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ABSTRACT The recent dramatic cost reduction of next-generation sequencing technology enables investigators to assess most variants
in the human genome to identify risk variants for complex diseases. However, sequencing large samples remains very expensive. For
a study sample with existing genotype data, such as array data from genome-wide association studies, a cost-effective approach is to
sequence a subset of the study sample and then to impute the rest of the study sample, using the sequenced subset as a reference
panel. The use of such an internal reference panel identifies population-specific variants and avoids the problem of a substantial
mismatch in ancestry background between the study population and the reference population. To efficiently select an internal panel,
we introduce an idea of phylogenetic diversity from mathematical phylogenetics and comparative genomics. We propose the “most
diverse reference panel”, defined as the subset with the maximal “phylogenetic diversity”, thereby incorporating individuals that span
a diverse range of genotypes within the sample. Using data both from simulations and from the 1000 Genomes Project, we show that
the most diverse reference panel can substantially improve the imputation accuracy compared to randomly selected reference panels,
especially for the imputation of rare variants. The improvement in imputation accuracy holds across different marker densities,
reference panel sizes, and lengths for the imputed segments. We thus propose a novel strategy for planning sequencing studies on

samples with existing genotype data.

ENOTYPE imputation is an essential component of

modern genetic association studies. This technique en-
ables direct testing of untyped markers for associations with
phenotypes of interest, thereby increasing the power to iden-
tify causal variants in association studies (Li et al. 2009).
Imputation is especially useful in meta-analyses that com-
bine data from genome-wide association studies (GWAS)
conducted using different genotyping platforms (Zeggini
et al. 2008; Scott et al. 2009). Moreover, genotype imputa-
tion performed using study-specific sequenced samples en-
ables analysis of rare variants in large GWAS-genotyped
data sets (Zawistowski et al. 2010).

Imputation methods typically use a reference panel of
densely genotyped haplotypes to predict the missing geno-
types in a less densely genotyped study sample. The choice
of the reference panel then influences the imputation
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accuracy obtained in the study sample. It has been observed
that in general, imputation accuracy is higher when the
reference panel and the study sample derive from the same
or similar populations than when they are from substantially
different groups (Huang et al. 2009, 2011). However, high-
diversity reference panels also contribute to increased impu-
tation accuracy. Huang et al. (2009) found that increasing
reference panel diversity by incorporating a mixture of dif-
ferent HapMap populations could improve imputation accu-
racy in comparison with the use of only a single HapMap
population. Similarly, in imputing a study sample from a Brit-
ish birth cohort, Jostins et al. (2011) found that adding to
the reference panel a proportion of HapMap samples from
other populations (e.g., taking 17% of the reference panel
from Toscani or 22% from Chinese and Japanese) yielded
a higher imputation accuracy than using Northern European
samples alone.

Most studies performed to date have selected refer-
ence panels from external databases such as the Interna-
tional HapMap Consortium (International Haplotype Map
Consortium 2005; Frazer et al. 2007) and 1000 Genomes
Project (1000 Genomes Project Consortium 2010). Dramatic
reductions in sequencing cost now enable an alternative
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strategy: to select an internal reference panel for genotype
imputation, that is, to sequence a subset of the study sample
itself and then to use the sequenced subset as a reference
panel for imputing the rest of the study sample. Using ref-
erence sequences derived from the study sample can prevent
a mismatch in ancestral background between the study pop-
ulation and the reference population. It also enables novel
variants distinctive to the study sample to be imputed.
Employing sequences from a candidate gene and the 1000
Genomes Project, Fridley et al. (2010) demonstrated the
feasibility of imputing genetic variants based on a sequenced
proportion of a study sample, and they suggested sequenc-
ing “the largest and most diverse” subset. In a theoretical
study, Jewett et al. (2012) found that including sequenced
haplotypes from the study population in the reference panel
improved imputation accuracy, even if the external panel
was taken from a closely related population. Here, we de-
velop criteria for the selection of an internal reference panel
for genotype imputation. Our goal is to find a sensible ap-
proach for choosing an internal reference panel from the
study sample, with the aim of (1) maximizing the number
of polymorphic sites identified in the study sample and (2)
achieving the maximal imputation accuracy.

The identification of maximally diverse subsets of a larger
set of individuals has been a goal in other areas of genetics,
such as in choosing diverse sets of plant accessions for
inclusion in core collections targeted for agronomic de-
velopment or experimental use (Brown 1989; McKhann
et al. 2004; Reeves et al. 2012) and in choosing diverse
species sets for biodiversity conservation (Faith 1992; Steel
2005) and genome sequencing (Pardi and Goldman 2005).
In selecting a set of imputation templates, we borrow the
concept of “phylogenetic diversity”, which, for a given subset
of a larger set of taxa, measures the fraction of the total
branch length of an evolutionary tree of the larger set that
is included in the restriction of the tree to the taxon subset
(Faith 1992; Nee and May 1997; Steel 2005). Conditional
on a tree of n taxa, Pardi and Goldman (2005) and Steel
(2005) proved that among all possible subsets of size m =< n
taxa from the larger set, the globally maximal phylogenetic
diversity can be obtained by a greedy algorithm. This greedy
algorithm provides a computationally efficient solution to
a form of combinatorial optimization problem that can usu-
ally be solved only via exhaustive analysis of all possible
subsets. Further, if it becomes possible for investigators to
increase the number of sequenced samples, for example, by
an increase in budget, then the greedy algorithm guarantees
that all of the previously selected individuals will be in-
cluded in the larger optimal subset (Pardi and Goldman
2005).

