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Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). It is char-
acterized by the infiltration of autoreactive immune cells into the CNS, which target the myelin sheath, leading to
the loss of neuronal function. Although it is accepted that MS is a multifactorial disorder with both genetic and
environmental factors influencing its development and course, the molecular pathogenesis of MS has not yet
been fully elucidated. Here, we studied the longitudinal gene expression profiles of whole-blood RNA from a
cohort of 195 MS patients and 66 healthy controls. We analyzed these transcriptomes at both the individual tran-
script and the biological pathway level. We found 62 transcripts to be significantly up-regulated in MS patients;
the expression of 11 of these genes was counter-regulated by interferon treatment, suggesting partial restor-
ation of a ‘healthy’ gene expression profile. Global pathway analyses linked the proteasome and Wnt signaling
to MS disease processes. Since genotypes from a subset of individuals were available, we were able to identify
expression quantitative trait loci (eQTL), a number of which involved two genes of the MS gene signature.
However, all these eQTL were also present in healthy controls. This study highlights the challenge posed by ana-
lyzing transcripts from whole blood and howthese can be mitigated byusing large, well-characterized cohorts of
patients with longitudinal follow-up and multi-modality measurements.

INTRODUCTION

Multiple sclerosis (MS) is a debilitating disease of the central
nervous system (CNS), affecting primarily young adults, with
a prevalence of about 100 per 100 000 in northern Europeans
and their descendants (1). Disease pathogenesis is thought to
be mediated by autoreactive T-cells and B-cells, although
innate immune mechanisms have also been implicated (2).
Pathogenic immune processes lead to a breakdown of the
blood–brain barrier, enabling increased access to the CNS of
immune cells, which target the myelin sheath of axons. MS is
a multifactorial disorder with both genetic and environmental
factors influencing its development and course (3). Genome-
wide, more than 60 loci have been identified that influence MS
risk, and among these, the HLA locus has the strongest effect (4).

The commonly used disease-modifying treatments (DMTs)
interferon (IFN) beta and glatiramer acetate are believed to

modulate the immune response, reduce new inflammatory
lesions in the CNS and partially protect against progression of
disability. However, patients vary considerably in their respon-
siveness to these therapies, and for any individual patient, the
natural history of MS is extremely heterogeneous, varying
from a benign condition to a devastating and rapidly incapacitat-
ing disease. For these reasons, a better characterization of
patients is much needed to ultimately understand the diversity
of disease presentation. Recent studies in neurodegenerative dis-
orders and autoimmune diseases (5–8) suggest that gene expres-
sion changes in blood mirror pathologic processes in the CNS.
Blood transcriptomics have also been used to study therapeutic
response to treatment with different drugs, toxins and infections
in different diseases (9–11). Several microarray-based gene ex-
pression studies have used whole blood or peripheral blood
mononuclear cells (PBMCs) to investigate de-regulated patterns
of gene expression in MS patients (12–31). Unfortunately,
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owing to small sample sizes and disease heterogeneity, reprodu-
cibility across studies has been limited. In this study, we set out to
assess gene expression profiles in whole blood in a well-
characterized longitudinal cohort comprising 195 MS patients
and 66 healthy controls. We followed a multi-analytical ap-
proach to identify both individual transcripts and biological
pathways implicated in MS pathogenesis as well as in response
to therapeutic drugs. In addition, we integrated the transcrip-
tomes with available genome-wide genetic variants in order to
determine expression quantitative trait loci (eQTL) (32,33).

RESULTS

We performed whole-blood transcriptional profiling in 195 MS
patients at the time of enrollment (baseline), and after 1 and 2
years of follow-up. We also profiled 66 healthy individuals at
two different time points (1 year apart) as controls (see Supple-
mentary Material, Fig. S1, for a description of the analytical
strategy). After stringent quality control, 397 arrays were ana-
lyzed as a discovery set, and an independent set of 229 arrays
were analyzed for validation. Details of the cohort are provided
in Table 1. The quality of microarray data was further assessed
by analyzing a set of 48 transcripts in 44 random samples by
an independent technology (NanoString). The correlation
between the expression values as determined by the two techni-
ques was high (range 0.76–0.88; Supplementary Material,
Fig. S2), indicating the reliability of the array data set.

