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ABSTRACT The essential outer membrane b-barrel protein BamA forms a complex with four lipoprotein partners BamBCDE that
assembles b-barrel proteins into the outer membrane of Escherichia coli. Detailed genetic studies have shown that BamA cycles
through multiple conformations during substrate assembly, suggesting that a complex network of residues may be involved in
coordinating conformational changes and lipoprotein partner function. While genetic analysis of BamA has been informative, it has
also been slow in the absence of a straightforward selection for mutants. Here we take a bioinformatic approach to identify candidate
residues for mutagenesis using direct coupling analysis. Starting with the BamA paralog FhaC, we show that direct coupling analysis
works well for large b-barrel proteins, identifying pairs of residues in close proximity in tertiary structure with a true positive rate of 0.64
over the top 50 predictions. To reduce the effects of noise, we designed and incorporated a novel structured prior into the empirical
correlation matrix, dramatically increasing the FhaC true positive rate from 0.64 to 0.88 over the top 50 predictions. Our direct coupling
analysis of BamA implicates residues R661 and D740 in a functional interaction. We find that the substitutions R661G and D740G each
confer OM permeability defects and destabilize the BamA b-barrel. We also identify synthetic phenotypes and cross-suppressors that
suggest R661 and D740 function in a similar process and may interact directly. We expect that the direct coupling analysis approach to
informed mutagenesis will be particularly useful in systems lacking adequate selections and for dynamic proteins with multiple
conformations.

AS a Gram-negative bacterium, Escherichia coli is envel-
oped by two membranes, a cytoplasmic or inner mem-

brane comprising a phospholipid bilayer and an outer
membrane (OM) comprising an asymmetric bilayer with
a phospholipid inner leaflet and a lipopolysaccharide outer
leaflet (Kamio and Nikaido 1976; Silhavy et al. 2010; Ricci
and Silhavy 2012). An aqueous compartment called the
periplasm separates the two membranes. Diffusion from
the extracellular milieu into the periplasm is facilitated by
b-barrel proteins embedded in the OM (OMPs) (Nikaido
2003). OMPs have additional structural and enzymatic func-

tions (Tamm et al. 2004); however, all essential OMPs func-
tion in OM biogenesis.

The folding and assembly of nascent OMPs is catalyzed
by the b-barrel assembly machine (Bam) complex at the
OM. The Bam complex is composed of BamA, itself an
OMP, and four associated lipoproteins, BamBCDE (Wu
et al. 2005; Sklar et al. 2007a). BamA is thought to be the
central complex member. It contains five periplasmic poly-
peptide transport associated (POTRA) domains, which scaf-
fold the lipoproteins and likely interact with substrate (Kim
et al. 2007). Its b-barrel domain contains an extended ex-
tracellular loop, loop 6 (L6), which can adopt protease-
sensitive and -resistant conformations, indicating that BamA
undergoes conformational changes during OMP assembly
(Rigel et al. 2012, 2013). L6 also contains an RGF/Y motif
conserved among Omp85/TpsB family members, including
the BamA paralog FhaC (Moslavac et al. 2005; Jacob-
Dubuisson et al. 2009). Mutations in this conserved motif
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have been shown to affect function in both BamA and FhaC
(Delattre et al. 2010; Leonard-Rivera and Misra 2012). But
despite considerable work, little is known at a mechanistic
level about how the Bam complex functions. It is unclear
how nascent OMPs are recognized by the complex, how
folding and insertion are coordinated and catalyzed by the
complex, or what roles different complex members play in
these processes.

Genetics offers a natural approach to answer these
questions; however, informative bam mutations have been
difficult to find. Since overall complex membership and
function have already been determined, genetics turns to
a search for mutations that will provide insight into the
details of function. This means identifying point mutations
or small deletions that have subtle effects on complex func-
tion. Subtlety is particularly important in the case of bamAD,
since these genes are essential (Gerdes et al. 2003; Onufryk
et al. 2005; Wu et al. 2005). But the search for functionally
informative mutations is hampered by the fact that a direct
selection for bam mutations does not exist.