We propose the use of the most diverse reference panel
for genotype imputation, adapting the greedy algorithm for
maximizing phylogenetic diversity in our selection of an
internal reference panel. We assume phased diploid individ-
ual genotypes are available, as phasing is not our focus. We
approximate the ancestral relationships of haplotypes by
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Figure 1 lllustration of the selection of the most phylogenetically diverse
reference panel. Shown is the phylogenetic tree constructed from 20
simulated haplotypes as well as the most diverse subset of five taxa (thick
lines). The selection algorithm first selects the most distant pair of taxa
and then identifies haplotypes that are most distant conditional on the
haplotypes already selected. To choose the five taxa, the greedy algorithm
first selects pair 1 and 14 and then 12, 19, and 5 sequentially. Note how
the haplotypes chosen are spread across the tree and possess long branch
lengths.

constructing a neighbor-joining phylogenetic tree (Saitou
and Nei 1987), using the pairwise Hamming distance matrix
between the haplotypes in a study sample (Figure 1). We
next apply the greedy algorithm of Pardi and Goldman
(2005) and Steel (2005) to identify the subset at a given
size with the maximal phylogenetic diversity conditional on
the tree. The haplotypes chosen by our method are spread
across the tree and tend to have long external branch
lengths (Figure 1, thick lines), as our method prioritizes in-
dividual sequences that are more differentiated. We expect
that in comparison with a random subset, the subset that is
most phylogenetically diverse at the genotyped markers also
carries a larger number of polymorphic sites that can be
identified by sequencing and that are then available for im-
putation into the remaining sample when this subset is used
as a reference panel. Thus, it can be predicted that this
strategy enables more variants to be imputed in the study
sample than does the use of a randomly selected reference
panel.

To evaluate the performance of our “most diverse refer-
ence” panel in genotype imputation, we simulate sequences
and create study samples similar to those observed in GWAS
by masking the genotypes for a number of single-nucleotide
polymorphisms (SNPs). We then impute the masked geno-
types in the study sample by using either the most diverse
reference panel or randomly selected reference panels. We
also apply the “most diverse” method to sequences of Euro-
pean ancestry from the 1000 Genomes Project. The results
from both the simulated sequences and the 1000 Genomes



sequences show that the most diverse reference panel con-
sistently provides higher imputation accuracy, independent
of imputation lengths, reference panel sizes, and marker den-
sities in the study sample. We thus provide a cost-effective
strategy for designing sequencing studies for samples with
existing genome-wide genotype data. As of 2013, thousands
of GWAS have been performed, with >1 million genotyped
individuals (http://www.genome.gov/gwastudies/). Effective
use of these genotype data will make it possible to carry
out large-scale sequencing studies on these individuals in
silico with a limited budget.

Materials and Methods
Phylogenetic diversity

We use notation similar to that of Steel (2005). Assume
a study sample T of n haploid individuals, each containing
q polymorphic sites that are genotyped for k < g variable
sites (referred to as markers) in a region of interest. We
consider haploid data (phased diploid individuals for
humans), as we do not focus on phasing. Based on the gen-
otypes at those k markers, we aim to identify a subset
S C T of size m = n to be sequenced. Sequencing reveals
r = q — k additional variable sites in the m individuals. S is
then used as a reference panel to impute the genotypes of
these r sites in the remaining n — m individuals in the study
sample T.

To identify the optimal selection of S, let X; be an
unrooted tree constructed using all haplotypes in T on the
basis of the k markers. Let At be the sum of the branch
lengths for all edges of X;. We denote by Xs the induced
tree obtained by restricting X to only the haplotypes in S
and by Ag the sum of the branch lengths of Xs. For m = 2, we
define the size-m subset of T with maximal phylogenetic
diversity as pd,:

pdy, = arg max{As: SE T and |S| =m}.

Identifying the subset with maximal diversity

To find pd,,, we first generate an unrooted tree from the
study sample T. Based on the genotypes of the k markers,
we compute the Hamming distances between individual
haplotypes and construct a pairwise distance matrix for T.
Using this distance matrix, we construct a tree using the
neighbor-joining (NJ) method, which recursively agglomer-
ates pairs of nodes until all nodes have been incorporated
into the tree (Saitou and Nei 1987). On this tree, we apply
a greedy algorithm to identify the subset S with size m that
has the maximal phylogenetic diversity. Briefly, we first se-
lect the pair of haplotypes with the greatest distance on the
tree and add the pair to S. We then sequentially incorporate
as the next haplotype in S the haplotype that adds the max-
imal length to the chosen tree at that step, repeating the
process until S reaches size m. Pardi and Goldman (2005)
and Steel (2005) proved that conditional on the tree, the

subset chosen according to this greedy algorithm has the
maximal phylogenetic diversity.

Simulations

We analyze simulated data sets to evaluate the performance
of the “most diverse reference panel” in genotype imputa-
tion. We independently generate 50 data sets of 2000 hap-
lotypes each with the program ms, a coalescent-based
sequence sampling program, under the neutral Wright—
Fisher model (Hudson 2002). We assume a basic popula-
tion-genetic model with constant effective population size
N, = 10,000, a mutation rate u = 1.0~8 per site per gen-
eration, and a recombination rate p = 1.078 per site per
generation. We remove singletons from the simulated
sequences to create the “true” imputable sequence data.
All simulated sites are assumed to have at most two alleles.
Emulating the density of current genotype arrays, we select
the marker panel of the study sample (the “genotype data”)
by randomly choosing 300 markers per megabase that
have minor allele frequency (MAF) > 0.1 in the sequence
data. We mask the genotypes for the remaining sites, which
become the set of sites that will be imputed. We simulate
haplotypes of length 1 Mb, imputing the middle 100 kb
while keeping the genotypes for the marker panel in both
450-kb flanking regions to improve imputation accuracy and
to avoid edge effects (Li et al. 2010). Based on these simu-
lated marker genotype data sets, we apply our algorithm on
the marker panel to obtain the most diverse reference panels
of 200 haplotypes. To evaluate the performance of the most
diverse reference panel, for each of the 50 simulated data
sets, we generate 1000 random reference panels, by sam-
pling without replacement 200 haplotypes each from the
sequence data for comparison. Additionally, to model dip-
loid samples, we assume that if one of the two chromosomes
in a diploid individual is in the panel of most diverse hap-
lotypes, both chromosomes are sequenced. We form the “di-
verse diploid panel” by ranking haplotypes with the greedy
algorithm and incorporating diploid individuals into the
panel who carry at least one of the top ranked haplotypes
until we reach the number of diploid individuals we plan to
sequence (100 in experiments that compare to the 200 most
diverse haplotypes). In each selected reference panel, we
unmask all imputable sites and use the resulting sequences
as references for genotype imputations. For each data set,
we perform one imputation with the most diverse reference
panel, one imputation with the diverse diploid reference
panel, and one imputation with each of the 1000 randomly
selected reference panels.

