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Abstract: Recent advances in basic fabrication techniques of TiO
2
-based nanomaterials such 

as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques 

have been adopted by various research groups around the world. Our research focus has 

been mainly on various deposition parameters used for fabricating nanostructured materials, 

including TiO
2
-organic/inorganic nanocomposite materials. Technically, TiO

2
 shows relatively 

high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO
2
. 

The development of photocatalysts exhibiting high reactivity under visible light allows the 

main part of the solar spectrum to be used. Visible light-activated TiO
2
 could be prepared by 

doping or sensitizing. As far as doping of TiO
2
 is concerned, in obtaining tailored material 

with improved  properties, metal and nonmetal doping has been performed in the context of 

improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO
2
 

represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. 

Additionally, it can be used as an antibacterial agent because of its strong oxidation activity 

and  superhydrophilicity. Therefore, applications of TiO
2
 in terms of photocatalytic activities 

are discussed here. The basic mechanisms of the photoactivities of TiO
2
 and nanostructures are 

considered alongside band structure engineering and surface modification in nanostructured 

TiO
2
 in the context of doping. The article reviews the basic structural, optical, and electrical 

properties of TiO
2
, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional 

TiO
2
  nanomaterials. Applications and future directions of nanostructured TiO

2
 are considered 

in the context of various photoinduced phenomena such as hydrogen production, electricity 

generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation 

of organic pollutant, wastewater management, and organic synthesis.

Keywords: TiO
2
 nanostructure, fabrication techniques, doping in TiO

2
, TiO

2
-assisted 

 photoactivity, solar hydrogen, TiO
2
-based dye-sensitized solar cells, TiO

2
 self-cleaning, organic 

synthesis

Introduction
In the last century, scientists have made rapid and significant advances in the field of 

semiconductor physics. Semiconducting materials have been the subject of great interest 

due to their numerous practical applications, and they provide fundamental insights 

into the electronic processes involved. Similarly, material processing has become an 

increasingly important research field. Many new materials and devices, which pos-

sess specific properties for special purposes, have now become available, but material 

limitations are often the major deterrent to the achievement of new technological 

advances. Material scientists are now particularly interested in developing materials 

which maintain their required properties in extreme environments.
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After the pioneering works of Efros and Efros1 and Brus2 

on the size quantization effect in semiconductor  nanoparticles, 

research on nanostructured materials has generated great 

interest in the scientific community. Tremendous opportuni-

ties in science and technology are now possible because of the 

new properties exhibited by these materials and the challeng-

ing problems in theoretical physics associated with the new 

properties.3–6 In general, ‘nanotechnology’ is the engineering 

of functional systems at the molecular scale. In its original 

sense, nanotechnology refers to the projected ability to con-

struct items from the bottom up, using techniques and tools 

being developed today to make complete, high-performance 

products. As nanotechnology became an accepted concept, 

the meaning of the word shifted to encompass the simpler 

kinds of nanometer-scale  technology. Formulation of a 

road map for development of this kind of nanotechnology 

is now an objective of a broadly based technology road map 

project of various leading nanotechnology research groups 

and institutes in the world. According to the US National 

Nanotechnology Initiative, the road map of nanotechnology 

can be divided into four generations (Figure 1). The first 

era is that of passive nanostructures, which are materials 

designed to perform one task. The second phase introduces 

active nanostructures for multitasking; for example, diodes, 

transistors, actuators, drug-delivery devices, and sensors. We 

are entering the third generation, which will feature nanosys-

tems with thousands of interacting components. In future, 

we may expect the development of integrated nanosystems 

functioning much like a mammalian cell with hierarchical 

systems within systems.

The optical properties of nanocrystals are related to 

their size and surface chemistry and drastically differ 

from those of bulk materials. Preparation and study of 

high-quality quantum dots, nanobelts, and nanowires have 

been reported widely.7–9 Achievements in recent years 

have focused nanomaterials research on the applications in 

electrical and optoelectronics devices.10–12 Within the class 

of inorganic materials, oxide-based compounds show the 

most diverse range of properties. The electronic properties 

of these materials mainly depend on the nature of cation–

oxygen bonding, which is explained either by solid-state 

band theory or by ionic bonding concepts from solid-state 

chemistry or by combining aspects of both approaches. 

This interplay between localized and itinerant character 

Second-generation nanostructures: active nanosystems~2005 

• Bioactive, health-related, eg, targeted drugs and biodevices. 
• Physicochemical active, eg, diodes, transistors, amplifiers, actuators, and 

adaptive structures

Third-generation: systems of nanosystems~2010 

• eg, guided assembling, 3-D networking and new hierarchical 
architectures, robotics, and evolutionary.

Fourth-generation: molecular nanosystems~2015–2020
• eg, molecular devices ‘by design,’ atomic design, and 

emerging functions.

First-generation nanostructures: passive nanosystems~2000 

• Dispersed and contact nanostructures, eg, aerosols and colloids. 
• Products incorporating nanostructures, eg, coatings, nanoparticle reinforced 

nanocomposites, nanostructured metals, nanopolymers, nanoceramics.

Figure 1 Road map to nanotechnology. 
Reproduced with permission from the US National Nanotechnology initiative report.
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yields a wide range of  electronic properties of metal oxides. 

For example, a closed-shell compound such as Al
2
O

3
 is an 

insulator displaying large band gaps. In many cases, these 

insulators can serve as effective host materials for efficient 

luminescence when doped with rare earth or transition 

metal cations. On the other hand, for closed-shell oxides 

based on cations with relatively high  electronegativity, such 

as in ZnO and SnO
2
, the more covalent nature of bonding 

yields semiconductors with relatively high carrier mobili-

ties. Electronic oxides containing transition metal cations 

can yield high conductivity materials, such as SrRuO
3
, or 

even superconductors, as with YBa
2
Cu

3
O

7
.  Collective phe-

nomenon involving electric dipole interactions in insulators 

yields ferroelectrics such as BaTiO
3
. Unpaired electron 

spin in some oxides results in ferromagnetism, as in CrO
2
, 

or ferrimagnetism, as in Fe
3
O

4
. In addition, many oxides 

display interesting metal–insulator transitions that are 

dependent on temperature (eg, V
2
O

3
), pressure (eg, NiO), 

or magnetic fields (eg, (La,Sr)MnO
3
).13–19 Because of their 

fundamental properties and obvious utility in applications, 

significant efforts have been invested in the growth of oxides 

as epitaxial thin films. Various classes of metal oxides are 

schematically represented in Figure 2.

Among these oxides, materials scientists are overwhelm-

ingly interested in the fundamental aspects and applications 

of semiconducting wide band-gap oxide materials. These 

types of materials show a wide range of electrical and opti-

cal properties. They can be transparent in the visible and 

infrared (IR) range and can be found in insulators as well 

as semiconductors. Among these wide-gap oxide materials, 

we will focus mainly on nanostructured titanium dioxide 

(TiO
2
), also known as titanium (IV) oxide or titania, which is 

a naturally occurring oxide of titanium. Because of its wide 

range of applications, from paint to sunscreen to food color-

ing to photocatalyst, hydrogen production, storage medium, 

sensors, solar cells, and various biological and health-related 

applications, this  technologically important material is the 

subject of  ongoing research and development in design, 

syntheses, and applications.

Properties of TiO2
Overview
TiO

2
 is a chemically stable, nontoxic, biocompatible, 

inexpensive material with very high dielectric constant 

and interesting photocatalytic activities. It is a wide-gap 

 semiconductor, and depending on its chemical  composition, 

it shows a large range of electrical conductivity. In general, 

TiO
2
 has two stable crystalline structures: anatase and 

rutile.20 Usually, natural rutile crystals are impure, and, 

therefore, early investigations were limited to ceramic 

samples only, but later (around 1950s), a colorless, large, 

single crystal of synthetic rutile was grown by the Boule 

technique.21,22 Thereafter, most of the research was done on 

the electro-optical characterization and defect chemistry of 

rutile single crystals.21–26 Stoichiometry of the rutile TiO
2
 is 

highly dependent on its deposition parameters, especially 

on annealing conditions and atmosphere.24,27–30 The charge 

transport phenomenon in rutile is described by small pola-

ron model.31–34 Earlier, it was assumed that the properties of 

anatase would be similar to those of rutile35 until a new solar 

cell concept was reported using anatase, which cannot be 

realized by rutile structure.36 With the possibility of growing 

synthetic anatase single crystals,37 considerable research 

to systematically investigate the electronic and optical 

properties of anatase TiO
2
 has begun.35,38–43

In general, titanium metal oxidizes in ambient condi-

tions and a thin layer of native oxide grows on the surface. 

This surface oxide layer is about 4 nm thick and protects the 

metal from further oxidation and consists mostly of rutile and 

anatase TiO
2
, but very small amounts of Ti

2
O

3
 and TiO can 

also be found.44 This native oxide layer not only passivates the 

surface, but also resists corrosion from a harsh environment 

and is useful as an implant material in orthopedic and dental 

applications.44 TiO
2
 powder is commonly used as a pigment 

in paints, coatings, plastics, papers, inks, fibers, nutrients, 

toothpaste, and cosmetics.45,46 Due to its high refractive 

index, it has found important applications in antireflection 

coatings, narrow-band filters, and optical waveguides.47–52 

Often, the properties can be tuned by creating multilayers of 

TiO
2
 and SiO

2
53 in a stacked conformation, where the high 

refractive index of TiO
2
 is combined with the low refractive 

index of SiO
2
 to show interesting optical properties. TiO

2
 has 

also been used as NO
x
, oxygen, and hydrocarbon sensors.54–58 

The catalytic activities of TiO
2
 surface under visible irra-

diation led to interesting applications in water purification 

Metal
oxides

Insulators
eg, Al2O3, MgO, BeO 

Ferroelectrics 
eg, BaTiO3

Semiconductors 
eg, ZnO, SnO2,
TiO2, CuAlO2

High conductors 
eg, SrRuO3

Superconductors 
eg, YBa2Cu3O7

Ferrimagnets 
eg, Fe3O4

Ferromagnets 
eg, CrO2

Figure 2 Classifications of metal oxides.
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(by  dissociating pollutants in dissolved organic molecules), 

water  decomposition for hydrogen production,59–65 dye-

 sensitized solar cells (DSSCs) and electrochromic 

devices,36,66,67 solid-state photovoltaic solar cells,68–70 pho-

toelectrochemical anticorrosion coatings, self-cleaning 

properties,71 and superhydrophilicity.72 Moreover, because it 

is a highly dielectric material, there are interesting electronic 

applications for rutile TiO
2
.73 Local oxidation of titanium thin 

films by scanning probe microscopes yields a convenient 

lithographic patterning technique, which does not require any 

etching,74 thus creating microelectronic elements.75 Silver 

(Ag)-incorporated TiO
2
 showed multicolor photochromism 

under visible irradiation.76 Some new applications can be 

possible with this material, such as rewritable color copy 

paper or high-density multiwavelength optical memories.77 

Rutile is preferred to anatase for optical applications because 

of its higher refractive index. On the other hand, anatase is 

prefered for all the applications related to photocatalytic 

activity, gas sensing, and solar cells, due to its higher mobil-

ity and its catalytic properties.36,55,61 Fabrication techniques 

of doped or undoped TiO
2
 thin films with a wide variety of 

properties and morphologies include both wet-chemical 

and vacuum-based physical techniques. An overview of the 

available techniques can be found in in the literature.78–83 It 

is noteworthy that the terms ‘TiO
2
’ and ‘titanium dioxide’ 

are generally used for slightly substoichiometric films of the 

composition TiO
2−x

 with x , 0.1, which exists in a mixture 

of rutile, anatase, and amorphous crystalline phases.