To date, the genetic approach to uncovering Bam
complex function is based on random mutagenesis of
complex members followed by screens for membrane-
permeability defects, which manifest in the absence of
proper Bam function (Ruiz et al. 2005, 2006; Malinverni
et al. 2006; Sklar et al. 2007a; Vuong et al. 2008; Rigel
et al. 2012). This is an inefficient process. Screens for
OMP assembly defects are mostly low throughput. More-
over, Bam complex members, particularly BamA, are robust
to point mutation. This is not surprising given that b-barrel
OMPs are extremely stable: the first temperature-sensitive
(Ts) bamA allele reported contained nine amino acid sub-
stitutions (Doerrler and Raetz 2005). In some cases bam
mutations have been found by selecting for suppressors of
generalized membrane-permeability defects, but this too is
inefficient, as there are myriad ways to reduce membrane
permeability without affecting Bam function.

As the identification of informative mutations has been
the rate-limiting step in our analysis of the Bam complex, we
have sought means to target promising mutations using
bioinformatics, specifically by using covariance analysis.
Because protein sequence is constrained by selection,
a protein’s evolutionary record contains information about
the functional importance of its residues. This is the basis of
conservation analysis, which identifies positions where se-
lection favors one or a small number of specific residues.
Along similar lines, covariance analysis uses the evolution-
ary record to identify pairs of positions where selection
favors coordinated changes to residue identity. Covariance
implies a functional interaction between positions—for func-
tional reasons, the positions coevolve. Generally these func-
tional reasons can be divided into three classes: (i) direct
physical interactions such as a salt bridge or a hydrogen
bond, (ii) indirect physical interactions in which positions
participate in a network of energetically connected residues
that promote conformational changes as in the case of allo-

stery, and (iii) mechanistic interactions, e.g., in the active
sites of proteins (Lockless 1999; Smock et al. 2010; Reynolds
et al. 2011). It follows that covariance analysis could be
a useful way to identify candidate mutations: it can identify
a class of positions that are functionally important but not
perfectly conserved, and, by reporting pairs of interacting
positions, it provides insight into related residues.

Recent advances in the number of available sequences
and the quality of algorithms have made covariance analysis
widely feasible (Halabi et al. 2009; Cocco et al. 2012; Marks
et al. 2012). To identify mutational targets in the Bam com-
plex we employed the method of mean-field, direct coupling
analysis (mfDCA or DCA) (Marks et al. 2011; Morcos et al.
2011; Hopf et al. 2012). The power of DCA lies in its ability
to overcome the statistical noise created by chains of inter-
acting residues that lead to indirect couplings between dis-
tant residues. For example, if positions i and j co-vary and
positions j and k co-vary, then positions i and k will likely co-
vary even if there is no functional basis for this covariance
(Weigt et al. 2009; Burger and Van Nimwegen 2010; Marks
et al. 2011; Morcos et al. 2011; Hopf et al. 2012). These
transitive correlations can extend beyond three positions,
creating large, nonspecific networks of correlated residues
(Lapedes et al. 1999). DCA uses a global statistical model to
exclude transitive correlations by reducing the observed cor-
relations to a small subset of causative couplings that best
explain the evolutionary sequence data. Whereas pre-DCA
algorithms yield a true positive (TP) rate of 20–30% for the
top 20 predicted pairs (as determined by proximity in
known structures), DCA yields TP rates of 60–80% or better
(Marks et al. 2011). DCA has been used successfully as
a means of predicting protein structure, and it was recently
used to identify interdomain contacts in the Bacillus subtilis
sensor histidine kinase KinA for targeted mutagenesis (Dago
et al. 2012; Szurmant and Hoch 2013).