To evaluate the impact of our parameter choices, we
modify this basic design by changing the length of the
imputation target, the reference panel size, and the number
of genotyped SNPs in a study sample while maintaining the
other parameters fixed as described above. We consider
imputation target lengths of 100 kb, 500 kb, 1 Mb, and 2
Mb, each time adding 450-kb flanking regions. We select
reference panel sizes of 100, 200, 300, 400, and 500
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haplotypes among a total of 2000 haplotypes. We also vary
the number of genotyped markers from 300 to 1000 in a
1-Mb region in a study sample. For each scenario, we
simulate 50 data sets of 2000 haplotypes each. For each data
set, we perform one imputation with the most diverse
reference panel and 50 imputations with randomly selected
reference panels.

Based on previous comparisons among imputation meth-
ods (Hao et al. 2009; Nothnagel et al. 2009; Pei et al. 2010),
we employ minimac (Howie et al. 2012) as one of the best-
performing methods. This method is an extension of MaCH
(Li et al. 2010) for phased diploid data. To assess imputation
accuracy on heterozygous genotypes, we then create n/2
diploid individuals by randomly combining pairs of haplo-
types from the entire study sample. After imputation, we
evaluate the predicted imputation accuracy by examining
for each selected reference panel the mean of the estimated
correlation coefficient #* across all markers. To evaluate the
imputation accuracy of the r imputed sites for the n/2 dip-
loid individuals in the imputed data sets, we compute two
measures for the discordance rate between the imputed gen-
otypes g; and the simulated genotypes g;; at variant site j in
target individual i. We allow gij and g; to equal 0, 1, and 2,
based on their numbers of copies of one specific allele. First
we calculate the discordance rate D across all sites:

2
SrAsT

nr

8ij — &jj

As this error function is strongly affected by the minor allele
frequencies of the variant sites examined (Huang et al.
2009), we also calculate imputation errors across all hetero-

zygous genotypes (g; = 1):
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Note that the evaluations use all n/2 simulated diploid indi-

viduals, both those with one or two haplotypes in the refer-
ence panel and those with two haplotypes that are imputed.

The 1000 Genomes Project data

We apply our method to sequence data from the 1000
Genomes Project. We consider the phased data of 381
diploid individuals (762 haplotypes) with European (EUR)
ancestry, including 87 Utah residents with Northern and
Western European ancestry (CEU), 93 Finnish from Finland
(FIN), 89 British from England and Scotland (GBR), 14
Iberian populations in Spain (IBS), and 98 Toscani in Italy
(TSI) (http://www.sph.umich.edu/csg/abecasis/MACH/
download/1000G-Phasel-Interim.html, the 1000G In-
terim Phase I Haplotypes 11/23/2010 release). We remove
singletons from the sample, selecting eight 100-kb regions
that are approximately evenly distributed across chromo-
some 20. We create study samples, using a similar procedure

322 P. Zhang et al.

to that for the simulation above: for each region, we add a
450-kb flanking region on each side, randomly choose ~300
genotyped SNPs per megabase among markers with MAF =
0.1, and mask the genotypes of all other sites. In each re-
gion, we select the most diverse 160 haplotypes from the set
of 762 total haplotypes as the diverse reference panel. For
comparison, we sample without replacement 1000 random
reference panels of 160 haplotypes each.

We next consider the entire chromosome 20 and create
a study sample, using the same procedures as in the 100-kb
regions. We select the most diverse reference panel using
our method and 50 reference panels randomly without
replacement. Using the selected reference panels, we impute
all the masked genotypes and compute the discordance rate
for each imputation.

Results
Number of imputed sites

Polymorphic sites in reference panels: Only sites that are
polymorphic in the reference panel can be imputed into the
remaining study sample. Hence, we first evaluate the number
of polymorphic sites in the reference panels selected. For each
of the 50 simulated data sets, we choose one random
reference panel and compare it to the most diverse reference
panel. We find that for a total of 12,957 masked sites that are
polymorphic in the study samples across the 50 data sets,
9642 sites (74.41%) are polymorphic in both types of
reference panels. Among the remaining sites, 1492 sites
(11.52%) are polymorphic only in the most diverse reference
panels, whereas 760 sites (5.87%) are polymorphic only in
the randomly selected reference panels. Thus, on average,
5.65% more sites are polymorphic in the most diverse
reference panels than in the randomly selected reference
panels.

Polymorphic sites in imputed data sets: To ensure that the
higher number of polymorphic sites in the most diverse
reference panels also leads to a higher number of imputed
polymorphic variants, we count the number of imputed sites
that are polymorphic in data sets imputed with reference
panels generated under three different selection strategies:
(1) sampled at random, (2) selecting the 200 most diverse
haplotypes, and (3) selecting the diploid individuals carry-
ing the most diverse haplotypes (diverse diploid reference
panel). As it is not currently practical to sequence only one
chromosome in a diploid individual, strategy 3 represents
a scenario in which the individuals that carry the most
diverse haplotypes are identified and both of their chromo-
somes are sequenced.