Global gene expression in IFN-treated patients (n ¼ 58) was
compared with that of untreated MS subjects (n ¼ 62) in the dis-
covery data set (Table 2). We determined the gene expression
differences between untreated and treated patients at each of
three yearly time points and computed the union of these differ-
ences as differentially regulated genes. As expected, IFN treat-
ment was associated with broad gene expression changes: 749
genes were differentially expressed at a false discovery rate
(FDR) of 1%. Increasing FDR stringency to 0.01% decreased
the number of genes to 262, of which 260 (99%) were also
found differentially expressed in the replication data set (Supple-
mentary Material, Table S1). Among the most significantly and
strongly differentially expressed genes were EPSTI1 (epithelial
stromal interaction 1), OAS3 (2′5′-oligoadenylate synthetase 3),
IFI44L (interferon-induced protein 44-like) and RSAD2 (radical
S-adenosyl methionine domain containing 2). Notably, 45% of

the reported 260 genes are known IFN-responsive genes as
recorded in the Interferome database (http://www.interferome.
org/, last accessed date on Spring, 2012), indicating that a
robust signature can be reliably detected from whole-blood
total RNA. Furthermore, the identified signature clearly discri-
minated treated from untreated subjects (Fig. 1 and Supplemen-
tary Material, Fig. S3).

We then turned to comparing gene expression changes in un-
treated MS patients versus healthy controls. Because gene ex-
pression patterns were relatively stable across the three time
points, we adopted a cross-sectional analysis strategy. MS
patients were compared at each time point with all data points
available for controls. The two time points for controls were
treated as replicates, assuming that in the absence of disease pro-
cesses, the expression of the majority of genes would not change
significantly within a year (correlation coefficients between the
two time points for controls ranged between 92 and 99%; data not
shown). As in the IFN analysis, differentially expressed genes
were determined as the union of gene expression differences
observed for each of the three time points.

In contrast with the transcriptional responses observed for IFN
treatment, gene expression differences between untreated cases
and controls were much more subtle, with a maximal expression
difference of 1.46-fold. Taking advantage of our large sample
size and two-tiered approach, we applied an FDR cut-off of
1% in the discovery data set to increase the list of potential
hits. Out of 79 differentially expressed transcripts, 62 (78%)
were confirmed in the replication data set (Supplementary Ma-
terial, Table S2). Of interest, 11 out of 51 overlapping transcripts
(22%) were also differentially expressed at nominally significant
P-values in a publicly available, independent data set [ANZgene
data (18,23)]. Furthermore, the overall concordance in differen-
tially expressed transcripts identified by our microarrays and by
the ANZgene data was significantly higher than expected (at an
FDR of 0.05, both data sets shared 22 up-regulated genes, 18
more than expected by chance, P-value by chi-square test: 2.2
× 10216), supporting the validity of our findings. Interestingly,
11 of the 62 differentially expressed genes (18%, all
up-regulated in MS) were consistently down-regulated by IFN
treatment (nominal P-value ≤ 0.05 in at least five of the six
studied time points in both discovery and replication data sets),
suggesting that DMT counteracts potentially pathogenic gene
expression patterns in MS patients. Table 3 lists these 11

Table 1. Major characteristics of the study cohorta

Data set Discovery (397 arrays) Replication (229 arrays)
Condition MS (n ¼ 120) Ctrl (n ¼ 41) MS (n ¼ 75) Ctrl (n ¼ 25)

Visit BL F/U Y1 F/U Y2 BL F/U Y1 BL F/U Y1 F/U Y2 BL F/U Y1
CIS/RR/SP (%) 17/77/6 14/78/8 13/80/7 NA NA 25/69/5 15/82/3 11/87/2 NA NA
Median disease duration (range) 6 (0–45) 7 (1–46) 8 (2–47) NA NA 5 (0–34) 5 (1–35) 6 (2–27) NA NA
Median EDSS (range) 1.5 (0–7) 2 (0–7) 2 (0–7) NA NA 1.5 (0–5) 2 (0–6) 2 (0–6) NA NA
Median age (range) 43 (22–66) 44 (23–67) 45 (24–66) 46 (26–66) 46 (27–64) 45 (23–61) 46 (23–62) 46 (25–61) 42 (27–61) 43 (31–62)
% Female 71 71 70 74 76 66 64 65 59 50
Number of subjects

untreated/IFN-treated
54/57 42/67 37/61 38/NA 41/NA 21/38 20/41 15/48 22/NA 24/NA