Here we apply covariance analysis based on the DCA
algorithm to predict functionally informative mutations in
the central Bam complex member BamA. We identify BamA
R661 and D740 as candidates for site directed mutagenesis
and show by genetic means that these positions are
functionally related. We also seek to optimize the DCA
method and find that our modifications greatly increase TP
rates for the BamA paralog FhaC.

Methods

MSA construction

BamA and FhaC multiple sequence alignments (MSAs) were
generated using HHblits and the UniProt20 database
(Remmert et al. 2012). E. coli K-12 BamA and Bordetella
pertussis Tohama I FhaC sequences were used to query the
database. Two search iterations were performed (-n 2), and
the maximum number of sequences allowed to pass the
second prefilter was set high enough to prevent sequence
loss (-maxfilt 40000). No sequences were filtered out while
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generating MSA output (-all). In accordance with Hopf et al.
(2012), multiple MSAs were generated for each protein us-
ing different E-value cutoffs, and an MSA for each protein
was chosen to optimize the tradeoff between sequence num-
ber and sequence quality. In each case the MSA with the
largest number of sequences was chosen such that at least
70% of the positions to be analyzed contained no more than
30% gaps. Because sequence fragments exist in the database
and partial sequences were also subject to covariance anal-
ysis, any sequence fragment that did not contain a residue
within our region of interest was removed from the MSA.
MSA columns corresponding to gapped positions in the
query sequence were also removed along with any column
containing .40% gaps. The result was an MSA comprising
M sequences of length L.

Covariance analysis

Covariance analysis was performed using DCA within
a mean-field approximation. The DCA approach is well
reported (Weigt et al. 2009; Marks et al. 2011; Morcos et al.
2011; Cocco et al. 2012; Hopf et al. 2012) and a summary of
the DCA method employed here can be found in Supporting
Information, File S1. Briefly, we note that DCA involves the
construction of a connected correlation matrix from
reweighted frequency counts determined from the MSA
according to the relationships

CijðA;BÞi6¼j ¼ fijðA;BÞ2 fiðAÞ fjðBÞ (1)

CijðA;BÞi¼j;A¼B ¼ fiðAÞð12 fiðAÞÞ; (2)

where fi(A) is the frequency of amino acid A in MSA column
i, fj(B) is the frequency of amino acid B in MSA column j, and
fij(A,B) is the frequency of amino acid pair (A, B) in columns
i and j. Equation 1 is a local measure of intercolumn se-
quence correlation that measures whether amino acid pair
(A, B) is seen more frequently than expected by chance
given the single amino acid frequencies in columns i and j.
The major diagonal of the empirical correlation matrix cor-
responds to the case where i= j, and a single MSA column is
being compared to itself (Equation 2); it provides a measure
of sequence variance or amino acid conservation. The DCA
global statistical model derives from inversion of the empir-
ical correlation matrix C during which all matrix entries in-
teract. Note that direct information DIij scores were filtered
to remove pairs of positions separated by less than five
amino acids in primary sequence. Also, in our analysis of
FhaC, pairs comprising residues that are not resolved in
crystal structure 2QDZ were not considered (Clantin et al.
2007).

Matrix shrinkage

To reduce the effects of noise caused by the limited number
of available sequences, we used matrix shrinkage to impose
structure on the empirical correlation matrix C. The resulting

composite matrix C* is a weighted sum of model M and
sample C matrices,

C* ¼ aMþ ð12aÞC; (3)

where the shrinkage intensity parameter a controls the rel-
ative weighting of model and sample matrices, and M =
diag(C) as described in Results. After shrinkage the compos-
ite matrix C* is inverted to determine the coupling energies
eij(A, B).

