in CPV

response during bubble markets in vmPFC (peak

[x, y, z] = �6, 50, 1; Z = 3; p < 0.05 small volume

FWE corrected).

(B) Scatter plot showing the parameter estimates

for each participant. Note that the scatter plot is

shown here solely for illustrative purposes (e.g.,

absence of outliers), and it is not used for statis-

tical inference (which was carried out in the SPM

framework).
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Standard asset pricing theory assumes that competitive mar-

kets are nonstrategic and nonintentional (i.e., payoffs depend

only on the price, which one cannot influence). On the contrary,

our behavioral results show that the explicit information carried

by prices and fundamental values accounts for significantly

less variance in choice behavior when subjects are trading in

bubble markets. When we tested how trading in bubble markets

modulated the representation of trading values in vmPFC, we

showed that these values are differentially represented in

vmPFC. More specifically, trading in the context of a financial

bubble is associated with inflated value representations in

vmPFC. Many studies show that vmPFC plays a key role in valu-

ation and goal-directed choices (Rangel et al., 2008; Boorman

et al., 2009; Chib et al., 2009; FitzGerald et al., 2009; Hare

et al., 2009; Levy and Glimcher, 2012). Contextual factors have

a powerful effect in modulating the neural representation of

goal values in vmPFC and therefore affect choice (Plassmann

et al., 2008; De Martino et al., 2009). For example, inflated value

representation in vmPFC has been previously shown to affect

prices, causing a behavior known as money illusion (Weber

et al., 2009). This behavior is associated with vmPFC tracking

the inflated nominal value evenwhen the actual purchasing value

remains unchanged.

Investigating changes in value representation in vmPFC, we

were able to show a correlation between the propensity to ride

a bubble (measured with the bubble susceptibility index) and

activity in this region. Note that in our experiment, participants

could ride the bubble, but not directly influence its formation,

due to the nature of the experimental design. However, this situ-

ation is analogous to real financial markets in which the action of

a single trader very rarely has a detectable impact on the whole

market. We then sought to clarify the role played in this process

by participants’ attempts to forecast the intentions of other

players or of the market as an intentional agent.

In fact, while standard financial theory assumes that compet-

itive markets are nonstrategic, it is not uncommon for people to

assign intentionality to markets. Financial commentators often

say, anthropomorphically, that ‘‘markets are panicking’’ or ‘‘mar-

kets are losing confidence.’’ Assigning intention or agency is a

natural way for humans to model and interpret complex behavior

(as in the case of simple societies in which human-like gods are

thought to control natural processes such as the weather). Hu-
Neu
mans live in social environments and therefore usually benefit

from ToM abilities that allow them to forecast the intentions of

others and take preventive actions (Fehr and Camerer, 2007;

Frith and Frith, 1999; Gallagher and Frith, 2003; Sanfey, 2007),

an ability instantiated in medial prefrontal cortex (dmPFC) (Amo-

dio and Frith, 2006; Frith and Frith, 2006).

Using an independent ToM task (Baron Cohen et al., 2001), we

showed that the increase of activity isolated during the bubble

markets correlates with the individual ability in ToM. Further-

more, we showed that the functional coupling between dmPFC

and vmPFC was increased during bubble markets. We inter-

preted these results by proposing a putative mechanism that

produces the increase in value sensitivity that we observed in

vmPFC while participants traded in the context of bubble mar-

kets. These data suggest that during financial bubbles, partici-

pants are taking into account the intention of other players in

the market (or of the market as whole) while updating their value

estimates, and that this effect is mediated by the interaction

between dmPFC and vmPFC. This interpretation fits with previ-

ous studies that have highlighted the role of dmPFC in shaping

value computation by showing that social signals change the

way in which values are updated through reinforcement learning

(Behrens et al., 2008; Hampton et al., 2008; Behrens et al., 2009;

Suzuki et al., 2012). For example, activity in dmPFC correlates

with the likelihood that participants playing a ‘‘work-or-shirk’’

strategic game learn the value of an action using a model that

takes into consideration the intentions of the other players in

the game (Hampton et al., 2008). A recent study by Nicolle and

colleagues (Nicolle et al., 2012) has proposed that dmPFC is

not specifically involved in mentalizing but has a more general

role in representing the values of actions that are modeled but

not executed while vmPFC is involved in representing only those

values that are relevant for the decision maker’s executed

choice. According to this framework, a complementary interpre-

tation of our results is that the activity in dmPFC reflects a

computation of value associated with modeled alternative

choices (e.g., buying at different prices from the fundamental

value) that are especially relevant for traders during bubble mar-

kets, when the price path is highly variable.