MS, multiple sclerosis patients; Ctrl, healthy controls; BL, baseline; F/U Y1/Y2, follow-up year 1 or 2; CIS, clinically isolated syndrome; RR, relapsing-remitting; SP,
secondary progressive; EDSS, Expanded Disability Status Scale; IFN, interferon; NA, not applicable.
aPatients’ characteristics were determined at the start of the study.
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genes, some of which encode for proteins with known immune
functions (S100A11, LST1, FCGRT, GMFG). Also, the tran-
scription of genes involved in proteasome function (PSMA7),
Wnt signaling (CSNK2B) and oxidative phosphorylation
(COX4I1) was affected by IFN treatment. In addition, IFN
counter-regulated the expression of PARK7 (also known as
DJ-1), a gene which has previously been reported to be
up-regulated in MS (34–36). Seven of the 11 genes (64%)
were also found to be significantly down-regulated in at least
50% of tested publicly available data sets assessing MS patients
before and after the start of IFN treatment (IFN data: see Materi-
als and Methods). Of note, these seven validated genes included
two MS genes that were replicated in the ANZgene data (PARK7
and COX4I1). Interestingly, 24% of the genes we found to be sig-
nificantly up-regulated in MS in the ANZgene data also showed
counter-regulation in at least 50% of the IFN data, suggesting
that one means by which IFN treatment shows therapeutic
benefit might be restoration of ‘healthy’ gene expression.

Despite modest differences in expression levels, the identified
MS signature is discriminatory in unsupervised hierarchical
clustering (Fig. 2). The heatmap shows a uniform cluster of
MS patients (group A) as well as several smaller uniform clusters
of controls, an observation that stands in the replication set. Of
note, MS cases who do not belong to group A, rather clustered
with the controls (group B), indicating that gene expression
changes evoked by the disease are much more heterogeneous
and complex than those induced by IFN.

We used the Gene Enrichment Profiler tool (37) to assess the
expression of transcripts in the MS signature in each of 126
normal cell types and tissues. This analysis revealed that the
identified signature contains genes strongly expressed in
myeloid cells, T-cells and other blood cell types, whereas
brain and other tissues show a relative depletion for those
genes (Supplementary Material, Fig. S4). Although this is not
unexpected given the origin of the samples, it demonstrates
that we detect the coordinated expression of transcripts in
these cell types, thus providing support for our analysis. Gene
Ontology (GO) and Kyoto encyclopedia of genes and genomes
(KEGG) analysis revealed that the MS signature is enriched in
energy-generating, metabolic and degradative processes as
well as transport (Supplementary Material, Table S3). These sig-
natures of cellular activation, also found in another large study
(18), might reflect the sizeable fraction of activated T-cells in
MS samples.

We next used a systems biology approach in which expression
profiles were integrated with protein interaction networks, and
heuristic searches were conducted to identify modules—groups
of proteins involved in the same biological function—enriched
in differentially expressed genes. We used the list of transcripts
differentially expressed between MS (untreated) and healthy con-
trols as input to the jActive modules plugin (38) of the network
visualization software Cytoscape (39). We found 52 statistically
significant networks, out of which 43 modules were constituted
of more than 10 proteins (Supplementary Material, Table S4).
GO enrichment analysis of these modules revealed that they
were overwhelmingly representing immune pathways (such as
wound healing, T-cell receptor signaling, B-cell activation). As
immune processes are known to play a role in MS, this finding
indicates that our analysis approach identifies non-random selec-
tions of genes involved in disease pathogenesis. AdditionalT
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cellular processes that wereamong themost significantly enriched
categories were insulin and transforming growth factorb receptor
signaling, cell cycle and transcriptional regulation, apoptosis as
well as vesicular transport. Similarly, KEGG enrichment analysis
of these modules yielded cell cycle and cancer as well as immune
categories, including innate immune functions such as phagocyt-
osis and complement and coagulation cascades. Interestingly, we
identified several networks representing cell adhesion and trans-
endothelial migration pathways, all mechanisms likely involved
in MS pathogenesis. One of the most significant networks was
enriched in immune and cell cycle-related pathways, highlighting
these processes as active players of disease pathogenesis.Detailed
information on all significant networks is provided in Supplemen-
tary Material, Tables S5–S7. One of the most significant net-
works, enriched in immune and cell cycle-related pathways, is
shown in Supplementary Material, Figure S5.