Sequence entropy

The sequence conservation at a given position i is quantified
using the informational entropy or Shannon entropy as in
Fodor and Aldrich (2004):

Si ¼
Xq
A¼1

fiðAÞ ln ðfiðAÞÞ: (4)

For a q = 21 state system, Si can range from 0.00 to 3.04
nats; however, in practice pseudocounts limit the value of Si to
between 2.12 and 3.04 nats. Pairs were classified by
their minimum positional entropy, Sminði;jÞ [minfSi; Sjg, since
this value seems to limit DIij score, the measure of pair covari-
ance returned by DCA. Pairs containing even one conserved
position tend to have low DIij scores, while high-scoring pairs
generally contain two nonconserved positions (Figure S1).

DIZij scoring

DIij scores were grouped into 20 bins according to minimum
positional entropy Smin(i,j). The average and standard deviation
were calculated for each bin containing DIij scores and used to
calculate DIZij scores according to the relationship

DIZij ¼
DIij2DIBin

SDIBin
; (5)

where DIBin is the average DIij score for a given bin, and SDIBin
is the standard deviation for that bin. DIZij scores are then
compared across all bins to generate a ranked list of all pairs
ordered by DIZij score.

Mutual information (MI)

MIij scores were calculated as

MIij ¼
Xq
A;B¼1

fijðA;BÞ  ln
 

fijðA;BÞ
fiðAÞ fjðBÞ

!
; (6)

where single and pair amino acid frequencies are calculated
with sequence down-weighting but do not incorporate pseu-
docounts (Atchley et al. 2000). Note that informational entropy
Smin(i,j) calculations are still performed using pseudocount-
based frequencies in order to maintain a similar entropy range
to that obtained for DCA predictions.

Computation and graphics

All computations were performed using Python 2.7.3
(http://www.python.org) supplemented with various
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modules including NumPy 1.6.2 and SciPy 0.11.0 (Jones
et al. 2001). Figure 1, Figure 5, Figure S1, Figure S3, and
Figure S4 were produced using the matplotlib 1.0.1 package
(Hunter 2007). Figure 2 was generated using the PyMOL
Molecular Graphics System, v. 1.5.0.4 (Schrödinger, LLC).

Bacterial Strains and Growth Conditions

All strains used in this study are listed in Table S1 and were
constructed using standard microbiological techniques.
Strains were grown in LB and supplemented with 25 mg/ml
kanamycin when appropriate. All bacterial cultures were
grown under aerobic conditions at 37� unless otherwise
noted. For efficiency of plating (EOP) assays, serial dilutions
of stationary-phase cultures of indicated strains were spot-
ted onto LB agar containing 50 mg/ml erythromycin,
625 mg/ml bacitracin, 50 mg/ml novobiocin, 10 mg/ml ri-
fampin, or 0.5% SDS + 1.0 mM EDTA.

Site-directed mutagenesis

bamA missense mutants were generated in pZS21::bamA
(pDPR1) using the Stratagene QuikChange site-directed
mutagenesis kit per the manufacturer’s instructions. Primers

used to introduce the mutations are listed in Table S2. All
mutations were confirmed by sequencing.

Western blot analysis

Cultures were grown overnight and then back-diluted 1:500
into fresh LB containing 25 mg/ml kanamycin. One-milliliter
samples were then collected from cultures grown under
each condition at OD600 = �1. Harvested samples from both
conditions were normalized by optical density, pelleted
(5000 3 g, 10 min), and resuspended in SDS–PAGE sample
buffer. Samples were then boiled for 10 min and subjected
to electrophoresis through 10% SDS–PAGE. Previously de-
scribed rabbit polyclonal antibodies against BamA (1:30,000
dilution) (Wu et al. 2005), BamC (1:30,000 dilution) (Sklar
et al. 2007b), and LamB/OmpA (1:30,000 dilution) (Walsh
et al. 2003) and donkey ECL horseradish-peroxidase-
conjugated anti-rabbit IgG (GE Life Sciences) (1:8,000 dilution)
were used for immunoblots. Protein bands were visualized us-
ing the ECL antibody detection kit (GE Healthcare) and Hyblot
CL film (Denville Scientific).