To provide further support to the hypothesis that the attempt

to forecast the intentions of other players or of the market plays

a key role in modulating the susceptibility to financial bubbles,
ron 79, 1222–1231, September 18, 2013 ª2013 The Authors 1227



Figure 4. ToM Signals in dmPFC

(A) Increased response to parametric changes in

CPV in bubble markets versus nonbubble mar-

kets. dmPFC (peak [x, y, z] = 9, 50, 28; Z = 3.44; p <

0.05 small volume FWE corrected) is positively

modulated in bubble markets.

(B) Percentage of signal change extracted in this

region (8 mm sphere) during bubble markets

positively correlates (Spearman rank correlation

coefficient r = 0.57; p < 0.05) with the ToM eye

score collected for a subset of participants (n = 14)

in a subsequent behavioral study. Notably, no

significant correlation between ToM score and

activity in dmPFC was isolated in nonbubble

market conditions (r = 0.32; p > 0.1).
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we devised a new statistic, the PID, to interrogate our neural data

using a model-based approach. The rationale behind this

analysis was suggested by recent financial models that have

proposed that the presence of intentionality in the market (i.e.,

strategic agents in financial terms) can be inferred by changes

in the order arrival process from a homogeneous Poisson pro-

cess to a mixture process whereby orders arrive in clusters, fol-

lowed by periods of unusually low activity (as if traders were

holding their breath). Finance theory (Easley et al., 1997) and

some experimental evidence (Camerer and Weigelt, 1991) sug-

gest that a change in order arrival indicates the presence of

traders who are better informed or who are perceived to be

better informed. Therefore, the PID statistic can be considered

a measure of the intensity of the perceived winner’s curse and

hence of inferred intention in the marketplace. Note that even

in the absence of strategic players in the market, it is sufficient

that participants perceive (and believe) that there are agents

with an information advantage, i.e., that there are agents who

make better guesses about when a bubble may crash (Abreu

and Brunnermeier, 2003). This metric allowed us to measure if

activity in vmPFC and dmPFC was positively modulated during

bubble markets in response to change in the level of perceived

intentionality in these markets.

It is important to highlight that while the PID statistic shows

fluctuations in the nonbubble markets too (primarily in the initial

periods in which bids are below the fundamental value, a stan-

dard feature of all types of experimental markets), activity in

these prefrontal regions specifically responds to change in inten-

tionality (perceived or real) during the bubble markets, a type of

market in which the fundamental values are not sufficient to pre-

dict the future evolution of prices.

Our analyses showed that both regions were positively modu-

lated by the PID parameter during bubblemarkets and that activ-

ity in the dorsal and ventral regions of the medial prefrontal

cortex showed a positive modulation with the susceptibility to

ride financial bubbles. It is worth noting that the PID parameter

is orthogonal to the CPV parameter used in the first analysis,

so the PID analysis is likely to pick up different computational

processes carried out by the same regions. Taken together,

these data provide further support that forecasting intention

plays a key role in modulating the regions in medial prefrontal

cortex that we have identified to be involved in ToM and value

computation during the representation of trading values in finan-

cial bubbles. However, the exact way in which these different
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computations interact to shape behavior needs to be investi-

gated in further detail using tailored experimental paradigms.

We also want to emphasize that our study does not exclude

the possibility that other mechanisms (such as anticipatory

affective response), which have been demonstrated to lead to

financial mistakes (Wu et al., 2012, Kuhnen and Knutson,

2005), might also play a pivotal role in the formation of bubbles.

Financial bubbles are complex and multidimensional phenom-

ena, and the identification of the neural mechanisms under-

pinning their formation requires the combination of a number

of different approaches.

In conclusion, in this study we showed how the same com-

putational mechanisms that have been extremely advantageous

in our evolutionary history (such as the one that allows people to

take into account the intentions of other agents when computing

values) could result in maladaptive behaviors when interacting

with complex modern institutions like financial markets. How-

ever, it must be noted that these abilities are not always

maladaptive in a financial milieu. For example, traders can suc-

cessfully use their ToMabilities to detect the presence of insiders

in the market (Bruguier et al., 2010), inducing traders to become

more cautious in order to avoid being taken advantage of by a

better-informed trading partner and improving the estimation

of prices. Overall, our work suggests that a neurobiological

account of trading behavior (Bossaerts, 2009) that takes into

account theory of mind can provide a mechanistic explanation

of financial concepts such as limited-rationality investing (Fehr

and Camerer, 2007). The insights that this study gives into the

underlying computational mechanisms that lead to bubble for-

mation can also potentially benefit policymakers in designing

more efficient social and financial institutions.
EXPERIMENTAL PROCEDURES

Participants

Twenty-six undergraduate and graduate Caltech students took part in the orig-

inal 2-day scanning study. Because of potential gender differences in financial

and social behavior (Powell and Ansic, 1997; Eckel and Grossman, 2008;

Byrnes et al., 1999; Bertrand, 2011), the study included males only. Five sub-

jects were excluded from the analysis because of technical problems at the

time of the scanning or excessive head movements.