Because genome-wide single-nucleotide polymorphism
(SNP) genotypes were available for 59 untreated patients and
28 healthy controls from the discovery set as well as for 27
cases and 25 controls from the replication set (40), we finally
used the gene expression data to identify eQTL, i.e. SNPs asso-
ciated with differential gene expression. We identified 178 tran-
scripts with high variance (see Materials and Methods) across all
cases and controls (separately) at multiple time points. We found
103 cis-eQTL shared between MS cases and controls, showing
significant P-values in both the discovery (Bonferroni-corrected
P-values) and the replication (nominal P-values) data sets (Sup-
plementary Material, Table S8). Only 29% of these have been
reported before. Of note, 50% of the significant eQTL were
located within 60 000 bp of the transcriptional start site of the
regulated genes (Fig. 3). This strongly suggests that the reported
associations are potentially functional. Two genes from the MS
signature were among identified novel eQTL: rs3173833 was
associated with the expression of TMEM176B, rs7806458,
rs10952287 and rs2072443 with the expression of both

TMEM176B and TMEM176A (Fig. 4). Since these two genes
are located next to each other, it is likely that their expression
is co-regulated; indeed, a recent study observed matching ex-
pression patterns of the murine homologs (41). The associated
SNPs most likely represent one haplotype [pairwise linkage dis-
equilibrium (LD) ranges between 0.8 and 1].

We also investigated whether any eQTL were specific for
either MS or healthy controls, but did not find consistent eQTL
differences in the discovery and replication data sets (data not
shown).

DISCUSSION

We here present the largest longitudinal gene expression study in
MS to date. Although several smaller expression profile experi-
ments in MS have been reported (12–28), independent valid-
ation is missing and replication across studies is either
minimal or null. Owing to the large number of samples analyzed
here, we were not only able to identify an MS signature despite
modest effect sizes (fold expression changes); but we could
also split our data into two separate sets, thus providing a
means for replication. The identified MS signature from untreat-
ed subjects differentiated cases from controls reasonably well in
unsupervised clustering (Fig. 2). A distinct cluster of MS
samples was observed (group A), whereas the remaining MS
subjects appeared more heterogeneous and partly intertwined
with controls (group B). This type of aggregation has been
observed before (27) and could not be explained by any of the
assessed clinical parameters [disease course, gender, EDSS,
number of copies of the risk allele DRB1∗15:01, disease duration
or age (data not shown)] and may reflect underlying etiological
heterogeneity. Recently, a large cross-sectional study reported
the clustering of MS patients into two groups by virtue of gene
expression profiles derived from PBMCs; these two groups

Figure 1. PCA of untreated and IFN-treated patients by the expression of IFN signature genes in the discovery (A) and replication (B) data sets. On the x-axis, principal
component (PC) 2 is plotted, on the y-axis PC 3 and on the z-axis PC 4. IFN-treated patients are displayed in orange, untreated patients in blue. As indicated by the
colored ellipses, these principal components split samples into two groups, corresponding to whether subjects were treated or not.
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Table 3. MS signature genes counter-regulated by interferon treatmenta

Gene symbol Fold change (P-value) Gene name Gene function Validated
MS versus Ctrl IFN versus

untreated

PARK7 1.239 (2 × 1027) 0.873 (0.001) Parkinson protein 7 Mitochondrial oxidative stress, TRAIL-induced cell
death (65); mutated form causes early-onset
Parkinson disease (66); previously linked to MS
(34–36)

Yes

CSNK2B 1.207 (9 × 1028) 0.895 (0.002) Casein kinase 2, beta polypeptide Anti-viral response (67), Wnt signaling (68);
susceptibility region for rheumatoid arthritis (69)

No

USE1 1.163 (2 × 1027) 0.943 (0.039) Unconventional SNARE in the ER 1 homolog Localizes to the endoplasmatic reticulum (ER) and
Golgi

Yes

S100A11 1.201 (2 × 1027) 0.919 (0.008) S100 calcium binding protein A11 Interleukin signaling (70) No
LST1 1.275 (1 × 1027) 0.874 (0.002) Leukocyte-specific transcript 1 Myeloid transmembrane protein, expression

increased in rheumatoid arthritis and up-regulated
by LPS, IFN-gamma and bacterial infection (71)

Yes

FCGRT 1.126 (1 × 1025) 0.905 (2 × 1025) Fc fragment of IgG, receptor, transporter, alpha Binds to, and increases the stability of, IgG in serum
(72)