Electrophoretic mobility assay

One-milliliter samples of the indicated strains were obtained
at OD600 = �1. Cells were lysed gently to prevent OMP

Figure 1 Covariance analysis of FhaC
and BamA. Predicted pairs with a mini-
mum interatomic distance #8 Å in
(A–C) FhaC structure 2QDZ or (D) BamA
structure 3OG5 are considered true pos-
itives. Only pairs separated by at least
five positions in primary sequence are
considered. (A and C) Direct Coupling
Analysis (DCA) was applied to FhaC
positions 33–584 (see Methods). (A)
Comparison of DCA and mutual infor-
mation (MI) methods. True positive rates
are plotted over the top 250 pairs pre-
dicted by DCA and MI. (B) Dependence
of MIij scores on minimum pair entropy
Smin(i,j). MI was applied to FhaC positions
33–584. Dashed black line is the cutoff
for pairs with the 50 highest MIij scores.
(C and D) Dependence of DIij scores
on minimum pair entropy Smin(i,j) for (C)
FhaC and (D) BamA. Dashed black line is
the cutoff for pairs with the 50 highest
DIij scores. (D) DCA was applied to
BamA positions 347–810. Since BamA
structure 3OG5 comprises only positions
262–421, most pairs are unresolved.
There are no false positives in the top
50 predictions. Arrow indicates pair
R661–D740.
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denaturation using a previously described technique (Misra
et al. 1991). Briefly, samples were resuspended in a 20 mM
Tris–HCl (pH 7.5) 1 mM EDTA solution containing 5 mg/ml
lysozyme and subjected to repeated freeze-thawing. DNase I
was added to a final concentration of 0.1 mg/ml and pro-
teins were solubilized by addition of 23 SDS solution (4%
SDS, 40 mM Tris–HCl (ph 7.5), 20 mM EDTA). SDS–PAGE
sample buffer was then added and samples were incubated
at either 100� or 24� for 10 min prior to SDS–PAGE, which
was conducted at 4� to prevent denaturation during electro-
phoresis. BamA was detected immunologically as described
above.

Genetic selection

Spontaneous SDS-resistant suppressors of bamAD740G were
isolated by plating overnight cultures of a strain carrying
this allele at 37� on LB agar containing 0.5% SDS and 1.0
mM EDTA. Intragenic suppressor (plasmid-linked) muta-
tions were mapped by purification and retransformation of
the pBamAD740G plasmid into JCM320, and the causative
mutations were identified by DNA sequencing.

Results

DCA of FhaC identifies pairs of interacting residues

Before analyzing covariance within BamA, we tested the
ability of DCA to identify pairs of interacting positions in
FhaC, a BamA paralog with a known crystal structure. Cross-
referencing high-scoring pairs with their proximity in known
structures offers a simple test of DCA accuracy. Throughout
our analysis, we consider all high-scoring residue pairs with
a minimum interatomic distance #8 Å in the corresponding
crystal structure to be true positives (TPs). The 8-Å cutoff
was chosen in accordance with Morcos et al. (2011).

A MSA of 6410 FhaC sequences was generated using an
FhaC query from B. pertussis. DCA was applied to FhaC res-
idues 32–584, which excludes the signal sequence. The re-
sult is a list of all position pairs (i, j), where i . j, ordered by
direct information score DIij. DIij score is a scalar measure of
the extent to which sequence information at one position
can predict sequence information at another, and it is used
as a proxy for functional interaction in DCA. Pairs of posi-
tions separated by less than five amino acids are filtered out
of the ranked DIij score list in order to avoid the trivial
finding that neighboring residues interact.