Crystal structure of TiO2
As mentioned earlier, naturally occurring TiO

2
 crystal has 

three common polymorphs: rutile (tetragonal), anatase 

(tetragonal), and brookite (orthorhombic),17,84,85 along with 

some less common structures like TiO
2
 II (columbite),86 

TiO
2
 III (baddeleyite),87,88 TiO

2
 (H) (hollandite),89 TiO

2
 

(R) (ramsdellite),90 and TiO
2
 (B) (monoclinic)91 many of 

which occur only at very particular conditions. Among 

these  structures, rutile is the most stable phase,92 whereas 

anatase is metastable at room temperature and transforms 

irreversibly into rutile upon heating above a threshold tem-

perature around 1000°C (which is in atmospheric condi-

tions, but the threshold temperature can vary from 400°C 

to 1200°C depending on the grain size, ambient conditions, 

and impurities).93 Natural rutile crystals exhibit predomi-

nantly (110) surface,17 which is considered to be the most 

stable surface of stoichiometric rutile,94,95 whereas anatase 

is the most stable with (101) surface.83 Figure 3 shows the 

schematics of the unit cells of the TiO
2
 crystal structures, and 

Table 1 shows the unit cell parameters (at room temperature). 

The rutile unit cell contains two Ti atoms (at [0, 0, 0] and 

[½, ½, ½]) positions, respectively) and four oxygen atoms 

(that form a distorted octahedron around Ti). The anatase 

unit cells contains four Ti atoms (at [0, 0, 0], [½, ½, ½], [0, 

½, ¼], and [−½, 0, −¼]) and eight oxygen atoms (that form 

a distorted TiO
6
 octahedron around each Ti cation).82,96 The 

TiO
6
 octahedra constitute the basic building units for the 

various polymorphic structures of TiO
2
 and differ from each 

other by the arrangement and the distortion of the octahedra 

(Figure 4). In the rutile  crystal, each octahedron is connected 

to two edge-sharing and eight corner-sharing neighboring 

octahedra, in which the edge-shared octahedra are aligned 

along the (001) surface direction.21 In the case of anatase, 

there are four edge-sharing neighbors, which are aligned 

along the (100) and (010) surface direction forming zigzag 

double chains perpendicular to the c-axis, thus creating open 

channels parallel to the c-axis in rutile and perpendicular to 

the c-axis in anatase.82,94

Phase diagram of the oxides of titanium shows that by 

varying the oxygen content from 0 to 2 oxygen per titanium 

atom, the main phases that can be found at room temperature 

are Ti, Ti
2
O, TiO, Ti

2
O

3
, Ti

3
O

5
, and finally TiO

2
.97  Additionally, 

a series of Ti
n
O

2n−1
 (with n $ 4) phases can be found in 

between Ti
3
O

5
 and TiO

2
 phase, which is called the Magnéli 

series of homologous compounds,30,98 where physical 

properties are changed dramatically, ranging from metallic 

a

a

u

u

c

c

A B

Oxygen atom

Ti atom

Figure 3 Crystallographic unit cell structure of TiO2 with A) rutile and B) anatase 
structures. 
Copyright © 2003, Cangiani. Adapted with permission from Cangiani G. Ab Initio 
Study of the Properties of TiO2 Rutile and Anatase Polytypes. Lausanne, France: Faculté 
des sciences de base, ecole polytechnique fédérale de Lausanne ePFL; 2003.
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Table 1 Comparison of the structural, optical, and electrical properties of rutile and anatase

Polymorphs Rutile Anatase

||c ⊥c ||c ⊥c

Crystal structure Tetragonal Tetragonal
c = 2.9587Å [470] a = 4.5937Å [470] c = 9.5146Å [93] a = 3.7842Å [93]

Space group P42/mnm (136) [84] i41/amd (141) [84]
Most stable state (110) [94] (101) [102]
Density 4.25 g/cc [84] 3.89 g/cc [84]
Band gap at 10 K 3.051 ev [471,472] 3.035 ev [471,472] 3.46 ev [35] 3.42 ev [35]
Spectral dependence E1/2 [35] E3/2 [35] Urbach [40]
Nature of gap indirect [471,472] Direct [471,472] indirect [35] Direct [35]
Static dielectric constant  
(ε0, in MHz range)

173 [13,473] 89 [13,473] 48 [474] 31 [475]

High frequency dielelectric  
constant, ε∞ (λ = 600 nm)

8.35 [103] 6.76 [103] 6.25 [41] 6.50 [41]

Refractive index  
(at λ = 600 nm)

2.89 [103] 2.60 [103] 2.50 [41] 2.55 [41]

Nature of conductivity at  
room temperature (undoped)

n-Type semiconductor  
[21,112]

Mott transition Not observed [118] Observed [35]
Room temperature mobility  
in crystal

0.1–1 cm2/vs [22,81] 15 cm2/vs [35,112]
0.01 cm2/vs (high impurity  

concentration) [81]  
μ||c ≈ (2–5) * μ⊥c [22,476]

0.6–1.5 cm2/vs [476] 0.6–1.5 cm2/vs [476]
Room temperature mobility in  
polycrystalline thin film

0.1 cm2/vs [22,38] CUA 0.1–4 cm2/vs [35]

electron effective mass 9–13 me [477]
10–30 me [22]
12–32 me [26]

∼1 me [35]

Copyright © 2003, Springer. Adapted with permission from Springer S. Free carriers in nanocrystalline titanium dioxide thin films. Ecole polytechnique fédérale de Lausanne 
ePFL; 2004; Lausanne, France; Thèse no 2934. For further properties please refer Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48(5–8):53–229.

A B

Oxygen atom

Ti atom

Figure 4 Arrangement of TiO6 octahedra in relation to the unit cells in A) rutile and B) anatase. Only one chain is shown for each structure. Highlighted bonds are the 
O–O bonds.
Copyright © 2003, Cangiani. Adapted with permission from Cangiani G. Ab Initio Study of the Properties of TiO2 Rutile and Anatase Polytypes. Lausanne, France: Faculté des 
sciences de base, ecole polytechnique fédérale de Lausanne ePFL; 2003.
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to insulating depending on n. The formation of such reduced 

oxide phases can be described in terms of the elimination 

of a plane of oxygen atoms.30 Magnéli phases with n up to 

about 38 (TiO
1.974

)82 and 61 (TiO
1.984

)30 have been reported, 

thus creating a very narrow homogeneity range for TiO
2
 

before the lattice tends to break down and the first Magnéli 

phase appears.82

Optical properties of TiO2
The dielectric functions of anatase and rutile single crystals 

for the electric field perpendicular and parallel to the c-axis 

(marked with ⊥c and ||c, respectively) show that in the IR to 

visible spectral range, anatase is less anisotropic than rutile, 

whereas in the band-gap region, anatase shows important 

anisotropy.41,99–105 It has been found that depending on the 

degree of reduction of rutile TiO
2
, a blue color arises from 

the visible tail of an IR absorption band peaking at about 

0.75–1.18 eV.22,24,31,99–101 Similarly, in anatase too, the blue 

color has been observed,43,102 which is caused by a wide 

absorption band with its maximum in the IR. In addition, 

a color center at 3 eV due to an oxygen vacancy has been 

identified giving rise to a yellow color.43 Various optical 

parameters of TiO
2
 can be found in several literatures.41,103–106 

Table 1 shows various optical properties of TiO
2
.

electrical/electronic properties of TiO2
The valence band (VB) of wide-gap rutile and anatase consist 

of O 2p states, whereas the conduction band (CB) is formed 

by Ti 3d states,17,29 and detailed calculations on these states 

can be found in the reports of Tang35 and Cangiani.107 Table 1 

presents various electrical properties of TiO
2
, and shows 

that these properties are dependent on the crystallographic 

direction. As a wide band-gap semiconductor, TiO
2
 crystals 

have a high resistivity (∼1015 Ωcm),30 and bulk oxygen 

vacancies, titanium interstitials, and reduced crystal surfaces 

are considered to generate shallow electron donor levels 

that contribute to the electric conductivity of TiO
2
.30,108 In 

addition, it has been reported that replacement of oxygen by 

water vapor remarkably increases the electrical conductivity 

compared to films deposited with oxygen as reactive gas.109 

Reduced TiO
2
 is an n-type semiconductor, and the n-type 

conductivity increases with the extent of oxygen loss within 

the crystal lattice. Point defects in terms of doubly charged 

oxygen vacancies and interstitial titanium ions with three 

or four charges affect the conductivity and ionization 

energy of the rutile crystal.28,82 The ionization energies have 

been reported to be around 0.007–0.08 eV (depending on 

temperature) for titanium interstitials,26,110 whereas oxygen 

vacancies contribute to the electronic conduction as double 

donors with a shallow donor level (0–200 meV) and a deep 

donor level (600–750 meV).22,30,111 For anatase, the dominant 

crystal defects are not yet fully understood: some research-

ers suggested Ti interstitials caused the dominant defects, 

whereas others suggested oxygen vacancies for the same, but 

several reports suggested the existence of both  phenomena, 

with an activation energy of carrier generation around 

4 meV.30,83,112,113 In general, oxygen vacancies are observed 

to be the dominant phenomenon under weakly reducing 

conditions or low annealing temperatures (below 870 K in 

vacuum), whereas in the more reducing conditions and higher 

annealing temperatures (above 1070 K in vacuum), titanium 

interstitials become more predominant in effect.30,81 Enthalpy 

of oxygen vacancy formation is calculated to be around 

4.55 eV/vacancy, whereas the same for the triply charged 

interstitial titanium atom is around 9.11–9.24 eV/interstitial 

titanium.82,114,115 Due to the low value of carrier mobility in 

rutile TiO
2
, the transport phenomenon is assumed to follow 

either small polaron (an electron or hole self-trapped by the 

local lattice polarization which itself is generating16) hopping 

mechanism32,116 or phonon scattering.34 Especially, the mobil-

ity is shown to decrease in higher  temperature, suggesting the 

presence of large polarons (and not localized small polarons, 

which may become more mobile at higher temperatures due 

to thermally activated hopping between the atoms13). How-

ever, the mobility may decrease if the small polarons diffuse 

by tunneling,13 and hence, some interesting charge transport 

models (such as multiband conduction model117) have been 

proposed for rutile TiO
2
. On the other hand, the anatase TiO

2
 

shows higher carrier mobility, suggesting Arrhenius-type 

thermally activated conduction rather than small polaron 

hopping in rutile.35,118 However, in both the crystal struc-

tures, high concentrations of donors lead to the formation 

of impurity bands,35,118 and a transition from nonmetallic to 

metallic behavior is observed when the donor concentration 

exceeds a critical value.16,119

Fabrication of nanostructured TiO2
With the rapid development of nanotechnology, TiO

2
 

nanostructures in various forms are finding wider applica-

tions than before because of their specifically size-related 

properties. The energy band structure becomes discrete for 

nanometer-scale TiO
2
, and its photophysical, photochemi-

cal, and surface properties are quite different from those of 

the bulk ones due to the quantum size effect, and therefore, 

many works have focused on the synthesis of nanocrystal-

line TiO
2
 with a large specific surface area. Syntheses of 
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0-, 1-, and 2-dimensional nanostructures of TiO
2
 have been 

reported widely.