Yes

GMFG 1.160 (1 × 1024) 0.908 (0.007) Glia maturation factor, gamma Hematopoietic cell development (73) Yes
MRFAP1 1.134 (6 × 1027) 0.938 (0.007) Morf4 family associated protein 1 Uncertain No
COX4I1 1.225 (3 × 1029) 0.914 (0.006) Cytochrome c oxidase subunit IV isoform 1 Oxidative phosphorylation Yes
C19orf43 1.159 (4 × 1026) 0.941 (0.033) Open reading frame 43 (Chr 19) Uncertain Yes
PSMA7 1.129 (3 × 1026) 0.947 (0.019) Proteasome subunit, alpha type, 7 Component of proteasome; among others, functions

in cell cycle and viral replication (74)
No

aCtrl, control; IFN, interferon; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; Wnt, wingless-related MMTV integration site; LPS, lipopolysaccharide. Validated, also found to be
down-regulated in publicly available data sets measuring gene expression before and after administration of IFN (see Materials and Methods).
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differed in the expression level of 98 probes as well as by clinical
disease activity (28). With expression profiling from only one
time point being available, the authors could not comment on
whether a given patient would always belong to the same MS
subgroup or could switch groups (28). To follow up on this
finding, we defined two MS subgroups either based on the previ-
ously described 98 probe-signature or based on the inherent
structure of our data. Although most patients clustered with the
same subgroup at all three time points, a fraction of patients
changed groups, depending on the method used to define the
two subgroups (data not shown). When considering only patients
who remained in the same subgroup over time, we were not able
to identify significant differences in clinical activity between
groups by survival analysis (data not shown). However, it is pos-
sible that the smaller sample size in our study may have restricted
our power to detect differences.

Interestingly, both KEGG and pathway analyses of the MS
gene expression signature identified over-representation of
elements of the proteasome. These results are supported by pre-
vious findings implicating the proteasome in MS pathogenesis
(42–44) and suggest that the proteasome might be a relevant
target to decrease overt disease activity. Likewise, both KEGG
and pathway analyses hint to a role for the SNARE complex,
whose assembly has recently been linked to proteasome function
and neurodegeneration (45). Two of the modules in the pathway
analysis revealed the involvement of Wnt (wingless-related

MMTV integration site) signaling in MS. Notably, the unfiltered
GO and KEGG categories enriched in the MS gene signature
(Supplementary Material, Tables S3 and S9) significantly
overlap with a recently published categorical analysis of the tran-
scriptional response to Wnt1 in cultured human neural progeni-
tor cells (46). Previous reports have also associated the Wnt
pathway with MS susceptibility (47) and particularly, with de/
remyelination (48,49). Altogether, this body of data supports
the Wnt pathway as a player in MS pathogenesis, a fact that war-
rants a closer look at this critical developmental pathway.

Surprisingly, we find several indications for the involvement
of neuronal processes in the pathogenesis of MS in our data set.
This finding has to be interpreted cautiously as the analyzed tran-
scriptomes were acquired from blood, not from neuronal cells.
Further studies are needed to determine whether these signatures
in whole blood truly represent processes in the CNS.

No significant changes in longitudinal gene expression were
identified that could discriminate the two groups (data not
shown), suggesting that yearly measurements may not be fre-
quent enough to capture the true dynamics of gene expression.
Alternatively, the duration of the study (2 years) was not suffi-
cient to detect the cumulative impact of disease processes on
blood gene expression.

Our data on the transcriptional consequences of IFN treatment
are in accordance with previous gene expression studies
(reviewed in 50). By applying a very stringent FDR cut-off

Figure 2. Unsupervised hierarchical clustering of MS patients and healthy controls according to the expression of MS signature genes in the discovery (A) and the
replication (B) data sets. The rows are different genes, the columns reflect different experiments. The colored bar above the heatmap identifies patients (orange) and
controls (grey). Two subgroups of MS patients, group A with a stronger signature and group B, emerge. Blue depicts low expression and yellow high expression.
Hierarchical clustering was performed using Euclidean distance and average clustering.
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(FDR , 1024), we identified an IFN gene expression signature
that clearly differentiated treated from untreated patients
(Fig. 1). Interestingly, we observed that a subset of patients
within the treated group showed a stronger signature. Although
thisobservation was replicated in the validationdata set, no correl-
ation was found with any of the assessed clinical parameters (IFN
formula, days on treatment, disease duration, EDSS, disease
course, number of copies of the risk allele DRB1∗15:01, age,
gender, principle component 1; data not shown) that could
explain the sample aggregation. Since many treated patients do
not show this strongsignature at all assessed time points, the stron-
ger response to IFN might rather reflect some variability in the re-
action to injection than a specific attribute of affected individuals.