fMRI task

Trading activity in six actual experimental markets (collected in previous

behavioral studies; Porter and Smith, 2003) was replayed over a 2 day
s



Figure 5. Functional Connectivity of

vmPFC-dmPFC

Psychophysiological interaction (PPI) analysis

between dmPFC (seed) and vmPFC (target) during

bubble markets. The bar plot shows how activity in

vmPFC (8mmsphere centered at�6, 50, 1) shows

an increased functional coupling with dmPFC

during bubble markets (p < 0.001). Error bars

represent SEM.
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scanning schedule. Three of the markets used in the study were nonbubble

markets; in these markets, the market prices closely tracked the fundamental

value of the asset. The other threemarkets were bubblemarkets, in whichmar-

ket prices rose well above the intrinsic value (see Figure S1). On each day, the

participants traded in three experimental markets selected in a pseudorandom

order (to avoid three consecutive markets of the same type being presented in

the same day). The duration of each market was approximately 15 min. Partic-

ipants started each new session with a cash endowment of $60 and zero

shares. Each market was divided into fifteen trading periods. At the beginning

of each period, participants were shown a message stating the period number

and the value of their portfolio (shares and cash). This was followed by a video

showing an intuitive graphical replay of the order (asks and bids) and trade

flow. The scanned participants observed a fast-motion visual representation

of the prices of offers to sell (asks) and offers to buy (bids), which were actually

inputted by the participants who had taken part in the original behavioral ex-

periments. The orders were arranged by price level (see illustrative diagram

on the right corner of Figure 1). Whenever a trade occurred, the best bid (if a

sale) or best ask (if a purchase) briefly (0.5 s) changed color to green, after

which the circle disappeared. The circles constantly rearranged to ensure

that the best bid and ask circles were closest to the midpoint of the screen

(this graphical representation of the trades was a modification of an fMRI

task used by Bruguier and collegues (Bruguier et al., 2010). After a variable

time interval (3–6 s), the screen was frozen for 5 s, and participants used their

initial endowment of $60 to either buy or sell (1, 2, or 3 shares) or stay by press-

ing a keypad. The intervals in which choices were made (choice intervals) were

presented 2–3 times during each of the 15 periods composing each market.

After the choice was inputted (5 s choice interval), an update of the partici-

pant’s portfolio (number of the shares held and cash) was presented on the

screen. At the end of each period (15 periods in total for each market), a divi-

dend was randomly extracted from a uniform distribution of (0¢ 8¢ 28¢ 60¢),

and participants were then paid for the number of shares held. Participants

were also allowed to short sell shares for a total maximum of 52 shares. In

cases of short selling, participants had to pay the cost of the dividend for

the number of negative shares held. At the end of each period, the dividend

for that period was displayed to the participants with an update of their port-

folio. For full instructions given to the participants’ in advance of the experi-

ment, please see Appendix 1 in the Supplemental Information.

ToM Task

All participants that took part in the original experiment were contacted via

e-mail and asked to complete an online modification of the eye gaze ToM

task (Baron Cohen et al., 2001). Seven of the twenty-one participants that

took part in the original fMRI study did not respond to our request. The remain-

ing fourteen participants who did complete the online testing received a $10

Amazon voucher as compensation. During the test, participants were shown

36 photographs of eye gazes in a consecutive sequence, and they were asked

to pick one term from four possible descriptions of the personwhose eyeswere

portrayed in the photo (for example, anxious, thoughtful, skeptical, suspicious).

Behavioral Analyses

Behavioral analyses were performed using Matlab statistical toolbook and

SPSS. Ordered logistic regression was implemented using the PLUM (polyto-

mous universal model) procedure in SPSS (DeCarlo, 2003). The dependent
Neu
variables were the participants’ choices coded as trinary variables (i.e., buy,

sell, or stay), while the two dependent measures were market prices (average

of best bid and best ask available in the choice period) and fundamental asset

value for the current period ($0.243 [15� t + 1]) (dashed line in Figures 1C and

1D). For each model, we reported the Nagelkerke pseudo R2 (Nagelkerke,

1991) and the BIC (Kass and Raftery, 1995).

Scanning Acquisition

Forty-five slices were acquired on a 3T Siemens Trio at a resolution of 3 mm3

3 mm 3 3 mm, providing whole-brain coverage. A single-shot echo planar

imaging (EPI) pulse sequence was used (TR = 2800 ms, TE = 30 ms, FOV =

100 mm, flip angle = 80�). The images were collected at a tilted angle of 30�

from the anterior commissure. For each subject, at the end of the first scanning

day (day 1), the EPI functional scanning was followed by a whole-brain, high-

resolution, T1-weighted anatomical structural scan and local field maps.

fMRI-SPM Analyses

Image analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/). The first five volumes from each session were discarded to allow for

T1 equilibration. Raw functional, structural, and field map files were recon-

structed using TBR. Field maps were reconstructed into a single-phase file.