From the total of 12,957 imputed sites across the 50 data
sets, 10,952 are polymorphic in data sets imputed with the
most diverse reference panels (84.53%), 10,574 are poly-
morphic for the diverse diploid reference panels (81.61%),
and 10,151 are polymorphic for randomly selected reference
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Figure 2 Percentages of polymorphic sites in data sets imputed with
different types of reference panels for 50 data sets (replicates). The open
bar represents the accuracy of a random panel, the shaded bar represents
the accuracy of the diverse diploid panel, and the solid bar represents
the accuracy of the most diverse reference panel. If the performance
of the diverse diploid reference panel is lower than the performance of
the random reference panel, this difference is indicated by the part of the
open bar with horizontal stripes. If the accuracy of the diverse diploid
panel is higher than the accuracy of the most diverse panel, this differ-
ence is indicated by the part of the shaded bar with vertical stripes. Data
are sorted in decreasing order by percentage of polymorphic sites recov-
ered by imputations with random reference panels.

panels (78.34%). Figure 2 shows percentages of polymor-
phic sites in data sets imputed with the three reference types
across the 50 data sets. In each of the 50 data sets, imputa-
tion with the most diverse reference panel captures more
polymorphic sites than imputation with the random refer-
ence panel. The improvement by using the most diverse
panel is greater when the randomly selected panel captures
only a low percentage of polymorphic sites (e.g., replicates
46-50). Imputations with the diverse diploid panels result in
higher percentages of polymorphic sites than with the ran-
dom panels in 42 of the 50 data sets (84%) and in a higher
percentage of polymorphic sites than with the most diverse
panel in 4 of the 50 data sets (8%). Only in 4 data sets does
the random reference panel perform substantially better
than the diverse diploid reference panel (replicates 1, 2, 3,
and 6) and in all these cases, the random panel captures
a high (>83%) percentage of polymorphic sites.

Imputation accuracy

As a measurement of imputation accuracy, we evaluate the
discordance rate between the simulated genotypes and the
imputed genotypes for the 50 simulated data sets. For each
data set, we compare the accuracy of the imputation using
the most diverse reference panel to the empirical distribution
of imputation accuracies from 1000 random reference panels.

Estimated imputation quality: A predictor for the accuracy
of an imputed site generated by minimac is the %, a quantity
calculated by comparing the variance of observed genotype
scores with the variance of expected genotype scores to es-
timate the squared correlation at a marker between the true
allele counts and the estimated allele counts (Li et al. 2010).
To compare this predicted imputation accuracy between the
different choices of reference panels, we compute the av-
erage i across the 12,957 total imputed sites across the 50

data sets. For imputations with the most diverse reference
panels and the diverse diploid reference panels, we gener-
ate one value of #* for each site; to evaluate imputations
with the 1000 randomly selected reference panels for each
data set, we compute the mean i for each site across 1000
imputations, and we then calculate the average across all
imputed sites. Sites imputed with the most diverse refer-
ence panels have the highest mean #* (0.784), followed by
sites imputed with the diverse diploid reference panels
(0.758). Sites imputed with randomly selected reference
panels have the lowest mean # (0.723). As removing var-
iant sites with 7#* < 0.3 filters most poorly imputed sites
(Li et al. 2009), we also compare the number of sites that
pass this imputation quality threshold. Across the 50 data
sets, we observe that a higher percentage of sites imputed
with the most diverse reference panels pass the threshold
(83.17%) compared to sites imputed with the diverse dip-
loid reference panels (80.53%) and sites imputed with the
randomly selected panels (77.48%). For a higher #* thresh-
old of 0.8 applied by typical association studies, 76.63% of
sites pass the threshold for imputations with the most
diverse reference panels, 74.76% for the diverse diploid ref-
erence panels, and 59.65% for the randomly selected refer-
ence panels.

Discordance rates: For each simulated data set, we sepa-
rately calculate discordance rates for all sites imputed with
the most diverse reference panel, sites imputed with the
diverse diploid reference panel, and the mean values for
sites imputed with random reference panels, where the
mean is taken across all 1000 random panels. Using the
most diverse reference panel results in the lowest mean
discordance rate across the 50 replicates (0.0019), followed
by imputation with the diverse diploid reference panel
(0.0022). Both quantities are lower than the mean discor-
dance rates of imputation with the random reference panels
(0.0031) (Figure 3). Ranking the discordance rate of se-
lected reference panels together with the discordance rates
of 1000 random panels from the lowest to the highest value,
the most diverse reference panel is a clear outlier for 24 of
the 50 data sets (48%), having a lower discordance rate
than imputations with all 1000 randomly selected reference
panels (rank 1). Across all 50 data sets, the mean rank of the
most diverse reference panel is 13.5, ranging from 1 to 135
among 1001 panels. Across the same 50 data sets, the mean
rank of the diverse diploid reference panel is 111.9, ranging
from 1 to 906 among 1001 panels.

To generate a more meaningful discordance measure for
low-frequency variants, we compare the imputed genotypes
and the simulated true genotypes across sites for which the
true genotypes are heterozygotes. While the heterozygote
discordance rate is higher than the overall discordance rate,
the mean heterozygote discordance across the 50 replicates
is again the lowest for sites imputed with the most diverse
reference panels (0.0097), followed by the diverse diploid
reference panels (0.0121) and the random reference panels
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Figure 3 Box plots of discordance rates between imputed genotypes and
simulated genotypes for imputations with randomly chosen reference
panels, diverse diploid reference panels, and most diverse reference pan-
els. The mean discordance rate across the 50 replicates for each compar-
ison group is indicated by a diamond, and the median discordance rate
across the 50 replicates for each comparison group is indicated by a mid-
dle line. The horizontal axis labels the comparison on the basis of all sites
(All), all heterozygote sites (Heterozygotes), and heterozygotes in differ-
ent MAF groups in the simulated sequence data.