Although we identified many cis-eQTL with very significant
P-values (Supplementary Material, Table S8), we did not find evi-
dence of trans-eQTL. This might be related to the fact that, for the
latter analysis, correction for multiple testing is much more exten-
sive (genome-wide versus SNPs in the same genomic region
only), thus increasing the chance of eliminating true discoveries
(type II error). Also, no eQTL specific for MS patients or
healthy controls were identified. One possibility for the lack of
disease-specific eQTL might be the limiting sample size.

In summary, gene expression differences between MS
patients and controls were modest, possibly due to both
disease heterogeneity and the choice of research specimen
(whole blood). Analysis of a large data set allowed us to over-
come these natural limitations, and a number of significant

de-regulated genes could be detected. A proportion of transcripts
up-regulated in untreated patients were counter-regulated by
IFN treatment, suggesting a set of possible effectors for this first-
line therapy in MS.

MATERIALS AND METHODS

Samples and consent

This study was approved by the University of California at
San Francisco (UCSF) Committee on Human Research. The
EPIC study enrolled 500 MS patients and 500 controls in 2004
and has been following them on a yearly basis until now. At
each visit, subjects are assessed by neurological examination
as well as neuro-imaging, and blood samples are collected.
Blood samples from 120 MS patients (at three consecutive
years) and 41 healthy controls (at two time points) participating
in the EPIC study were selected at random as discovery data set.
Another set of 75 MS patients (at three consecutive years) and 25
healthy controls (at two time points) were selected at random as
the replication data set. Major characteristics of the study cohort
are given in Table 1.

RNA preparation and microarrays

Blood was drawn into PAXgene collection tubes and RNA was
isolated using the PAXgene Blood RNA kit (Qiagen, Valencia,
CA, USA), following the manufacturer’s instructions except
for an additional washing step before RNA elution. DNA was
digested on columns using the RNase-free DNase Set
(Qiagen). RNA quality control, labeling and hybridization
onto Affymetrix Human Exon 1.0 ST Arrays (Affymetrix,
Inc., Santa Clara, CA, USA) were performed by the core facility
of Duke Institute for Genome Sciences and Policies. The raw
data are available at Gene Expression Omnibus, accession
number GSE41850.

NanoString data generation and analysis

To test the reliability of the microarray data, we assessed the ex-
pression profiles from a subset of 20 patients at different time
points (44 samples in total) using an independent technique,
NanoString nCounterw assays (NanoString Technologies,
Seattle, WA, USA). RNA from selected samples was
re-extracted and sent to the Oncogenomics Core Facility of the
University of Miami. After quality control was performed
[Agilent 2100 Bioanalyzer (Agilent Technology, Santa Clara,
CA, USA) analysis; RIN ranging between 7.9 and 9.7], the ex-
pression of 48 selected genes and 3 housekeeping genes was
assessed. Data were analyzed in R. One sample did not pass
quality control and was excluded. Data were log2-transformed
before being normalized in two steps. We first used assay internal
positive controls to calculate a normalization factor for each
sample (by dividing the median of all counts of the positive con-
trols by their sum) and then normalized data by the expression of
housekeeping genes (GAPDH, PPP1CA, HPRT1). This was
accomplished by determining the average counts of all house-
keeping genes for all samples and then computing a

Figure 3. Location of general cis-eQTL. Association P-values in discovery (A)
and replication (B) data sets are plotted against the distance of each cis-SNP from
the transcription start of studied transcripts. SNPs that were found to be signifi-
cant in both discovery and replication data sets (replicated) are displayed in
red, those with significant P-values only in the discovery data set (significant)
are displayed in orange, all non-significant SNPs (non-sig) are shown in black.
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normalization factor for each sample (obtained by dividing the
median of these averages by the average counts of the house-
keeping genes of each sample). Sixteen samples were run in
replicates, and the correlation coefficients for these samples
ranged from 0.99 to 1 (data not shown), supporting that the

data were highly reliable. Comparing the NanoString data with
the same samples assessed by microarrays also yielded correl-
ation coefficients ranging from 0.76 to 0.88 (Supplementary Ma-
terial, Fig. S2), supporting the good quality of the expression
arrays.