TiO2 nanoparticles
TiO

2
 nanoparticles have specific advantages in the enhance-

ment of light absorption due to the large fraction of surface 

atoms. Interband electron transition is the primary mecha-

nism of light absorption in pure semiconductors. These 

transitions are direct as the momentum gain by the electron 

from light wave is small in comparison with πh/a (‘a’ is the 

lattice constant). This absorption is small in direct-forbidden 

gap semiconductors, as in the case for TiO
2
, for which the 

direct electron transitions between the band centers are 

prohibited by the crystal symmetry. However, momentum is 

not conserved if the absorption takes place at the boundary 

of the crystal, for example, at the surface or at the interface 

between two crystals, which leads to the indirect electron 

transitions that can result in the essential enhancement of 

light absorption. This means that considerable enhancement 

of the absorption can be observed in small nanocrystals 

where the surface to volume ratio is very high and the frac-

tion of the surface atoms is sufficiently large. The particle 

size at which the interface enhancement of the absorption 

becomes significant is around 20 nm. An additional advantage 

obtained in nanoparticles in the few nanometer size regimes 

is that the large surface-to-volume ratio makes possible the 

timely utilization of photogenerated carriers in interfacial 

processes.120–122

vacuum-based physical techniques
Both vacuum-based and solution-based techniques have been 

adopted for fabrication of TiO
2
 nanoparticle. One of the early 

reported nonsolution techniques is metalorganic chemical 

vapor deposition (MOCVD).  Okuyama and colleagues123–125 

reported the formation of aerosol particles by gas-phase 

chemical reaction. They have used titanium tetraisopropoxide 

(TTIP) vapor containing ultrafine TiO
2
 seed particles in a 

laminar flow aerosol reactor, and the thermal decomposition 

of TTIP vapor in the controlled cylindrical furnace produced 

ultrafine TiO
2
 nanoparticles of size in the range 10–60 nm. 

They have also studied the effects of the initial concentration 

of TTIP vapor, the reaction temperature, the temperature 

profile of the furnace, and properties of seed particles on 

the particle size distribution to control the nanoparticle for-

mation. Similarly, Ding and colleagues126 synthesized TiO
2
 

nanoparticles supported on porous silica gel (60–100 mesh) 

via MOCVD process, using TTIP as precursor. The chemi-

cal vapor deposition (CVD) reactor was a quartz tube with 

a porous quartz disk at one end. The reactor temperature 

was controlled by a tubular furnace. TTIP was introduced 

into the CVD reactor using nitrogen as the carrier gas. 

The synthesis of TiO
2
 nanoparticle/silica gel photocatalyst 

involved three steps: pretreatment of the support materials, 

CVD reaction, and calcination. On the other hand, Li and 

colleagues127–129 reported the fabrication of transition metal 

and lanthanide ion (Nd−3, Pd−2, Pt−4, Fe−3)-doped TiO
2
 nano-

particles via MOCVD process using a TTIP precursor. The 

CVD system is similar to that given in Ding et al,126 except 

for a horizontal reactor. In addition, unlike other works,126 

this group used Ar-diluted O
2
 as the carrier plus reactant gas 

with an elevated reaction temperature for the formation of 

TiO
2
 nanoparticles, thus avoiding the additional calcination 

step. The average particle size reported was 20–25 nm. For 

doping of TiO
2
, neodymium (III) acetylacetonate, palladium 

(II) acetylacetonate, platinum (IV) acetylacetonate, and iron 

(III) acetylacetonate precursors were used, and the effect of 

these dopants on the photocatalytic activity of TiO
2
 nano-

particle is discussed.

Instead of using costly metalorganic precursors, sev-

eral groups used inorganic materials in conventional 

CVD system to fabricate silica-supported 10–20 nm TiO
2
 

nanoparticles.130–134 Leboda and colleagues reported the CVD 

syntheses of titania/silica gel130 and titania/fumed silica.131 In 

addition, CVD preparations of titania/silica gel and titania/

ZSM-5 were also reported by Schrijnemakers and coll-

leagues132 and Stakheev and colleagues,133 respectively. Xia 

and colleagues134 reported the gas-phase/CVD synthesis of 

TiO
2
 nanopowder and investigated the influence of various 

deposition parameters on particle size. In all these reports, 

titanium tetrachloride (TiCl
4
) was applied as the precursor for 

CVD reaction and a two-step synthesis procedure was used. 

TiCl
4
 was first introduced and adsorbed onto the supports, 

and then oxygen/water vapor was brought through to start the 

oxidation/hydrolysis of TiCl
4
 species. Especially, oxidation 

of TiCl
4
 vapor, also known as the ‘chloride’ process in titania 

industry,135–137 now becomes one of the main gas-phase routes 

for commercial production of titania nanopowder. TiCl
4
 is an 

inorganic low-cost precursor, which can be readily oxidized 

or hydrolyzed to prepare TiO
2
 powders according to the fol-

lowing equations:

 TiCl
4
(g) + O

2
(g) → TiO

2
(s) + 2Cl

2
(g) (1)

 TiCl
4
(g) + 2H

2
O(g) → TiO

2
(s) + 4HCl(g) (2)

The oxidation method is an important route in a typical 

gas-phase/CVD method. In gas-phase processes, greater 
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equilibrium constant (K
p
) favors the formation of smaller 

particles, and the K
p
 value that exceeds 102.3 is neces-

sary for preparation of nanoscale particles.134 Vemury and 

 colleagues138 reported the synthesis of TiO
2
 nanoparticles via 

oxidation of TiCl
4
 vapors in electrically assisted hydrocarbon 

flames using needle-shaped or plate electrodes. A laminar 

premixed burner-stabilized flame reactor is used to make 

titania nanoparticles in the presence of externally controlled 

electric field. TiCl
4
 vapor premixed with nitrogen, oxygen, 

and methane were sent through the burner with argon as car-

rier gas. Oxide particles are formed in the flame by  oxidation/

hydrolysis of the precursors. External electrodes are used 

to create the electric field across the flame.139 Vemury and 

colleagues observed that the particle size decreases with 

increasing field strength across the flame. In addition, it 

charged the newly formed particles, resulting in electrostatic 

repulsion and dispersion, which decreased particle growth by 

coagulation, thus retaining the nanostructure of synthesized 

particles. A laser-induced CVD process to prepare TiO
2
 

nanopowders of crystallite size around 20–30 nm has also 

been attempted by Casey and Haggerty.140 Titanium alkoxide 

vapor was heated with 10.591 μm IR radiation from a CO
2
 

laser. Among other physical techniques, Epperson and 

colleagues141 used an inert gas condensation technique, where 

the metallic Ti is evaporated in He pressure and then slowly 

exposed to O
2
 atmosphere to obtain TiO

2
 nanoparticles.

Solution-based chemical techniques
Among wet-chemical processes, one of the classical methods 

was a sulfate process,142 where spherical titania nanopar-

ticles were prepared from an aqueous solution of TiOSO
4
 

by homogeneous precipitation using urea at 70°C–90°C. 

Especially, the presence of urea dictates the spherical shape of 

the nanoparticles. As-synthesized powders were amorphous 

hydrates of titania containing a sulfate group and crystallize 

by calcination into anatase (.500°C) and rutile (.900°C). 