(0.0165). Comparing across frequency bins, we observe that
for all reference selection strategies, the heterozygote discor-
dance rate decreases with increasing allele frequency. The
mean heterozygote discordance rate across the 50 replicates
for low-frequency variant sites (0 < MAF < 0.1) is consider-
ably higher than the overall mean discordance rate for all
heterozygote sites across the 50 replicates (0.0258 for the
most diverse reference panels, 0.0329 for the diverse diploid
reference panels, and 0.0415 for the random reference pan-
els). In all frequency bins, considering heterozygote discor-
dance rates, imputations with the most diverse reference
panels generate the lowest discordance rates and imputations
with the randomly selected reference panels generate the
highest discordance rates, while imputations with the diverse
diploid reference panels generate intermediate discordance
rates (Figure 3). Combining the heterozygote discordance
rate of the most diverse reference panel with the heterozy-
gote discordance rates of 1000 random panels for each of the
50 simulated data sets and ranking from the lowest to the
highest heterozygote discordance rate, the mean rank of
the most diverse panel across all 50 data sets is 17.5 when
comparing all heterozygote sites, 27.3 for sites with 0 <
MAF < 0.1, 115.7 for sites with 0.1 = MAF < 0.2, and
68.5 for sites with 0.2 < MAF = 0.5 among 1001 panels
ranked. When comparing the diverse diploid reference panel
to random panels, the mean rank across all 50 data sets is
147.9 for all heterozygote sites, 188.0 for sites with 0 <
MAF < 0.1, 163.9 for sites with 0.1 = MAF < 0.2, and
145.9 for sites with 0.2 = MAF = 0.5.

Imputation accuracy under different simulation settings

To assess the robustness of our results, we evaluate the
performance of the most diverse reference panel under
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different simulation settings, considering different tar-
get sequence lengths, different reference panel sizes, and
different marker densities in the study sample. We first
investigate whether the lengths of the target regions affect
the performance of the most diverse reference panels in
imputations. We impute regions with lengths of 100 kb, 500
kb, 1 Mb, and 2 Mb, using both the most diverse reference
panel and 50 random reference panels, each of which is
compared to the true underlying genotypes; the mean of the
50 discordance rates is then compared with the discordance
rate for the most diverse reference panel. As shown in Figure
4A, across the four different lengths, we observe little effect
of the imputation length on the discordance rate. The mean
discordance rate across the 50 replicates for each group
ranges from 0.0028 (2 Mb) to 0.0037 (500 kb) for the most
diverse reference panel and from 0.0052 (2 Mb) to 0.0058
(100 kb) for the random reference panels. For all sequence
lengths considered, the most diverse reference panels pro-
vide lower discordance rates than the randomly selected
reference panels.

Second, we evaluate how the reference panel sizes
affect the performance of the most diverse reference panel
by comparing the genotype discordance rates for reference
panels of size 100, 200, 300, 400, and 500 haplotypes. For
both reference panels, the mean discordance rate across the
50 replicates decreases with larger reference panel sizes,
from 0.008 to 0.0006 for the most diverse panel and from
0.009 to 0.0015 for the random reference panels. Especially
for a reference panel of size 100 individuals, the discordance
rate is considerably higher than for larger panel sizes. Across
all reference panel sizes, imputations with the most diverse
reference panels consistently provide lower discordance
rates than do imputations with the randomly selected
reference panels (Figure 4B).

Third, we examine how the number of markers geno-
typed initially in the study sample affects the performance of
the most diverse reference panel by varying the density of
markers in the study sample, considering 200, 300, 400,
500, 600, and 1000 markers per 1-Mb region. For both types
of reference panels, the mean discordance rate across the 50
replicates decreases with a higher density of markers in the
study samples, from 0.0055 to 0.0015 for the most diverse
panel and from 0.0072 to 0.0023 for the random reference
panels. Across all marker densities in the study sample, the
most diverse reference panels consistently provide lower
discordance rates than the randomly selected reference
panels (Figure 4C). We also observe that the improvement
in discordance rates for the most diverse reference panel
over the randomly selected panels slightly decreases with
more markers genotyped in the study sample.

Allele frequency bias and genotyping error

As the most diverse panel incorporates more variable sites
than a randomly selected panel, it is plausible that the allele
frequencies in the data sets imputed using the most diverse
panel might systematically differ from allele frequencies in
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Figure 4 Box plots of discordance rates between imputed genotypes and
simulated genotypes for imputations with randomly chosen reference panels
and most diverse reference panels with varying simulation settings. (A) Imputation
length. (B) Reference panel size. (C) Number of genotyped markers per megabase
in the study sample. For each data set, we examine the mean of 50 random
reference panels and the most diverse reference panel. The mean discordance rate
across the 50 replicate simulated data sets for each comparison group is indicated
by a diamond, and the median discordance rate is indicated by a middle line.

the simulated data sets or from those in data sets imputed
using the randomly selected panels. To confirm that there is
no such allele frequency bias, we compute allele frequency
estimates in data sets imputed by the most diverse panels
and data sets imputed by the random panels and compare
them to the true allele frequencies in the simulated data
sets.

We first estimate the bias for each type of reference panel
by calculating the difference between the estimated and the
true allele frequency for each locus and then averaging this
difference across all loci in a MAF bin. As shown in Table 1,
both imputation with a random panel and imputation with
the diverse panel generate a subtle underestimate of allele
frequency. The mean biases across loci from data sets im-
puted using the most diverse panel are smaller than the
mean biases from data sets imputed with random panels
for every MAF bin except the bin with 0.1 < MAF = 0.5.
Second, we calculate the mean squared error (MSE) of the
estimated MAF for each locus and each reference panel and
then calculate the average MSE in each MAF bin. The MSEs
in data sets imputed with the most diverse panels are
smaller than the MSEs in data sets imputed with the ran-
domly selected panels across all loci and in every MAF bin
except for the bin with 0.05 < MAF = 0.1. Based on these
results, we show that the most diverse panel provides less
bias and more confident estimates of allele frequencies than
a randomly selected panel, especially for less common
variants.