Figure4. Geneticmake-upof MSgene cis-eQTL. (A and B) Manhattan plotsof association P-values ofall studiedSNPsand the expression of one of the MS-associated
genes with replicated cis-eQTL, TMEM176A, encoded on chromosome 7, in the discovery (A) and the replication (B) data sets. Each chromosome is displayed in a
different color. Note the pronounced peak of association P-values on chromosome 7, on which TMEM176A is encoded, especially in the discovery data set. (C and D)
Log2-transformed expression values for TMEM176A in dependence of the most significantly associated SNP, rs7806458 (genotype), in the discovery (C) and the
replication (D) data sets in both MS patients (MS) and controls (CTRL). (E) University of California at Santa Cruz (UCSC) genome browser-based visualization
of the genetic locus comprising TMEM176A, TMEM176B and the SNPs associated with their expression (shared: rs7806458, rs10952287, rs2072443;
TMEM176B only: rs3173833), marked in red in the upper track. In addition to UCSC genes, RefSeqGenes and Human mRNA tracks, location of the probes on
the analyzed microarray (‘Core PS’, Affy Exon Array) as well as the Encode Integrated Regulation tracks ‘Layered H3K27Ac’, ‘DNase Clusters’ and ‘Txn Factor
ChIP’ are shown. Also, Vista Enhancers (‘HMR-Conserved Non-coding Human Enhancers’) and transcription factor binding sites (‘HMR Conserved Transcription
Factor Binding Sites’, TFBS conserved) are displayed. Common SNPs (as of dbSNP v135) are shown in the bottom track.

Human Molecular Genetics, 2013, Vol. 22, No. 20 4201

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt267/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt267/-/DC1


Genotyping

The genotypes on this data set have been published before in the
context of a genome-wide association study (GWAS) (40).
Arrayed SNPs were re-annotated to hg19 using the liftOver
tool of the UCSC genome browser (http://genome.ucsc.edu/
cgi-bin/hgLiftOver, last accessed date on February, 2012) and
the R package biomaRt (51).

Microarray data normalization and determination
of differentially regulated genes

Microarray data were processed in R using the R package ‘aro-
ma.affymetrix’ (www.aroma-project.org). Thirteen outliers
were detected by both principal component analysis (PCA)
and the package ‘arrayQualityMetrics’ (52) and were thus
excluded from further analysis. For the comparison of IFN-
treated and untreated patients, all arrays of IFN-treated and
untreated patients were processed together (i.e. background-
corrected and normalized). Similarly, for the comparison of un-
treated patients and controls, all arrays of untreated patients and
controls were processed together in a separate analysis. Data
were background-corrected (‘RMAbackgroundCorrection’)
and quantile normalized before core probe sets were summarized
to transcript level, using a custom-made cdf file. This cdf file
excludes all probes known to span SNPs, which could interfere
with hybridization and thus introduce noise (53). Data were log2-
transformed and filtered for variance using the ‘genefilter’
package [probe sets showing a difference between the 10 and
90% quantiles .0.7 (IFN analysis) or 0.6 (MS versus controls)
were further analyzed]. Probe sets were annotated to genes using
biomaRt. In the discovery data set, differentially expressed
genes were identified by applying stringent FDR-corrected
P-value filters; these genes were then tested for validation in
the replication data set.

The approach for the cross-sectional data analysis is depicted
in Supplementary Material, Figure S2. In brief, expression pro-
files of two groups (IFN-treated versus -untreated, MS patients
versus controls) were compared with each other for each of the
three available time points (baseline, follow-up year 1 and
follow-up year 2). For controls, the two available time points
were considered biological replicates and were averaged;
these averaged expression profiles were then used for compari-
son with untreated MS patients for all three time points. Differ-
ential expression analysis was performed for each time point
using the package ‘limma’ (54) [including gender as a covari-
ate in the linear model in the MS versus controls comparison,
as gender-specific gene expression has recently been reported
in MS (21)]. Thus, three lists of genes were generated, defining
differentially expressed genes as genes passing an FDR cut-off
at either of the three time points. The union of these significant
genes was then assessed in the replication data set. We consid-
ered as differentially expressed only those transcripts that
passed FDR in the discovery data set and that reached a
nominal P-value of ≤0.05 at any of the three tested time
points in the replication data set. In addition to statistical sig-
nificance, transcripts had to show differential regulation in
the same direction (up- or down-regulated) at all three time
points in both the discovery and replication data sets to be con-
sidered further.

Enrichment analysis

Analyses for theenrichment of GOandthe KEGGcategorieswere
performed in R, using the Bioconductor packages ‘GO.db’,
‘KEGG.db’ and ‘GOstats’ (55), conditioning parent terms on
their child terms. To assess the relative enrichment of identified
genes in different cell types and tissues, we used Gene Enrichment
Profiler (http://xavierlab2.mgh.harvard.edu/EnrichmentProfiler/,
last accessed date on January, 2012) (37), which displays both
gene expression and enrichment levels across normal tissues,
reflecting the degree of specificity of a gene for a certain tissue.