In calcination, the particles shrink, but hold their original 

spherical shapes. Other wet-chemical processes include the 

sol–gel method, which is one of the widely used methods for 

TiO
2
 nanoparticle formation,143–161 because of its advantage 

of controlling the particle size and morphology through 

experimental conditions.154 Most of the reports on sol–gel 

syntheses of TiO
2
 nanoparticles involved titanium alkoxide 

(titanium isopropoxide [TIPO], titanium butoxide, titanium 

ethylhexoxide, tetra-n-butyl titanate) as the Ti source.143–146-

,148–158,160,161 Few used TiCl
4
 as the Ti precursor solution.147,159 

The process generally starts with the hydrolysis of the 

source solution to form the complex sol, followed by heat 

treatment and aging to obtain the gel, and finally, annealing 

at elevated temperature to obtain the required oxide. A typical 

sol–gel synthesis process of TiO
2
 nanoparticles using TIPO 

as Ti source is as follows: first, TIPO is mixed with tetra-

ethanolamine (TEOA) with TEOA:TIPO = 2:1 ratio, which 

produces a sol of organometallic complex, and then refluxed 

and aged under H
2
O (+HClO

4
/NaOH) solution for 24 h (at 

100°C) to obtain Ti-contained gel, which is subsequently 

aged for 72 h (at 140°C) to obtain the TiO
2
 nanoparticle.154 

Phase-pure anatase nanoparticles are generally prepared from 

titanium (IV) isopropoxide, TEOA, and/or mild acid-like 

acetic acid.154,162 When stronger acids are used, a fraction of 

the product usually consists of brookite nanoparticles.163,164 

The synthesis of brookite nanoparticles has been reported 

by thermolysis of TiCl
4
 in aqueous HCl solution.165 The 

composition of the reaction product was found to be strongly 

dependent on the Ti:Cl concentration ratio (∼17–35). Phase-

pure rutile nanoparticles have been prepared from TiCl
4
 or 

TiCl
3
 in HCl solution or from titanium (IV) isopropoxide in 

nitric acid at pH = 0.5.166–170 Several authors have compared 

synthesis methods for the three phases, in order to determine 

the effect of crystal structure on the physical properties.171–174 

Reyes-Coronado and colleagues174 reported the syntheses of 

phase-pure anatase, rutile, and brookite TiO
2
 nanoparticles 

via a combinatorial approach using both sol–gel and hydro-

thermal treatment. Amorphous TiO
2
 nanoparticles were 

first prepared by sol–gel technique using Ti alkoxide as the 

source solution followed by hydrothermal treatment at three 

different acid concentrations and temperatures in order to 

establish the conditions for obtaining phase-pure products of 

anatase, rutile, and brookite phases separately. Typically, the 

hydrothermal condition for the synthesis of anatase phase is 

reported to consist of heat treatment at 200°C for 6 h under 

1.5M acetic acid solution. For obtaining rutile phase, these 

parameters are 200°C for 8 h under 4M HCl environment, 

whereas the same for obtaining brookite phase is 175°C 

for 7 h under 3M HCl solution. Details can be found in the 

Reyes-Coronado et al.174

Another chemical process used to synthesize TiO
2
 

nanoparticle is hydrothermal synthesis,175–177 where TiCl
4
 

was used as the starting materials for Ti source. Rao and 

Dutta178 used Ti alkoxide precursor in toluene solvent to 

hydrothermally synthesize TiO
2
 nanoparticle. Palmisano and 

colleagues179 used a coprecipitation method using TiCl
3
 and 

aqueous ammonia to form titanium hydroxides followed by 

firing in air at elevated temperature to obtain TiO
2
 submicron 

particles of size 100–300 nm. Akhtar et al180 and Shi et al181 

used direct vapor-phase oxidation of TiCl
4
 in an aerosol 
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reactor at elevated temperatures to obtain TiO
2
  nanoparticles. 

Jagadale et al160 and Gao et al182 used a  wet-chemical 

peroxide-based synthesis route, where H
2
TiO

3
 (or TTIP) 

dissolved in H
2
O

2
 and/or ammonia solution were used to 

form peroxotitanate, which was subsequently transformed 

to TiO
2
 nanoparticle via low-temperature aging or calcina-

tion. Mahshid and colleagues183 used peptization method to 

form TiO
2
  nanoparticles. Initially, TiO

2
 colloids in the nano-

meter range were prepared by hydrolysis and condensation 

of titanium alkoxide in aqueous media. In the presence of 

water, alkoxide hydrolyzes and subsequently polymerizes to 

form a 3-dimensional oxide network. These reactions can be 

schematically represented as follows:

Ti(OR)
4
 + 4H

2
O → 2Ti(OH)

4
  

 + 4ROH (hydrolysis), (3a)

Ti(OH)
4
 → TiO

2
, xH

2
O + (2 − x)H

2
O 

 (condensation), (3b)

where R is ethyl, i-propyl, n-butyl, etc.184 The size,  stability, 

and morphology of the sol produced from alkoxide 

route is strongly affected by the water-to-Ti molar ratio 

(r = [H
2
O]/[Ti]). At r # 10, spherical, relatively monodis-

perse particles with diameters of 0.5–1 mm are obtained. 

On the other hand, at higher r values, the particles formed 

are unstable and precipitate in the form of large aggre-

gates, which can subsequently be chemically peptized to 

final sizes that are usually ,100 nm in diameter. Because 

of the small size of particles that are formed under these 

conditions, formation of colloidal TiO
2
 at high r values is 

of great interest. In addition, acidity of the solution has 

a strong influence on the size distribution of nanoparti-

cles.183 Li and colleagues185 used a solvothermal method to 

synthesize nanoparticles by controlling the hydrolyzation 

reaction of titanium butoxide using NH
4
HCO

3
 and linoleic 

acid. They have also described the reaction mechanism and 

formation process of the TiO
2
 nanoparticles and nanorods 

by controlling the solvothermal reaction parameters, such 

as reaction temperatures, concentrations, reaction dura-

tions, and so on. Seo et al186 demonstrated the synthesis of 

TiO
2
 nanoparticles by a high-temperature nonhydrolytic 

method using TiCl
4
, oleic acid, and oleyl amine mixture 

in a reaction flask at 270°C. After 10 min, the reaction 

mixture was quenched, and TiO
2
 nanoparticles were sepa-

rated by a size-selective precipitation process. Teleki and 

colleagues187 used a flame-based spray pyrolysis method to 

synthesize TiO
2
 nanoparticles. TTIP, diluted in a mixture of 

xylene and acetonitrile, was fed into a combustible spray to 

obtain the powdered nanoparticles. It is to be noted that for 

the physical- or gas-phase processes of TiO
2
 nanoparticle 

syntheses, unlike the liquid-phase methods, process param-

eters can be adjusted easily to  produce  nanoparticles with 

varied crystallinity and surface area without the necessity 

of posttreatments.

One-dimensional TiO2 nanostructures
One-dimensional nanostructures in the form of nanowires, 

nanorods, nanotubes, nanopillars, nanocylinders, nano-

needles, and nanowhiskers have received considerable 

attention because of their potential applications in cata-

lysts as carrier materials, in pharmacy as drug-delivery 

agents, in nanoelectronics for the isolation of ultrasmall 

wires, or in basic research to study host–guest chemistry 

in mesoscopic materials.188–190 TiO
2
-based nanotubes have 

also attracted wide attention owing to their potential 

applications in highly efficient photocatalysis,191 lithium 

ion batteries,192 photovoltaic cells,193–195 and environmental 

applications.196

Solution-based chemical techniques
Hoyer was the first to attempt to prepare TiO

2
 nanotubes.197 

Starting from a porous alumina membrane (PAM), a poly-

mer mold suitable for the formation of TiO
2
 nanotubes was 

obtained. The tubular structure was formed by electrochemi-

cal deposition in the mold. After dissolution of the polymer, 

TiO
2
 nanotubes were obtained, which were amorphous, and 

transformed into polycrystalline anatase structure after heat 

treatment. The typical fabrication steps consist of anodic 

alumina membrane fabrication and gold evaporation on top 

of the membrane (step 1), followed by casting of poly(methyl 

methacrylate) (PMMA) within the pores of alumina mem-

brane (step 2). After that the alumina membrane is removed 

to obtain negative mold (upside down) with evaporated gold 

inside the replicated pores of PMMA (step 3). Thereafter, 

electroless gold deposition on the sidewalls of the PMMA 

mold is performed (step 4) followed by the electrodeposition 

of TiO
2
 on the walls of the mold. Finally, the PMMA mold 

is removed to obtain free-standing TiO
2
 nanorods covered 

with gold layers (step 5).

Kasuga and colleagues198,199 synthesized TiO
2
 nanon-

eedles (anatase phase) using sol–gel-derived fine TiO
2
-based 

powders under hydrothermal NaOH treatement at 110°C 

for 20 h. Following their pioneering works, several research 

groups200–219 have also synthesized 1-dimensional TiO
2
 

nanostructures by similar chemical processes with some 

variations in experimental conditions and/or reagents. For 

example, Feng and colleagues210 used tetrabutyl titanate, 
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titanium tetrachloride in HCl with toluene as the nonpolar 

solvent to form TiO
2
 nanowires. Liu and Aydil215 used tita-

nium butoxide, TIPO, and titanium tetrachloride as Ti precur-

sors in HCl solution to form nanowires. They also studied 

the effects of surfactants or salts such as  ethylenediamine, 

ethylenediaminetetraacetic acid, sodium dodecyl sulfate, 

cetyltrimethylammoniumbromide, polyvinylpyrrolidone, and 

sodium chloride on the nanowire properties. This group 

has also used a three-step (hydrothermal + ion exchange + 

annealing) synthesis of TiO
2
 nanowires on titanium foil.215 In 

the first step, sodium titanate nanotubes were hydrothermally 

formed on Ti foil using a NaOH and H
2
O

2
 solution. In the 

second ion-exchange step, the titanium foil with nanotubes 

was immersed in HCl to exchange the Na+ with H+ and 

thus transform the sodium titanate nanotubes to hydrogen 

titanate nanotubes. In the third step, the hydrogen titanate 

nanotube-coated titanium foil was annealed at 500°C to 

convert the nanotubes to anatase TiO
2
 nanowires. Chang 

and colleagues216 used a similar hydrothermal method to the 

Kasuga group198,199 with a microwave oven as the external 

power source for the reaction. Zhu and colleagues200 used 

sonication-assisted hydrothermal growth of TiO
2
 nanotubes 

and nanowhiskers. Wang and colleagues217 also used a 

similar hydrothermal growth of TiO
2
 nanowires on a spiral-

shaped Ti wire. Tian and colleagues219 seeded the substrate 

with TiO
2
 nanoparticles followed by a similar hydrothermal 

method.198,199 With respect to the formation mechanism of 

TiO
2
 nanotubes, Kasuga et al199 tentatively proposed that 

TiO
2
 nanotubes were grown by the connection between the 

two ends of Ti–OH forming sheets during the process of 

washing the alkali-treated TiO
2
 raw materials. Later Yao and 

colleagues205 explained the nanotube formation mechanism 

using transmission electron microscopy (TEM) studies. They 

observed that the TiO
2
 nanotube walls were not seamless, 

unlike multiwall carbon nanotubes (CNTs). They argued that 

crystalline TiO
2
 raw material underwent delamination in the 

alkali solution to produce single-layer TiO
2
 sheets during 

alkali treatment. These single-layer TiO
2
 sheets were later 

rolled to form TiO
2
 nanotubes.

Encouraged by these methods, various groups reported 

the syntheses of 1-dimensional TiO
2
 nanostructures via 

porous membrane-based sol–gel and electrochemical 

routes.196,220–261 Use of PAM as the host to grow oriented TiO
2
 

nanowires through the PAM nanopores via sol–gel method 

has been attempted by several groups.220–237 Ti alkoxides have 

been used as the source solution for the sol–gel syntheses 

to fill the PAM pores followed by oxygen/air annealing to 

obtain the TiO
2
 nanowires. However, this sol–gel template 

method has some shortcomings. As the only driving force 

of this technique is capillary action, for the sol with higher 

concentration, filling of pores is difficult, whereas for low-

concentration sol, the as-synthesized nanomaterials lead to 

shrinkage and cracking.262 To overcome these difficulties, 

Miao and colleagues226 reported an electrochemically induced 

sol–gel method to prepare TiO
2
 single-crystalline nanowire 

arrays. For that, one end of the pores are coated with metallic 

cathode, and an external magnetic field is applied to force the 

Ti-containing ions to enter into the pores. First, the hydroxyl 

ion was generated due to the cathodic reduction, and then 

the generation of OH− ions increases the local pH at the 

electrode surface, resulting in the titanium oxyhydroxide gel 

formation in the pores of the template. Finally, subsequent 

heat treatment and the removal of the PAM results in the for-

mation of TiO
2
 single-crystalline nanowire arrays.226 Similar 

methods have been adopted by various others groups.227–230 

For example, Lin et al227 and Zhang et al228 used a similar 

electrochemically induced method to form single-crystalline 

anatase TiO
2
 nanowires with diameters about 15 nm and 

lengths about 6 μm within hexagonally packed nanochan-

nels of porous alumina. They have used acidic TiCl
3
 as the 

precursor solution, and using the potentiostatic method with 

a three-electrode arrangement with a saturated calomel ref-

erence electrode (SCE) and a Pt counter electrode, anodic 

oxidative hydrolysis was done followed by oxygen annealing 

at 500°C to obtain the desired oxide nanowire arrays. Liu and 

Huang229 used pulsed electrodeposition with acidic TiCl
3
 as 

electrolyte solution to grow TiO
2
 nanowire with PAM.