To evaluate the robustness of the most diverse reference
algorithm to the presence of genotyping errors, we intro-
duce genotype error uniformly at random to each of the 50
simulated genotype data sets and generate the most diverse
subset based on the modified genotypes. We evaluate the
selected subset by comparing a measure of its true diversity
to that of the corresponding diversity of the subset gener-
ated without genotyping error.

For each of the 50 simulated data sets, we introduce
genotyping error uniformly at random, using rates of 0.1%,
0.5%, and 1% for each site in the study samples, and we
generate one new data set at each of the error rates. We then
select a new most diverse subset of size 200 haplotypes for
each of the data sets with genotyping error. After that, we
compute the subtree length of the new diverse subset on the
tree constructed with imperfect genotyping (imperfect sub-
tree) and compare it to the subtree length of the original
diverse set generated without genotyping error (optimal
subtree). Our results show that with a genotyping error rate
of 0.10%, the length of the imperfect subtree is nearly
identical to the length of the optimal subtree (ranging
between 99.65% and 100% of the optimal subtree length,
with a mean of 99.99%). For a genotyping error rate of
0.50%, the length of the imperfect subtree ranges between
92.14% and 99.3% of the optimal subtree length, with
a mean of 96.65%. For a genotyping error rate of 1%, the
length of the imperfect subtree ranges from 90.11% to
98.29% of the optimal subtree length, with a mean of
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Table 1 Mean bias and mean squared errors (MSEs) of the imputed genotypes for a total n = 12,957 markers from the 50 data sets

Variant groups

Reference types MAF (0, 0.01] MAF (0.01, 0.05] MAF (0.05, 0.1] MAF (0.1,0.5] Overall
n 3,946 3,251 1,625 4,135 12,957
Most diverse
Mean bias 6.64 X 1074 8.85 X 1074 1.04 X 104 3.62 X 1074 553 X 1074
MSE 3.33 X 107> 5.31 X 107> 3.36 X 10> 3.79 X 1075 3.98 X 107>
Random
Mean bias 1.41 x 1073 1.22 X 1073 9.42 X 1074 8.15 X 107> 8.81 X 1074
MSE 3.56 X 107> 9.50 X 107> 1.12 X 107> 9.84 X 107> 8.02 X 107>

The mean bias is calculated by 7 | (MAFg, — MAFin,)/n and MSE by S (MAFg, — I\/IAF‘mp)Z/n. Shown here are the mean bias and the MSEs for different MAF bins as

well as for all the imputed markers.

94.67%. The reduction of subtree length caused by genotyp-
ing error is small when comparing to the subtree length
reduction from a diverse subset to that from a random
subset; for 50 simulated data sets, the length of a random
subtree ranges from 56.80% to 75.37% of the optimal sub-
tree, with a mean of 67.02%. Considering that study samples
from genotyping arrays usually have a very low genotyping
error (e.g., <0.1%) (Illumina 2010), our simulation results
show that while the selection of the most diverse subset is
affected by genotyping error, even with substantial genotyp-
ing error, the selected panel is still substantially more
diverse than a random reference panel. This result is remi-
niscent of the result of Atteson (1999), who proved that the
consistency of neighbor joining is robust to a certain degree
of noise in the distance matrix, in that the method can still
construct a correct tree when distances obtained on the basis
of that tree are slightly perturbed.

Imputation accuracy on data from the 1000
Genomes Project

We apply our method to real sequence data of 381 phased
individuals with EUR ancestry from the 1000 Genomes
Project. Considering eight 100-kb regions across chromo-
some 20, we impute 3215 sites after removing singletons.
Sites imputed with the most diverse reference panels have
a mean #* of 0.749 across sites. Sites imputed with the 1000
randomly selected reference panels have a mean 7 of 0.741.
Slightly more sites pass the imputation quality threshold of
# = 0.3 for the most diverse reference panels (85.75%)
than for the randomly selected reference panels (84.23%).
When applying a higher imputation threshold of #* = 0.8,
a similar percentage of sites pass the threshold for the most
diverse reference panels (62.74%) and the randomly se-
lected reference panels (62.89%).

Considering all imputed sites for the eight 100-kb
regions, the most diverse reference panels result in a lower
mean discordance rate across the eight regions (0.0067)
than that of the randomly selected reference panels
(0.0077). When comparing imputed sites that are hetero-
zygotes in real sequenced data sets, sites imputed with the
most diverse reference panels have a lower mean discor-
dance rate across the eight regions (0.0228) than sites
imputed with the randomly selected reference panels
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(0.0262). The lower discordance rates from the most diverse
reference panels are observed across all frequency bins for
heterozygote sites. For sites with 0 < MAF < 0.1, the mean
discordance rate across the eight regions is 0.074 using the
most diverse reference panels vs. 0.0895 using random ref-
erence panels; for sites with 0.1 = MAF < 0.2, the mean
discordance rate across the eight regions is 0.0177 vs.
0.0193, and for sites with 0.2 = MAF = 0.5, the mean
discordance rate across the eight regions is 0.0080 vs.
0.0099 (Figure 5). However, we also note that the perfor-
mance of the most diverse reference panel varies widely
across the eight regions. When ranking the discordance rate
of the imputation by the most diverse reference panel with
the discordance rates of the 1000 imputations by randomly
selected reference panels from the lowest to the highest
value for each of the eight regions, the most diverse refer-
ence panel has a mean rank of 116.1 across the eight
regions, ranging from 3 to 496 of 1001 panels ranked. For
heterozygote sites, the most diverse reference panel has
a mean rank of 156.7, ranging from 1 to 508; for hetero-
zygotes in different MAF bins, the most diverse reference
panel has an average rank of 242.7 for sites with 0 <
MAF < 0.1, an average rank of 311.0 for sites with 0.1 =
MAF < 0.2, and an average rank of 129.4 for sites with
0.2 = MAF = 0.5 among 1001 panels ranked.