We found that FhaC is amenable to DCA. As expected,
DCA yields higher TP rates than earlier methods like MI,
which are based on local statistical models (Figure 1A). We
take the TP rate for the top 50 predictions (TP50) as a mea-
sure of algorithm performance, since 50 pairs of residues is
a reasonable set to test experimentally. DCA yields a TP50
rate of 0.64 compared to 0.28 for MI (Figure 1, A and B
compared to 1C). Even over 250 predictions the DCATP rate
is 0.46, meaning that roughly one in two predictions repre-
sent plausible physical interactions according to the FhaC
crystal structure. This is 14 times the TP rate expected for
randomly selected pairs.

DCA also has the advantage of identifying covariance
between conserved positions. Taking the lower of the two
sequence informational entropies for each pair Smin(i, j) as
a measure of pair conservation, we found that the top 50
DCA predictions have a wider distribution of conservation
scores than the top 50 MI predictions (compare Figure 1, B
and C). The lack of conserved pairs in the MI top 50 is not
surprising: it has been established that covariance algo-
rithms based on local statistical models act partly as conser-
vation filters, identifying covariance in a particular range of
the entropy spectrum, which varies with the algorithm
(Fodor and Aldrich 2004). The fact that DCA identifies co-
variance between conserved positions is particularly impor-
tant for genetics applications, since we expect functionally
important residues to be relatively well conserved.

DCA of BamA implicates R661 and D740 in
a functional interaction

Encouraged by the promising results obtained for FhaC, we
applied DCA to BamA. A BamA query sequence from E. coli
K–12 was used to construct an MSA comprising 3073 BamA

Figure 2 Structural model of BamA mutations. BamA mutation positions
(661 and 740; magenta) and suppressor positions (395, 423, 607, 631,
and 718; green) were mapped onto FhaC structure 2QDZ based on the
alignment of BamA and FhaC query sequences. Alignment of E. coli
BamA POTRA5 (residues 347–421) and B. pertussis FhaC POTRA2 (resi-
dues 165–238) was performed using the NCBI online alignment tool
COBALT (Figure S2) (Papadopoulos and Agarwala 2007). The BamA–
FhaC alignment in Jacob-Dubuisson et al. (2009) was used to model
b-barrel residues. Loop 6 (L6) is colored blue. Note that the loop is not
well resolved in the FhaC structure, so Clantin et al. (2007) modeled it as
a polyalanine chain. The outer membrane (OM), periplasm (P), and extra-
cellular milieu (E) are indicated.
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homologs. DCAwas applied to residues 347–810, correspond-
ing to the BamA POTRA5 and b-barrel domains. POTRA5 was
included as a positive control, as a crystal structure for this
domain is available. Of the top 50 BamA pairs, 8 fall entirely
within POTRA5, allowing their proximity to be determined.
All 8 pairs have minimum interatomic distances below the 8Å
cutoff, suggesting that BamA, like FhaC, is amenable to DCA
(Figure 1D, yellow points). Again, low-entropy pairs are well
represented among the top 50 predictions (Figure 1D).

The top ranked BamA pair, R661–D740, has a number of
interesting features. Alignment of BamA and FhaC suggests
that R661 is part of a conserved RGF/Y motif in extracellular
L6 of BamA, which is thought to undergo conformational
changes during OMP assembly and may fold into the lumen
of the b-barrel (See Discussion). As a charged b-barrel res-
idue, D740 is almost certainly facing the hydrophilic envi-
ronment of the b-barrel lumen, making a direct R661–D740
interaction plausible (Figure 2, magenta). This is exactly the
kind of long-distance, dynamic interaction that might pro-
vide insight into BamA function. Given its prediction rank,
conservation, and the structural logic described, we chose to
further characterize the R661–D740 pair by genetic analysis.

BamA R661 and D740 substitutions increase
OM permeability

To determine whether the covariance observed for R661
and D740 reflects a functional relationship, we introduced
glycine substitutions at each of these positions and de-
termined the effects of these mutations on the folding and
function of BamA. bamAR661G and bamAD740G mutations
were generated on a low-copy vector (pZS21) containing
the bamA ORF. Each resulting allele was introduced into

JCM320, a strain in which expression of an ectopic, chromo-
somal wild-type allele of bamA is induced by addition of arab-
inose. When arabinose is excluded from the growth medium,
only the plasmid-borne mutant allele of bamA is expressed.