Caruso et al231 used electrospun polymer fibers as host 

to coat with amorphous TiO
2
 using a sol–gel technique. 

On removal of the thermally degradable polymer, hollow 

titania fibers are produced. The sol–gel coating was able to 

mimic the finer details of the fiber, thereby forming nodules 

on the inner walls of the tubes. Similar methods have been 

adopted by Formo et al232 and Archana et al233 Jung et al234 

and Kobayashi et al235 demonstrated a new methodology 

to prepare the TiO
2
 hollow fibers, double-layered tubular 

structures, and helical ribbons using a crown-appended 

 cholesterol-based organic gelator in the sol–gel polymeriza-

tion process of Ti[OCH(CH
3
)

2
]

4
 followed by oxygen anneal-

ing at elevated temperature to remove organic components 

and obtain TiO
2
 nanostructures. Similarly, Zhang and Qi236 

used bacterial cellulose membranes as host and followed 

similar methods stated above to obtain TiO
2
 nanostructures. 

Chen and colleagues237 synthesized a TiO
2
 nanowire network 

on electrospun polymer template using a H
2
O

2
, TiOSO

4
, and 

KNO
3
 sol–gel bath.
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Anodization of Ti foils and films is one of the most widely 

used methods for template-free electrochemical deposition 

of TiO
2
 nanowire/nanotube. After the first report of anodic 

oxidation of Ti film by  Zwilling and colleagues,238,239 several 

groups started working on the  fabrication of TiO
2
 nanowires 

using the anodization method.196,240–261 HF/NH
4
F/KF/NaF/

(NH
4
)

2
SO

4
/NaHSO

4
 diluted in organic solvent or water were 

taken as the  electrolyte in standard two-electrode or three-

electrode electrodeposition system with Pt as counter electrode 

and sample (Ti foil or  Ti-coated substrate) as anode (along 

with a reference electrode for three-electrode system). Highly 

ordered, oriented hollow nanotubes with very high aspect 

ratio can be obtained by this method. It should be noted that 

for aqueous HF/NH
4
F used as electrolyte, the length of the 

nanorods is rather small, which is due to the dissolution of 

formed TiO
2
 under hydrogen ions according to the following 

reaction process:

 TiO F H TiF H O2
+

2+ + → +− −6 4 26
2  (4)

This has been overcome by using nonaqueous organic 

polar electrolytes252 to decrease the formation of hydrogen 

ions that are derived from the electrolyte solution, thus 

reducing the chemical dissolution of formed TiO
2
. Using 

this method, TiO
2
 nanotube arrays of ∼1000 μm in length and 

approximate 10,000 aspect ratio have been achieved.252

It is also noteworthy that for most of the anodization 

processes, commercially available Ti foil was used as the 

source material. Similarly, for PAM-directed growth of the 

TiO
2
 nanowires, the host PAM is fabricated from either Al 

foil or anodiscs purchased from commercially available 

sources. Since the as-synthesized nanowires/nanotubes are 

not supported by any rigid substrate (Si, glass, quartz, and 

so on), they are fragile and unsuitable for practical device 

applications. For solid-state device compatibility as well 

as for some specific device applications in solar cells, field 

emission studies and sensor applications using vertically 

standing nanorods supported by rigid substrate are very 

important.263–265 Very few groups reported the syntheses of 

TiO
2
 nanowires/rods on rigid substrates.210,237,247,253 These 

groups have used indium tin oxide (ITO)/fluorine-doped 

tin oxide-coated glass/Si substrate with sputter-deposited/

evaporated Ti thin films on them as the source materials.

For other chemical-based TiO
2
 nanowire syntheses, 

Venkataramanan and colleagues266 used an environmentally 

benign approach for the synthesis of titania nanowire using 

natural fibers (cellulose) as templates and ionic liquid 

(1-butyl-3-methylimidazolium chloride) as solvent to 

obtain a TiO
2
-nanowire/cellulose composite. Li and Wang267 

synthesized rutile TiO
2
 nanowhiskers by direct annealing of 

a precursor powder containing homogeneously mixed NaCl 

and Ti(OH)
4
 particles. Daothong and colleagues268 fabricated 

single-crystalline TiO
2
 nanowires by oxidation of titanium 

substrates (wire mesh, φ = 0.25 mm) in the presence of etha-

nol vapor at a low pressure (10 Torr) and high temperature 

(450°C). Kim and colleagues269 used a peptide organogel 

template to fabricate TiO
2
 nanonetwork via atomic layer 

deposition (ALD) process with TTIP and NH
3
/O

2
 mixed gas 

as Ti precursor and reactant gas, respectively. Sander and col-

leagues270 also used ALD to fabricate TiO
2
 nanowires within 

PAM followed by wet etching of the membrane to obtain 

oriented nanowires. Park and colleagues271 used a simple Cu 

catalyst-assisted thermal annealing process of Ti foil to obtain 

TiO
2
 nanowire and other nanostructures. Wu and Xue272 also 

used a thermal annealing technique of Ti foil treated with an 

organic solution containing H
2
O

2
.

vacuum-based physical techniques
Among physical techniques for the syntheses of TiO

2
 

nanowires, various methods have been adopted which 

include thermal/e-beam evaporation, deposition of Ti and/or 

TiO
2
 in a vacuum evaporator, or RF heating in a controlled 

atmosphere.273–280 Xiang et al273 thermally evaporated Ti 

powder in a controlled furnace to deposit TiO
2
 nanowire on 

a Si substrate. By controlling the growth conditions such 

as the reaction time and the position of the substrate, this 

group has reported the synthesis of SiO
2
/TiO

2
 shell-core 

nanostructure.274 Another group275–278 used a two-step thermal 

evaporation technique, where Ti powder was heated by a 

radio frequency coil inside a quartz reactor under Ar-diluted 

O
2
 atmosphere to grow TiO

2
 nanowires on a Si substrate. 

On the other hand, Wolcott and colleagues279 used electron-

beam evaporation of TiO
2
 powder to synthesize nanowires 

on glass substrates. Other vacuum-based techniques include 

CVD of TiO
2
 nanowhiskers from a system of TiF

4
−H

2
O at 

elevated temperatures.280 Francioso and colleagues281 used 

photolithography techniques to fabricate TiO
2
 nanowires 

from thermally annealed TiO
2
 thin-film deposited on Si 

substrate. The fabrication steps consist of TiO
2
 thin-film 

deposition on Si substrate (in fact on a native oxide layer 

on the Si substrate) followed by spin coating of photoresist 

and the pattern transfer via masking and UV exposure. After 

the development, the TiO
2
 surface becomes structured with 

covered photoresist consisting of patterned holes that partially 

expose the TiO
2
 surface underneath via the holes on the pho-

toresist. Finally, a plasma-etching treatment was performed to 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nanotechnology, Science and Applications 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

46

Banerjee

etch the exposed parts of the TiO
2
 layer vertically downward 

to obtain 1-dimensional nanostructures of TiO
2
. After the 

removal of the photoresist, an array of vertically standing 

TiO
2
 nanowires on the Si substrate is obtained. Details of the 

fabrication procedure can be found in Francioso et al.281

Lee and colleagues282 used vapor–liquid–solid (VLS) 

growth of TiO
2
 nanowires on catalyzed (Au) sapphire and 

quartz substrates using a thermally evaporated Ti powder as 

source under Ar-diluted O
2
 as carrier and reactive gases. It 

is to be noted that the VLS growth technique is a relatively 

new process, which is mainly used to grow nanowires/rods/

whiskers of various elemental and compound materials.283 

Generally, nanowires of semiconducting materials are con-

veniently grown via the VLS process, where material from 

the vapor is incorporated via a liquid catalyst, commonly a 

low-melting eutectic alloy. Semiconductor nanowires with 

diameters ranging from a few to several hundred nanome-

ters can be grown on a solid substrate by this method. By 

modifying the growth conditions, lateral and longitudinal 

control over the nanowire size, composition, and doping can 

be achieved. The central idea of the VLS growth technique 

is the participation of the catalyst during growth process, 

which is one of the important key factors for the synthesis of 

nanowires. Another important factor is to keep the catalytic 

particles in a liquid state during the VLS growth at high 

temperatures. In general, the VLS growth process can be 

divided into two stages: the nucleation and the growth of 

the liquid droplets, and growth of the nanowires from the 

droplets due to supersaturation by the VLS mechanism. The 

temperature should be kept high, but the exact temperature 

will depend on the catalyst used and can be chosen from 

the phase diagram of the catalytic material, considering the 

fact that the melting point of nanosized catalytic particles is 

less than that of bulk material. For example, in VLS growth 

of TiO
2
 nanowires, Au catalyst is used at 1050°C.282 A VLS 

apparatus, in general, consists of a tube vacuum furnace with 

Ar flow through it, an effusion cell to provide the vaporized 

material (to be grown as nanowires), and the substrate with 

metallic catalyst on which the required nanowire will be 

grown. A schematic representation of the system is shown 

in Figure 5. The diameter of the wires is set by the catalyst 

dimension (typically 1–100 nm), and the nanowire length 

(typically 1–100 μm) is proportional to the growth time. 

During growth, the material to be deposited (here Ti powder) 

is provided by thermal evaporation of a powder target. The 

resulting vapor is transported to the substrate in an argon (and 

oxygen for reactive deposition) flow. The vapor dissolves in 

the metal particles (Au catalyst) and forms a eutectic mixture. 

When the liquid particle becomes oversaturated, the crystal-

line nanowire (TiO
2
) starts to grow. Because new vapor is 

supplied continuously, the nanowire will keep on growing and 

can reach lengths exceeding 100 μm. The growth mechanism 

is schematically described in Figure 6.