This field map file was then used to realign and unwarp EPI functional images.

Structural images were reregistered to mean EPI images and segmented into

gray and white matter. These segmentation parameters were then used to

normalize and bias correct the functional images. Normalized images were

smoothed using an 8 mm full-width Gaussian kernel at half-maximum

(FWHM). A GLM was constructed in which onset regressors (beginning at

the start of each video) for each session were assembled by convolving d func-

tions with a canonical hemodynamic response function (HRF). These regres-

sors were modulated by a parametric regressor coding for the CPV, a combi-

nation of the value in cash and in shares held by a subject at each point in time

(CPV = cash + [shares3 fundamental value at time t]). A correction for tempo-

ral autocorrelation in the data (AR 1 + white noise) was applied. Finally, six mo-

tion parameters were included in the GLM. In order to find an interaction of the

increased value representation due to the bubble manipulation, we contrasted

linear increase to CPV in the bubble markets versus the nonbubble markets.

To test the role of ToM in dorsomedial prefrontal cortex, we extracted activ-

ity from an 8 mm sphere region of interest (ROI) centered in dmPFC [9, 50, 28]

isolated in the whole brain SPM analysis. We then tested how activity that

parametrically tracked the increase in CPV correlated with individual ToM

scores during bubble markets and nonbubble markets, calculating Spear-

man’s rank correlation coefficient between the parameter estimates in dmPFC

and ToM scores. For the analysis using the PID, we calculated this metric (as

described in the Results) for each time point in the original markets used as

stimuli for the fMRI study. We then averaged the PID over the period of movie

observed by each participant and used this parameter in a new GLM. We then

contrasted this parametric regressor in the bubble markets versus the non-

bubble markets and extract activity of two ROIs of 8 mm sphere centered in

dmPFC [9, 50, 28] and vmPFC [3, 53, �2].

fMRI-PPI Analysis

To assess changes in connectivity between dmPFC and vmPFC as a function

of the market type, we carried out a psychophysiological interaction (PPI)
ron 79, 1222–1231, September 18, 2013 ª2013 The Authors 1229
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Figure 6. Poisson Inhomogeneity Detector

Signals

(A) Poisson inhomogeneity detector (PID) evolving

over time for the two types of markets (bubble and

nonbubble) depicted in Figures 1C and 1D. This

metric captures the inferred change in evidence (at

p = 0.05) for a switch from a homogeneous Pois-

son process in the arrival of orders (gray box) to a

mixture process, in which arrival intensity changes

randomly.

(B) Response in medial prefrontal cortex to para-

metric changes in PID in bubble markets versus

nonbubble markets, which is positively modulated

by the individual propensity to ride a financial

bubble. The scatter plot shows the parameter

estimates for each participant in the dmPFC and

vmPFC ROIs. The scatter plot is solely for illus-

trative purposes (e.g., to show the absence of

outliers), and it is not used for statistical inference.
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analysis. PPI is a measure of context-dependent connectivity, explaining the

regional activity of other brain regions (here vmPFC) in terms of the interaction

between responses in a seed region (here dmPFC) and a cognitive or sensory

process. We carried out PPI analysis using the generalized PPI toolbox for

SPM (gPPI; http://www.nitrc.org/projects/gppi). gPPI creates a new GLM in

which the deconvolved activity of the seed region (8 mm sphere centered in

dmPFC [9, 50, 28]) is assigned to the regressors modeling the effect of the

task at the time of the trading periods and reconvolved with the hemodynamic

response function. Average time courses were extracted from all voxels within

an 8 mm sphere surrounding the vmPFC peak coordinate [3, 53, �2] that we

isolated in the original SPM analysis. This was done since the aim of this anal-

ysis was to demonstrate that the activity we isolated in dmPFC and vmPFC (in

the main SPM contrast) showed a functional connectivity. The main effects of

the task, seed region time course, andmotion parameters were included as re-

gressors of no interest. The PPI contrast compares bubble markets (+1) with

nonbubble markets (�1).

Statistical Inference

Second-level group contrasts from our GLM were calculated as a one-sample

t test against zero for each first-level linear contrast. Activations were reported

as significant if they survived familywise error correction (FWE) for multiple

comparisons across a volume of 8 mm (SVC) cantered on peak of activity iso-

lated in independent studies. For vmPFC, we used the coordinates [0, 53, 4]

taken from (Suzuki et al., 2012); for dmPFC, we used the coordinates [�3,

51, 24] taken from (Hampton et al., 2008).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Appendix 1, four figures, and one table and

can be found with this article online at http://dx.doi.org/10.1016/j.neuron.

2013.07.003.
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