For the whole-chromosome 20 data, the sequence data
set contains 259,618 sites after removing singletons. We
select 18,000 sites with MAF = 0.1 as “genotyped” markers
and mask the genotypes for the remaining 241,618 sites to
create a study sample. Based on the genotyped markers, we
select the most diverse reference panel to impute the geno-
types of the masked sites. For comparison, we sample 50
reference panels at random. We first compare the number
of masked sites that are polymorphic in the selected refer-
ence panels. In the most diverse reference panel, 211,480
masked sites are polymorphic (87.53%), compared to an
average of 210,137 across the 50 random reference panels
(86.97%). After imputation, we observe that the imputation
with the most diverse reference panel has 201,831 sites with
72 =0.3 (83.53%), whereas 200,609 sites have mean 2=
0.3 with a randomly selected reference panel (83.03%). For
the higher imputation quality threshold of #* = 0.8, 142,996
sites pass the threshold for the imputation with the most



0.127 Reference panel types
£3 Random
0.10- B Most diverse
*
@
T 008 | —
@
o
5 0.06-
S
?
2 004
* |
=
0.00-
Al Heterozygotes MAF (0,0.1) MAF [0.1,0.2) MAF [0.2,0.5)

Figure 5 Box plots of discordance rates between imputed genotypes and
simulated genotypes for imputations with randomly chosen reference
panels and most diverse reference panels for eight 100-kb regions on
chromosome 20. We analyzed 762 haplotypes of European ancestry from
the 1000 Genomes Project. The horizontal axis represents the comparison
of all sites (All), all heterozygote sites (Heterozygotes), and heterozygotes
in different MAF groups in the simulated sequence data. The mean dis-
cordance rate across the eight regions for each comparison group is in-
dicated by a diamond, and the median discordance rate across the eight
regions for each comparison group is indicated by a middle line.

diverse reference panel (59.18%), whereas averaging
142,281 sites across imputations with the 50 randomly se-
lected reference panels passes the threshold (58.89%).
Moreover, sites are imputed with slightly higher accuracy
with the most diverse reference panel than with random
reference panels (Table 2). The discordance rate of the most
diverse panel is lower than that of all except 2 of the 50
random panels (rank 3). To evaluate the imputation accu-
racy in different frequency bins, we again consider discor-
dance rates of heterozygote genotypes. When ranking the
discordance rate of the imputation by the most diverse ref-
erence panel with the discordance rates of the 50 imputa-
tions by randomly selected reference panels from the lowest
to the highest value, we observe that the most diverse ref-
erence panel has a lower discordance rate than all 50 ran-
dom panels (rank 1). Examining separate frequency bins,
the most diverse reference panel has rank 4 for sites with
0 < MAF < 0.1, rank 3 for sites with 0.1 = MAF < 0.2, and
rank 14 for sites with 0.2 = MAF = 0.5. Averaging across
sites, the numerical improvement in imputation accuracy by
using the most diverse panel is modest, reducing imputation
errors by 1% across all sites and by 2.3% at less common
variants with 0 < MAF < 0.1.

Discussion

The cost reduction in modern sequencing technology enables
investigators to generate a reference panel for genotype
imputation by sequencing a subset of the study sample. We
have proposed a selection strategy for such an internal
reference panel by adapting an algorithm based on phyloge-
netic diversity. In simulated sequence data, our method
consistently outperforms randomly selected reference panels,

in that it provides higher imputation accuracy and recovers
more polymorphic sites from the study sample. This im-
proved performance holds across different imputation
lengths, different reference panel sizes, and different marker
densities in the study sample. Upon analyzing real sequence
data with European ancestry from the 1000 Genomes
Project, the most diverse reference panel provides higher
imputation accuracy than do randomly selected reference
panels. We observe this improved performance when
imputing eight 100-kb regions on chromosome 20 and when
imputing the entire chromosome 20, indicating that our
method can be used to select reference individuals for
imputing smaller target regions as well as for imputing the
entire genomes. Our method may be particularly advanta-
geous for imputing less common variants, as we found in our
simulations that the most diverse reference panels incorpo-
rate more polymorphic sites than do randomly selected
reference panels. Moreover, the accuracy gain from using
the most diverse reference panel instead of randomly
selected reference panels is greater for less common variants
(e.g., 0 < MAF < 0.2) than for more common variants (e.g.,
MAF = 0.2) (Table 2).

Comparable methods have been suggested by Pasaniuc
et al. (2010) and Kang and Marjoram (2012). Pasaniuc et al.
(2010) select an imputation template from an external data
set based on similarity between haplotypes in the external
data set and each individual haplotype in the study sample.
Our method differs from that of Pasaniuc et al. (2010) in
two major aspects. First, we select template individuals
based on maximal differences among the template individ-
uals, whereas Pasaniuc et al. (2010) select template individ-
uals based on similarity to the imputation target. Second, as
the method of Pasaniuc et al. (2010) is designed to be ap-
plied to haplotypes that have already been sequenced, it
does not assume that the same reference panel is used for
the study sample across the entire genome. Instead Pasaniuc
et al. (2010) identify a different reference panel for each
short window (e.g., 15 kb) of the target region for each
study individual. Kang and Marjoram (2012) recently pro-
posed a similar tree-based sample-selection strategy for
next-generation sequencing motivated from the standpoint
of coalescent theory instead of phylogenetic diversity. Simi-
larly to our study, they aim to identify the subset with the
maximal branch length. Although they use a different tree-
building algorithm, they examined a similar greedy method,
motivated by coalescent theory. In simulations that exam-
ined different marker densities, target imputation region
lengths, and reference panel sizes, they found that their
algorithm performed well, and we similarly find that our
related method performs well under these scenarios. In ad-
dition, the work of Pardi and Goldman (2005) and Steel
(2005) provides further theoretical justification for the phy-
logenetic-based method. Taken together, our study and that
of Kang and Marjoram (2012) demonstrate the value of
sensible use of genealogical relationships among samples
to improve experimental design for sequencing studies.
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Table 2 Discordance rates for genotype imputations with different reference panels, using chromosome 20 data with European ancestry

in the 1000 Genomes Project

Variant groups

Reference types All Heterozygotes MAF (0, 0.1) MAF [0.1, 0.2) MAF [0.2, 0.5]
Most diverse 1.02 3.53 10.31 2.77 1.92
Random
Mean 1.03 3.57 10.45 2.82 1.93
Standard deviation 0.004 0.019 0.076 0.019 0.014
Rank of the most diverse 3 1 4 3 14