Other TiO2 nanostructures  
and nanocomposites
Formation of various other nanostructures of TiO

2
 includes 

nanoplatelet via hydrothermal/anodization route,255,284 porous 

Ar

Tube furnace

Evaporation cell for the 
vaporization of the

 material to be grown 

Vaporized atoms

Substrate with catalyst 

Growth of nanowires

Figure 5 Schematic design of a vLS system.
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Figure 6 Mechanism of vapor–liquid–solid growth of TiO2 nanowires.

nanofoam via direct decomposition and reaction of hydrogen 

peroxide inside a TiO
2
/hexadecylamine slurry dispersion,285 

and nanocrystalline thin film via spray deposition of TiO
2
 

nanoparticles178. As far as nanocomposites of TiO
2
 with other 

organic/inorganic materials are concerned, TiO
2
 at narrow-

gap semiconductor materials garnered much interest in dye-

sensitized TiO
2
-based solar cells.144,286–296 Narrow band-gap 

semiconductors such as CdS, CdSe, CdTe, PbS, Bi
2
S

3
, and 

CuInS
2
, are used with TiO

2
 nanomaterials, because these 

narrow-gap materials absorb light in the visible region and 

transfer electrons to large band-gap TiO
2
, and thus serve as 

sensitizers. The fabrication of core-shell or similar composite 

structures generally follows chemical/ hydrothermal synthe-

ses of TiO
2
 core followed by the narrow-gap nanoparticles 

deposition via chemical bath deposition/spray pyrolysis/

CVD/ALD/solvothermal methods. Cheng and colleagues297 

reported the fabrication of highly ordered WO
3
/TiO

2
 compos-

ite nanotubes via a combinatorial PAM-based sol–gel method. 

Brinley et al298 reported SiO
2
–TiO

2
 hybrid antireflective coat-

ing via a sol–gel process. For enhancement of photocatalytic 

activity of TiO
2
, various groups reported the syntheses of 

TiO
2
-activated carbon or TiO

2
–CNT mixture or nanocompos-

ite, which limit electron-hole  recombination299–306 and thus 

improve reactivity. The syntheses of TiO
2
/CNT nanocom-

posites include sol–gel, CVD, and PVD techniques.305,307–309 

In addition, TiO
2
- polymer nanocomposite gained renewed 

interest to create novel organic/inorganic hybrid materials 

for improved photocatalytic activity, water/air purification, or 

bactericidal antifouling. Several different methods have been 

adopted to integrate TiO
2
 with target materials, which include 

self-assembly monolayer adsorption on functionalized 

surfaces, sol–gel synthesis, vacuum vaporization, sputter-

ing, CVD/MOCVD, Langmuir–Blodgett method, ultra-

sonic irradiation, enzymatic synthesis, or surface-initiated 

polymerization.310–319

Applications of nanostructured TiO2
Fundamentals of TiO2 photoinduced 
phenomena
After the pioneering report of Fujishima and Honda on the 

photocatalytic splitting of water on TiO
2
 electrodes,64 a new era 

in the heterogeneous photocatalysis has begun and tremendous 

research efforts in understanding the fundamental processes 

and in enhancing the photocatalytic efficiency of TiO
2
 have 

been performed by chemists, physicists, materials scientists, 

chemical engineers, and others. The large oxidizing power 

of photogenerated holes in titania coupled with the low cost 

and relative physical and chemical stability of TiO
2
 render it 

the semiconductor material of choice for many applications 

that exploit solar energy including DSSCs where sunlight is 

converted into electricity, water photoelectrolysis where solar 

energy is converted into a chemical fuel (hydrogen), photo-

catalytic conversion of CO
2
 to hydrocarbon fuels, and as a 

photocatalyst where organic pollutants are degraded into more 

environmentally friendly chemical species.320–326 All of these 

applications require TiO
2
 to be in contact with a solid, liquid, 

or gaseous electrolyte; consequently, TiO
2
 becomes a prime 

candidate for the development of nanoscale architectures. 

Titania is a wide band-gap semiconductor having an E
g
-value 

ranging from 3.0 to 3.2 eV, which depends on the crystalline 

phase,327 capable of converting energy from light into chemical 

redox energy. A photon with energy equal to or higher than 

that of the band gap transferred an electron from the VB to 

the CB leaving a hole to VB (cf, enlarged portion of Figure 7). 

The number of photogenerated electron-hole pairs (e−–h+) 

depends on the semiconductor band structure and effective 

intensity and energy of the incident light. The initial process 

for heterogeneous photocatalysis of organic and inorganic 

compounds by semiconductors is this photogeneration of 

e−–h+ pairs in the semiconductor particles. Upon excitation, 

the fate of the separated electron and hole can follow different 

pathways. Figure 7 illustrates these de-excitation pathways for 

the electrons and holes.

In the absence of suitable electron or hole scavenger 

(adsorbed species as charge carrier trapping site), the charge 

carriers recombine at the surface (cf, path A
1
/A

2
 of Figure 7) 

and/or bulk of the semiconductor (cf, path B of Figure 7) to 

dissipate (heat) energy. On the other hand, when a suitable scav-

enger is available, the charges migrate to the surface of the TiO
2
 

particle and initiate interfacial redox reaction with the adsorbed 

species. Thus, TiO
2
 photosensitizes the reduction of an electron 

acceptor (A) and the oxidation of an electron donor (D) forming 

anionic (A−) (cf, path C
1
 of Figure 7) and cationic (D+) (cf, path 
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C
2
 of Figure 7) species. In nanostructured semiconductors, the 

surface-to-volume ratio is very high, and hence the reactive 

surface is also higher in nanomaterial regimes.  Therefore, 

the surface adsorption and interfacial redox reaction can be 

enhanced by using nanostructured semiconductors.328 This 

semiconductor-assisted redox reaction is at the core of the het-

erogeneous photocatalysis. Photocatalysis is generally divided 

into two classes of processes: 1) when the initial photoexcitation 

occurs in an adsorbate molecule which then interacts with the 

ground state catalyst substrate, the process is referred to as a 

catalyzed photoreaction, and 2) when the initial photoexcitation 

takes place in the catalyst substrate and the photoexcited catalyst 

then transfers an electron or energy into a ground state mol-

ecule, the process is referred to as a sensitized  photoreaction.61 

In the subsequent de-excitation  processes, which leads to 

chemical reactions in the heterogeneous photocatalysis process 

(as mentioned earlier), the electronic population change in the 

molecular orbitals leads to the different interactions between 

one reactive center (a reactive center is a molecule or a surface 

reactive site) in the excited state and another reactive center in 

the ground state. Generally, this de-excitation process can take 

place in two forms: 1) electron transfer and 2) energy transfer. 

Figure 8  schematically illustrates the  different interactions 

between one reactive center in the excited state and another 

reactive center in the ground state.

Initially, the donor or acceptor molecules are excited 

as D → D* or A → A*, where the asterisk represents the 

excited state. Next, in the electron transfer process, an elec-

tron jumps from an occupied orbital of the donor reactant at 

ground state (D) to the empty orbital of the acceptor reactant 

at excited state (A*). The electron transfer process requires 

the overlap between the occupied donor orbital and the empty 

or half-filled acceptor orbital. The electron transfer results in 

an ion pair of the donor cation (D+) and the acceptor anion 

(A−) according to the following equation:

 
A + D A + DTiO

E E
+2

hv g$
 → −  (5)

Figure 8A describes the electron transfer from filled 

ground state donor orbital to half-filled excited acceptor orbital 

i) or from half-filled excited donor to empty ground state 

acceptor ii) to form ion pairs (A− + D+). On the other hand, in 

the energy transfer process, either electron exchange between 

ground D and excited A* (cf, Figure 8B) or dipole–dipole 

resonant coupling between ground D and excited A* and 

vice versa (cf, Figure 8C) are considered to be the responsible 

ν
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Figure 7 Schematic representation of various de-excitation pathways for photogenerated electron and holes in a TiO2 particle (adapted and redrawn). Kamat Pv. Meeting 
the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C. 2007;111(7): 2834–2860.345

Abbreviations: CB, conduction band; vB, valance band; hν, photon energy of frequency ν.
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mechanisms for de-excitation of photogenerated e−–h+ pairs. 

In the electron exchange process, one electron transfers 

from the ground state-filled D to half-filled A* coupled with 

simultaneous transfer of another electron from the upper 

level of half-filled A* to the empty upper level of D. These 

two processes occur independently in opposite directions and 

require simultaneous orbital overlap between the interacting 

centers. On the other hand, dipole–dipole coupling occurs by 

a Coulombic resonance interaction in which the oscillating 

dipole of the excited state molecule, D*, is coupled with the 

induced dipole in a ground state quencher molecule, A. This 

coupling process does not require effective orbital overlap 

between the two interacting centers and can operate over 

a distance of 0.1–10 nm. A detailed discussion of various 

electron and energy transfer processes can be found in the 

literature.329–339

The ability of TiO
2
 to undergo photoinduced electron 

transfer to adsorbed species on its surface is governed by 

the band energy positions of the semiconductor and the 

redox potentials of the adsorbate. Mills and Hunte340 discuss 

band-gap values and the redox (reduction) potential of some 

oxide and other semiconductor materials with respect to the 

normal hydrogen electrode (NHE). The CB electron of TiO
2
 

is a moderate reducing agent (E
O
 ∼ 0.0 V vs NHE), whereas 

the oxidizing power of VB hole is very strong (E
O
 ∼ 3.0 V vs 

NHE).341 Thermodynamically, the redox potentials associated 

with the CB and VB of TiO
2
 require the relevant potential level 

of the acceptor species to be below the CB potential of the TiO
2
 

(ie, more positive), whereas in order to donate an electron to 

the vacant hole, the potential level of the donor needs to be 

above the VB position of TiO
2
 (ie, more negative). Therefore, 

assuming no kinetic limitations, TiO
2
-assisted photoinduced 

interfacial redox reaction will take place with acceptors and 

donors whose respective reduction potentials are comprised 

between CB and VB band positions of TiO
2
.61,341 It is note-

worthy that when the TiO
2
 surface will be under contact with 

any fluid (gas/liquid) or metal, there will be band bending 

at the interface due to the redistribution of the charges (and 

double layer and Schottky barrier formation). For an n-type 

semiconductor like TiO
2
, the band bending will be in the 

upward direction. Due to this redistributed band structure at 

the surface, e−–h+ recombination process will be affected and, 

hence, modify the photocatalysis activity of TiO
2
.

Among anatase and rutile crystal structures of TiO
2
, 

anatase shows a higher photocatalytic activity.342 The struc-

ture of rutile and anatase are shown in Figures 3 and 4 and 

described in Table 1. The two crystal structures differ by the 

distortion of each octahedron and by the assembly pattern of 

the octahedra chains. These differences in lattice structures 

cause different mass densities and electronic band structures 

between the two forms of TiO
2
 that lead to different photo-

activities of these two structures.