In silico gene expression analysis

To validate and compare findings in our data set with previously
published data, the following data sets were downloaded from
GEO using the R package ‘GEOquery’ (56): GSE26104,
GSE19285, GSE10655, GSE24427, GSE33464 (IFN-treated
versus -untreated MS patients; IFN data) and GSE17048 (un-
treated MS patients versus controls: ANZgene data). Probes
were assigned to genes using either contributor’s annotation
or, preferably, the R package ‘biomaRt’. Down-regulation of
genes of interest by interferon was assessed by comparing base-
line (untreated) samples with samples collected after the first in-
jection (GSE19285), around 1 month (GSE24427, GSE10655,
GSE33464) or 3 months (GSE26104) of IFN treatment using a
paired, one-tailed t-test. Significance of differential expression
of the genes in the identified MS signature in the ANZgene
was determined using a one-tailed t-test. Global differential ex-
pression analysis with the ANZgene data was performed follow-
ing our analysis strategy (unspecific filtering of probes, limma,
FDR correction).

Pathway/network analysis

For network analysis, nominal P-values of all tested genes for all
time points and both batches (in total six different P-values per
gene) were loaded into Cytoscape (39). Using the protein–
protein interaction network from the Human Protein Reference
Database (HPRD; http://www.hprd.org/, last accessed date on
Spring, 2012) (57–59), the plugin jActive modules (38) was
run to identify interaction networks of proteins whose genes
are differentially expressed in MS. jActive modules were run
using the following parameters: the maximum number of
modules was set to 1000, the overlap threshold between
modules to 0.2 and the search depth to 2. This analysis yielded
52 significant (score .3) networks, out of which 43 were consti-
tuted of more than 10 proteins. These networks were analyzed for
GO (biological processes, database downloaded on 27 March
2012) and KEGG (database downloaded on 28 March 2012)
enrichments using the Cytoscape plugin ClueGO (60), assessing
only categories with at least five proteins and applying fusion of
similar GOterms.The Mosaic analysis was run usingstandardset-
tings (61), mapping proteins in the module to GOSlim categories,
using HUGO Gene Nomenclature Committee identifiers.

eQTL analysis

Genotypes were pruned using PLINK (http://pngu.mgh.harvard.
edu/~purcell/plink/, last accessed date on May, 2012) (62),
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excluding samples or SNPs with .10% missing data as well as
SNPs with a minor allelic frequency of ,0.1, being in higher LD
than 0.9 (r2; assessing SNPs pair-wise in a window of 50 SNPs,
before moving the window by 5 SNPs) or deviating from the
Hardy–Weinberg equilibrium with a P-value ,0.001.

Different sets of genes were studied in the eQTL analysis.
First, we tested genes that were found to be in the MS gene ex-
pression signature. Then, we determined consistent but variably
expressed genes separately in cases and controls by filtering for
variance using the ‘genefilter’ R package. In cases, we filtered for
genes with a difference between the 10 and 90% quantile of
.1.2; in controls, this difference had to be .1.1. Only genes
that passed the filter at all time points in both cases and controls
were studied. In addition, genes had to be located on autosomes
and the corresponding probe sets had to have unambiguous anno-
tation (i.e. for example, probe sets aligning to multiple members
of a gene family were excluded). Using these criteria, 179 genes
were selected for eQTL analysis.

Gene expression levels of all time points were averaged before
eQTL analysis was performed in PLINK (–assoc) and evaluated
in R. In order to assess whether MS patients and controls differ in
any eQTL, PLINK was run with the –gxe flag, testing the same
genes. We defined cis-SNPs as SNPs located within 1 Mb up-
stream or downstream of the analyzed gene, trans-SNPs as all
other SNPs. P-values were adjusted for the number of tests by
Bonferroni correction. In order to be reported as a genetic inter-
action, eQTL had to be consistent, i.e. to show a significant
(≤0.05) adjusted P-value in the discovery data set and a signifi-
cant nominal P-value in the replication data set. We determined
whether identified eQTL had been reported before by querying
the GWAS catalog (http://www.genome.gov/gwastudies/, last
accessed date on May, 2012) (63) and the seeQTL database
(http://www.bios.unc.edu/research/genomic_software/seeQTL/,
last accessed date on May, 2012) (64).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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