Discordance rates are shown as percentages. We split 381 phased diploid individuals into a target sample of 301 target individuals and a reference panel of 160 haplotypes.
Shown here are results from one imputation with the most diverse reference panel and the mean and standard deviation of the discordance rates from 50 imputations with
randomly selected reference panels. We ranked discordance rates of the most diverse panel together with those of 50 random reference panels from the lowest to the

highest value and display the rank of the most diverse panel.

We expect that the most diverse reference panel algo-
rithm can work effectively either on a limited region of the
genome or on whole chromosomes, provided the phyloge-
netic tree based on existing data reasonably captures the
ancestral relatedness of the haplotypes in the study sample.
This is possible only if the ancestral relatedness can be
described well as a tree, a condition that depends on the
population-genetic history of the sample and the size of the
region of interest. When focusing on a single genomic
region, relevant parts of its ancestral process can be
approximated as a tree due to limited recombination events.
This single tree can be estimated by a subset of genotyped
markers, and thus our method can provide useful informa-
tion for reference panel selection. On the other hand, many
uncorrelated trees can be formed to represent the ancestral
processes of a large region such as the entire genome.
Hence, an approximation with a single tree might not
capture many features of the data. In such a scenario, it is
less likely that our method will produce a better reference
panel than a random sample.

In a structured population, the underlying population
structure generates a correlation of ancestries across the
entire genome. The resulting clades can be approximated by
the tree-building algorithm, and this tree can help in
selecting a more diverse reference panel. It is encouraging
that in a sample of five European subpopulations, the
population structure was sufficient for the most diverse
reference panel selected based on the entire chromosome 20
to outperform the randomly selected reference panels.
Hence, relatively subtle population structure, such as that
found in samples from geographically proximate European
countries, is sufficient to create similarities in the underlying
ancestral processes that can be captured by the tree-building
algorithm and can result in improved reference panel
selection. If subpopulations contribute different sample
sizes, we expect that our algorithm will usually ensure that
at least one haplotype from every subpopulation is included
in the reference panel. As the algorithm collects the more
diverse haplotypes, it may oversample subpopulations with
a small contribution to the overall sample. This will ensure
that for each subpopulation, enough haplotypes are in the
template for reasonably precise imputation.
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Our method is based on a locally estimated phylogenetic
tree. The topology of the true underlying genealogy changes
across the genome as a consequence of recombination
events, and therefore, over long regions, the estimated tree
obscures this underlying variability. Because the perfor-
mance of our method is based on how well the local
phylogenetic tree approximates the ancestral relatedness of
the study individuals, we expect the gain in imputation
accuracy using our method will eventually decrease with
increasing length of the imputed region. As expected, the
average improvement in imputation accuracy when imput-
ing 100-kb regions is considerably higher than the average
improvement across the entire chromosome, reflecting that
the ancestry of a 100-kb region is more tree-like than the
ancestry of an entire chromosome.

The method of reference panel selection described here
can be adapted to address specific study design goals. Our
method can be applied to incorporate other criteria in
reference panel selection. For example, we have not specif-
ically incorporated phenotype information when selecting
reference haplotypes, so the selected reference panel is not
guaranteed to include the individuals with traits of interest.
To sequence certain individuals because of their phenotypes
or other criteria unrelated to their phylogenetic placement,
we can apply the selection algorithm conditional on including
these individuals in the reference panel. The greedy algorithm
still guarantees that the subsequent extension has optimal
phylogenetic diversity, as proved by Pardi and Goldman
(2005). Similarly, our method can be easily extended to form
a reference panel by incorporating sequences partly from the
study sample and partly from an external database such as
the HapMap Project or the 1000 Genomes Project. For exam-
ple, we can treat sequences from the HapMap Project as an
initial set and apply the greedy algorithm to the study sample
as an extension in a similar manner as in analyses treating
other inclusion criteria.

We note that our method can be applied to select
reference panels in species other than humans. There are
many other species for which genomic mapping tools are
under development (e.g., Atwell et al. 2010; Hickey et al.
2012; Badke et al. 2013), and indeed, the idea of locally
estimating phylogenetic trees has been considered by Wang



et al. (2012), who proposed to use a local phylogenetic tree
to assess the confidence of imputed genotypes in inbred
mice. The confidence in imputation quality is high when
a study strain shares one or more genome intervals with
the reference sequences, whereas the confidence in imputa-
tion accuracy is low when the strain does not share genome
intervals with the reference sequences. Wang et al. (2012)
suggested that strains with low confidence in imputation
accuracy are the ones to sequence to achieve the maximal
improvement in imputation accuracy if investigators plan to
sequence a subset of the study sample. Our approach can
supplement the strategy used by Wang et al. (2012) if only
a subset of the low-confidence strains can be sequenced. In
that scenario, our algorithm can condition on the strains
that are already sequenced or strains imputed with high
imputation accuracy, allowing researchers to identify the
subset of low-confidence strains that can best be used to
impute the full data set.

In summary, we have demonstrated that an innovative
method of choosing an internal reference panel—the most
diverse reference panel—can be a cost-effective approach
for planning sequencing studies with existing genotype ar-
ray data. The method can readily incorporate a variety of
selection criteria, while still guaranteeing the maximal phy-
logenetic diversity for subsequent selections.

A program to select the most diverse reference panel using
the greedy algorithm is available in C++ upon request.
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