Photolysis on TiO2–solar hydrogen
Photolysis or photosplitting of water into gaseous O

2
 and H

2
 

represents one of the most challenging and promising ways 

of solar energy accumulation, as solar hydrogen can then 

be used as an alternative fuel. Numerous comprehensive 

studies343–354 have been performed since the first report of 

photocatalytic water splitting on TiO
2
 surface was published 

in 1972.64 The band energy position of TiO
2
 relative to the 

electrochemical potentials of the H
2
/H

2
O and O

2
/H

2
O redox 

couples61,355 demonstrates that due to the presence of a large 

overpotential for the evolution of H
2
 and O

2
 on the TiO

2
 

surface, TiO
2
 alone cannot photodecompose H

2
O; rather the 

D A± D+ A− 

D± A D+ A− 

A

D A± D± A 

D± A D A±

B

C

(i)

(ii)

Figure 8 various electron transfer and energy transfer processes of de-excitation 
of photogenerated e−–h+ pairs (adapted and redrawn). Kamat Pv. Meeting the clean 
energy demand: nanostructure architectures for solar energy conversion. J Phys 
Chem C. 2007;111(7): 2834–2860.345
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photoassisted oxidation of the oxygen vacancy sites on a 

reduced TiO
2
 surface is responsible for H

2
 evolution.61,356

TiO
2
-assisted photoelectrolysis of water is achieved 

using a close circuit photoelectrochemical cell that consists 

of a TiO
2
 anode and a Pt counter electrode and is exposed to 

near-UV light.64,357 Generation of the photoelectrochemical 

e−–h+ pair in TiO
2
 is followed by the transfer of electron to 

the Pt electrode and reduction of water molecule to evolve 

H
2
 according to the following reaction:

 2H+ + 2e− → H
2
↑, (6a)

whereas at the anode, water oxidation takes place according 

to following reaction:

 
H O + 2h O H2

+
2→ ↑ + +1

2
2 .  (6b)

Therefore, the overall photosplitting of water will be given 

as follows:

 
H O H O2

hv
TiO Pt 2 2

2 − → + 1

2
.  (6c)

Sometimes the system requires some external electrical 

(.0.25 V) or chemical (alkali in anode half cell and/or acid 

in cathode half cell) bias to increase efficiency.320–324,340,357

In another variation, solar hydrogen is generated by 

mixing TiO
2
 powders with noble metals (Pt, Ag, and Au) 

and oxide (RuO
2
) particles. Here, this system behaves as a 

microphotoelectrochemical cell in which the metal (Pt) acts 

as the cathode and oxide (RuO
2
) as the anode. Band-gap 

excitation in the TiO
2
 injects electrons into the Pt particles 

and holes into the RuO
2
 particles. Trapped electrons in Pt 

reduce water to hydrogen, and trapped holes in RuO
2
 oxi-

dize water to oxygen.358 Various ways of modifying TiO
2
 

particles have been reported, such as metal ion or anion 

doping, metal ion implantation, dye sensitization, addition 

of sacrificial or other components to the electrolyte, and 

so on. However, all these processes produce a very low rate 

of water splitting.344,346 Various measures have been taken to 

increase the rate of hydrogen evolution over TiO
2
 surfaces 

such as using artificial high-power UV light sources and/or 

nanostructured materials.349 However, the energy conversion 

efficiency on TiO
2
 was rather low and the reasons for this are 

1) fast recombination of photogenerated electrons and holes, 

2) fast backward reaction, 3) inability to harvest visible and 

IR light at longer wavelengths than ∼400 nm, and 4) less 

effective surface area.344

Surface modification of the TiO2 
nanostructure
Apart from photosplitting of water, other photochemical 

activities of TiO
2
 include adsorption and desorption of O

2
, 

CO
2
, CO, halides, or various organic compounds on nano-

structured TiO
2
 surface359–373 and photo-oxidation/reduction 

of molecular nitrogen, NO
2
, NH

3
, CO

2
, or halides.374–389 

 Photocatalysis being a surface phenomenon, surface area is 

very important in determining the amount of reaction sites, 

and charge carriers have to be utilized properly to improve 

their ability to initiate surface reactions. On the other hand, 

TiO
2
 crystallinity should be high to prevent the recombination 

of e− and h+. Highly crystalline TiO
2
 prevents the recombi-

nation of charge carriers relative to amorphous and less 

crystalline TiO
2
. As mentioned earlier, because the energy 

conversion efficiency on TiO
2
 depends on several factors 

such as surface area, e−–h+ recombination rates, solar energy 

spectrum, and so on, as a working hypothesis, surface area, 

and crystallinity of the TiO
2
 powder have to be improved for 

efficient photocatalysis.

Modification of the surface area of TiO
2
 is performed by 

using nanostructured materials. Nanoparticulate electrodes 

are commonly used for these purposes, which consist of a sev-

eral micrometer-thick film consisting of a random 3-dimen-

sional network of interconnected 15–20 nm particles. While 

these electrodes possess a high surface-to-volume ratio, the 

structural disorder at the contact between two crystalline 

particles leads to an enhanced scattering of free electrons, 

thus reducing the electron mobility.390 On the other hand, the 

nanotube array architecture, being ordered and strongly inter-

connected, eliminates randomization of the grain network and 

increases contact points for good electrical connection. The 

nanotube arrays have a large internal surface area and can 

be easily filled with fluids, thus enabling higher contact with 

electrolytes. The porosity of the ordered structure allows the 

incident photons to be more effectively absorbed than on a flat 

electrode.328 Details of the fabrication processes of various 

nanostructured TiO
2
 have been discussed previously. Most of 

these processes used calcination/ annealing steps for liquid-

phase syntheses or elevated-temperature gas-phase syntheses 

methods to obtain high crystalline TiO
2
 nanostructures for 

improved photocatalytic activities.

Doping in nanostructured TiO2  
for improved photoactivity
Doping of TiO

2
 nanostructures is another method of improv-

ing photoactivities of TiO
2
. Loading of TiO

2
 surface with 
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noble metals and/or metal oxides (RuO
2
, ZnO, WO

3
, SnO

2
) 

creates low-energy states within TiO
2
 that trap photogene-

rated charge carriers and thus prevent charge recombination 

which increases the photoactivity of TiO
2
. On the other hand, 

substitutional doping is very important for reducing the band 

gap of TiO
2
 nanostructures to utilize the wider fraction of 

solar radiation, especially the visible and near infrared (NIR) 

parts.391 Much effort has been expended to narrow the TiO
2
 

band gap by compositional doping. According to the crystal 

structure of TiO
2
, it appears that replacement of Ti4+ with 

any cation is relatively easier than to substitute O2− with any 

other anion due to the difference in the charge states and 

ionic radii. Cationic doping of TiO
2
 with transition and rare 

earth metals (such as Cu, Zr, Zn, Co, Ni, Cr, Mn, Mo, Nb, V, 

Fe, Ru, W, Sb, Sn, Au, Ag, Pt, La, Ce, Er, Pr, Gd, Nd, or Sm) 

has been extensively studied.177,392–405 While several authors 

have reported that transition metal ion doping decreases the 

photothreshold energy of TiO
2
, there is also an increase in 

thermal instability and a decrease in carrier lifetimes,398,399 

which limits overall conversion efficiencies.

For nonmetal doping of TiO
2
 in anionic site (oxygen), 

wide varieties of anionic species (N, S, C, B, P, I, or F) 

have been used. This approach consists of substitution of 

a nonmetal atom for oxygen.152,405–419 The methods used to 

introduce the dopants include wet-chemical, electrochemical, 

and physical methods, which have been described in detail in 

the previous sections and related references.420–425 Theoretical 

calculations show that band-gap narrowing originates from 

the electronic perturbations caused by the change of lattice 

parameters and/or by the presence of the trap states within 

conduction and valence bands of TiO
2
.426,427 Although there 

is wide consensus that anionic doping produces enhancement 

in the visible activity of TiO
2
 photocatalysts, it is a matter 

of debate whether this anionic doping is really achieving 

the necessary band-gap narrowing in TiO
2
 to the extent to 

be really useful in practical applications.328 Recent studies 

showed that the visible light activity of TiO
2
 can be further 

enhanced by codoping of suitable combination of metals 

and/or nonmetal ions.405,418,419,428–431

Nanocomposites of TiO
2
 with semiconductors hav-

ing lower band-gap energy such as CdS, CdSe, CdTe, 

PbS, Bi
2
S

3
, CuInS

2
, and so on, which absorb light in the 

visible region of solar spectrum, can serve as sensitizers 

because they are able to transfer electrons to large band 

gap of TiO
2
.144,286,288,291–294,328,432–435 However, fabrication of 

 metal-chalcogenite/metal oxide (TiO
2
) composite is some-

what challenging as oxygen intercalation to the chalcogenite 

sites may alter the band gap of the system and deteriorate 

 photoactivity. Alternatively, metal oxides, such as CuO, 

Cu
2
O, Fe

2
O

3
, WO

3
, MoO

3
, ZnO, SnO

2
, and so on, have been 

considered for band-gap  engineering of TiO
2
 as these oxides 

have compatible processing strategies with TiO
2
.297,328,436–444 

Among these oxides, low band-gap CuO or Cu
2
O are used 

as sensitizers to use visible radiation, whereas other large 

band-gap oxides (eg, ZnO, SnO
2
) are coupled with TiO

2
 

for extrinsic trapping of photogenerated charge carriers to 

enhance photoactivity. Among these, coupling TiO
2
 with 

SnO
2
 attracts much  attention. The band gaps of SnO

2
 and 

TiO
2
 are 3.88 and 3.2 eV, respectively, and the CB edge of 

SnO
2
 is ∼0.5 V above that of TiO

2
. When the two semicon-

ductor particles are coupled, the CB of SnO
2
 acts as a sink 

for photogenerated electrons. Since the photogenerated holes 

move in the opposite direction, they accumulate in the VB 

of the TiO
2
 particle, which increases the efficiency of charge 

separation. Recently, a nanocomposite of TiO
2
 (anatase)/CNT 

has been reported to show enhanced photoreactivity by reduc-

ing charge recombination at TiO
2
 surface.299,302–306 It has been 

observed that single-walled (SW) CNTs can more effectively 

reduce the charge recombination rate than that of multiwalled 

(MW) CNTs as the contact area for SWCNT/TiO
2
 is much 

higher than that of MWCNT/TiO
2
 (cf, Figure 9A), enhancing 

TiO2
TiO2

SWCNTs MWCNTs

A

− −

+

hν

Eg (TiO2)

Eg (CNT) 

B 

Figure 9 Schematic representation of TiO2/SwCNT and TiO2/MwCNT 
nanocomposite structures, (b)proposed model for reduction in photogenerated 
electro-hole recombination in TiO2/CNT nanocomposites (adapted and redrawn). 
Schnitzler DC, Zarbin AJG. Organic/inorganic hybrid materials formed from TiO2 
nanoparticles and polyaniline. J Braz Chem Soc. 2004; 15(3):378–384.315

Abbreviations: CNT, carbon nanotubes; Mw, multiwall; Sw, single wall.
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the charge transfer.299 A simple mechanism has been proposed 

by Yao and colleagues299 to qualitatively explain the reduced 

charge recombination rate in TIO
2
/CNT nanocomposite (Fig-

ure 9B). Physically, the CB edge of TiO
2
 is −4.21 eV lower 

than vacuum level with a band gap around 3.2 eV, whereas 

work function of (SWCNT) is −4.8 eV (with respect to 

vacuum level), with a narrow band gap ranging from 0.0 to 

1.1 eV.445 Due to this relative position of CB edges between 

TiO
2
 and CNTs, the probability of transfer of the (photogene-

rated) electrons to the CNTs becomes much higher, leading 

to a higher lifetime for holes, which consequently enhances 

its photocatalytic activities.

TiO2-based DSSCs
DSSCs have attracted much interest as regenerative low-cost 

alternatives to conventional solid-state devices due to high 

energy conversion efficiency and the possibility of large 

scale production.388,352,446 A DSSC consists of a nanoporous 

film prepared from nanoparticles of a wide-gap metal oxide 

(typically TiO
2
) covered with a monolayer of photosensitizer 

molecules (a dye, typically ruthenium complexes anchored 

to the TiO
2
 surface by a carboxylate bipyridyl ligand) and an 

electrolyte as a hole transport layer containing redox couples 

(iodide/tri-iodide). The cell is illuminated through a transpar-

ent conducting oxide (TCO) electrode (typically ITO-coated 

glass) where the semiconductor is deposited. The TiO
2
 pores 

are filled with the redox electrolyte which acts as the mediator 

and establishes electrical contacts with a redox catalyst in the 

counter electrode.447–451 The dyes on the surface of the films 

absorb light and inject electrons into the CB of the metal 

oxide. To collect the electrons at a TCO layer, the electrons 

should travel the distance in the CB from the point where 

the electrons were injected to the TCO before  recombination. 

A schematic representation of a typical DSSC is shown in 

Figure 10. Photoexcitation of the dye (sensitizer) is followed 

by electron injection into the CB of the TiO
2
 nanostructure. 

The dye molecule is regenerated by the redox system, which 

itself is regenerated at the counter electrode by passing elec-

trons through the load. Potentials are referred to the NHE. 

The open-circuit voltage of the solar cell corresponds to the 
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Figure 10 Schematic representation of principle of operation and energy level scheme of the dye-sensitized nanocrystalline solar cell (adapted and redrawn). Luo H, Takata T, 
Lee Y, Zhao J, Domen K, Yan Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater. 2004;16(5):846–849.482

Note: The diagram is not drawn to the scale.
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difference between the redox potential of the mediator and 

the Fermi level of the nanocrystalline TiO
2
 indicated with a 

dashed line. In the nanoporous TiO
2
 film, the surface is sur-

rounded by more cations than the electrons, and therefore, it 

has been assumed that no large electric field gradient is pres-

ent within the film; hence, the electron transport mechanism 

is considered to be purely diffusive.452–454

DSSCs differ from solid-state p–n junction for the fact 

that light absorption and the transport occur separately. The 

process is described through equations 7a through 7d:449

 Sensitizer (S) + hv → S*(excited) (7a)

 S* + TiO
2 
→ e−(TiO

2
) + Oxidized sensitizer+ (7b)

 
Oxidized sensitizer I S +

1

2
I+ + →− −3

2
3

 
(7c)

 

1

2
I e Counter  electrode I3

3

2
− −+ →

−
( )

 
(7d)

The light absorption takes place in a monolayer of the 

photosensitizer (S), which is chemically adsorbed on the sur-

face of TiO
2
 (Eq. 7a). The photoexcited dye (S*) is then able 

to transfer electrons into TiO
2
 (Eq. 7b), which moves toward 

TCO electrode through the TiO
2
 porous network. Electrons 

lost by the sensitizer are recovered using the reduced species 

present in the electrolyte (I−) (Eq. 7c). Finally, the circuit 

is closed by the oxidized species of the mediator (I
3

−) that 

obtains electrons which flows through the counter electrode 

through the load (Eq. 7d).

Other photocatalytic applications  
of nanostructured TiO2
Other photocatalytic activities of TiO

2
 involve photosensi-

tized oxidation of organic pollutants using TiO
2
 for envi-

ronmental remediation, wastewater treatment, recovery of 

precious metal via TiO
2
-assisted reduction,325,326,340,341,455–457 

organic synthesis,458 photokilling activity,146,356,459,460 or self-

cleaning activity.340,356 Photosensitized oxidation of organic 

pollutants in the aqueous and gaseous phases can be done 

according to the following reaction:

 

Organic compound O

CO H O + Mineral acid

hv
TiO Pt

2 2

2
+  →

+
2 −

 (8)

Similarly, TiO
2
-assisted organic syntheses comprise 

1) oxidation of alkenes substituted with phenyl groups to 

yield corresponding ketones

 

Ph

Ph
CH

Ph

Ph
Ohv/TiO

CH CN/O
2

c 2
 =  → =









,  (9)

2) oxidation of substituted toluene to corresponding 

acetaldehyde and carboxylic acid, and 3) amine intra 

N-alkylation.340 On the other hand, the biggest success of 

TiO
2
-based photochemistry is probably the self-cleaning 

and related phenomena. For example, photoactive TiO
2
 

coated on ceramic or glass undergoes a dual action,340 where 

on one hand TiO
2
-assisted photo-oxidation takes place to 

break down the organic compounds (cf, Eq. 8); on the other 

hand, simultaneous TiO
2
-assisted, UV-photoinduced super-

amphiphilicity (forcing detachment of dust and/or organ-

ics) takes place followed by a quick drying process.356,461 

 Photoinduced superamphiphilicity of TiO
2
 exhibits high 

quantum yield at low UV radiation intensities and, therefore, 

can be exploited efficiently within an indoor setup when 

illuminated with conventional fluorescent light. Major glass 

and ceramic manufacturers have already commercialized 

self-actuating materials based on this superamphiphilicity 

of TiO
2
 in automobile and/or bathroom mirrors, or self-

cleaning windows/panels.462,463

Conclusions
A comprehensive review of the properties, fabrication, and 

application of nanostructured TiO
2
 has been presented in 

detail, especially the syntheses procedures of 0-, 1-, and quasi-

2-dimensional nanostructures of TiO
2
 via various physical and 

chemical techniques. Synthesis strategies regarding nanocom-

posites of TiO
2
 with other inorganic and organic materials and 

applications of TiO
2
 in terms of photocatalytic activities has 

been reviewed. The basic mechanisms of photoactivities of 

TiO
2
 and nanostructures were explored. The characteristics of 

band-structure engineering and surface modification in nano-

structured TiO
2
 in the context of doping, including elemental 

and compound materials doping as well as nanocomposite 

formation with various inorganic/organic materials were 

discussed. The nanostructured TiO
2
-assisted photocatalytic 

energy/fuel generations in terms of solar hydrogen and/or 

DSSCs have also been discussed in detail. Other photo-

chemical activities of nanostructured TIO
2
 such as wastewater 

treatment, organic synthesis, photokilling, and self-cleaning 

activities have also been discussed briefly. TiO
2
 nanomateri-

als are of tremendous interest in a wide range of applications 

such as photocatalysis, DSSCs, gas sensors, photochromic 

devices, photodegradation of organic compounds, deactiva-

tion of microorganisms, organic synthesis, and cell culture. 
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It will not be an exaggeration to say that the next decade will 

see the renaissance of TiO
2
-based  nanomaterials, and various 

new, interesting, and novel technological applications are on 

the verge of exploration.

Future directions
In recent years, TiO

2
-based photocatalytic oxidation of organic 

compounds has received the most attention, but there is a 

rapidly increasing focus on the oxidation of volatile organic 

or inorganic compounds in the gas phase, including NO
x
 

and SO
x
. Photocatalytic reductions of organic compounds 

and metal-containing ions and studies on cell killing and 

disinfection by illuminated TiO
2
 have also received increasing 

attention. The current problem with doped TiO
2
 is the loss of 

photoactivity during recycling and long-term storage. Future 

research should be focused on this issue to obtain sustained 

photoactivity in the long run. Photoactivity of metal-doped 

TiO
2
 under visible light strongly depends on preparation 

methods. A uniform synthetic strategy is the need of the hour 

to obtain tailored materials for high-efficient UV-Vis photore-

sponse. In the case of nonmetal-doped TiO
2
, the main problem 

is that its photocatalytic activity under visible light is much 

lower than that under UV radiation. Therefore, development 

of new and optimization of the existing photocatalysts exhib-

iting activity upon visible light with surface characteristics 

of improved performance and of the high chemical and 

physical stability are crucial for broader scale utilization of 

photocatalytic systems in commercial applications. Such 

materials together with the development of technically appli-

cable self-aligning photocatalytic coating systems adaptable 

to the major substrates (polymers, glass, ceramics, or metals) 

will represent a ground-breaking step change in this field, 

particularly in the economic viability of a range of potential 

applications. One of the major challenges for the scientific 

and industrial community involved in photocatalytic research 

is to increase the spectral sensitivity of TiO
2
-based photo-

catalysts to visible and NIR regions. A major area of future 

research should be the development of new nanostructures 

of TiO
2
 with higher surface states, new commercially 

viable nano-TiO
2
 fabrication methodology, especially 

nonlithographic complementary metal–oxide–semiconductor 

compatible techniques for practical applications, new doping 

materials, new methods for dopant incorporation into TiO
2
 

nanostructure, as well as new applications for environmental 

technology. Future research should deal with visible-to-NIR-

activated TiO
2
 functioning in the presence of solar irradiation 

with predictable photoactivity. Finally, a recent report 

discusses the photocatalytic cancer-cell treatment using 

TiO
2
 nanoparticle,186 which opens up a very important field 

in nanobiotechnology for defective cell treatment. Very few 

groups have studied the biocompatibility of nanostructured 

TiO
2
.464–469 Since nanostructured TiO

2
 is extensively used in 

various applications such as dope, dyes, ceramics, cosmetics, 

and medicine, where contact with human and/or living cells 

is necessary, the study of the  biocompatibility and biosafety 

of nano-TiO
2
 should be considered a very important area of 

future research.
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