Because Bam is involved directly in OM biogenesis, mu-
tations that compromise Bam function generally cause in-
creased sensitivity to a variety of antibiotics and small
molecules (Ruiz et al. 2005, 2006; Malinverni et al. 2006;
Sklar et al. 2007a; Vuong et al. 2008; Rigel et al. 2012).
To determine whether the bamAR661G and bamAD740G
mutations influence OM permeability, we assessed the
growth of JCM320 containing pBamAR661G, pBamAD740G,
or pBamAR661G+D740G on LB plates supplemented with var-
ious antimicrobial or detergent compounds in the absence of
arabinose. We found that strains expressing bamAR661G or
bamAD740G are comparable to strains expressing the wild-
type allele with respect to erythromycin and rifampin resis-
tance, but unlike the wild type they do not grow in the
presence of the anionic detergent SDS (Figure 3A).

Although neither individual mutation increases sensitivity
to most antibiotics in the panel described above, combining
the bamAR661G and bamAD740G mutations influences OM
permeability dramatically: a strain expressing the double mu-
tant (bamAR661G+D740G) is highly sensitive to all com-
pounds tested (Figure 3A). In addition, the double-mutant
strain exhibits mucoidy and forms unusually small colonies
at 42� (Figure 3B).

bamAR661G and bamAD740G mutations compromise
BamA stability

The notion that R661 and D740 are functionally linked is
thus far corroborated by the phenotypic similarity between

Figure 3 Phenotypic characteriza-
tion of BamA barrel mutants. (A)
Tenfold dilutions of stationary-
phase cultures of the indicated
mutants were spotted onto LB
with or without 50 mg/ml erythro-
mycin (Ery), 10 mg/ml rifampin
(Rif), or 0.5% SDS + 1.0 mM EDTA
and incubated at 37�. Column
headings represent log concentra-
tions relative to undiluted cultures.
(B) Close-up of colonies from Fig-
ure 3A. Colonies formed by the
indicated strains are shown follow-
ing overnight growth on LB at 37�.
The bamAR661G+D740G dou-
ble mutant exhibits mucoidy un-
der these conditions. (C) Levels of
BamA and the major OMP LamB
in exponential phase whole-cell
extracts of the indicated strains
were determined by SDS–PAGE
and immunoblotting. The OM
lipoprotein BamC, levels of which
are not affected by OMP biogen-
esis defects, is shown as a control.
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strains expressing bamAR661G and bamAD740G single
mutations as well as the apparent synergism observed in
the bamAR661G+D740G double-mutant strain. To test
more directly the effect that these mutations have on the
structure and function of BamA, we determined the steady-
state levels of a model BamA substrate, the maltose channel
LamB, and of BamA itself in each mutant background. We
observed comparable whole-cell levels of LamB in the single
mutants in comparison to the wild type, suggesting that
these mutations do not compromise OMP assembly in any
appreciable way (Figure 3C). However, we observed a mod-
est reduction in the steady-state levels of BamA in the con-
text of either the R661G or D740G substitution, suggesting
that these mutations in some way perturb the biogenesis of
BamA itself (Figure 3C). In the bamAR661G+D740G double
mutant, a LamB assembly defect was also evident even
though BamA levels were unchanged from those in the sin-
gle mutants (Figure 3C). This finding further implies a syn-
ergistic effect upon combination of these mutations.

To further characterize the impact of the bamAR661G
and bamAD740G mutations on BamA folding, we exploited
a well-described property common to OM b-barrel proteins
known as heat modifiability. The BamA b-barrel is generally
resistant to SDS denaturation but sensitive to heat denatur-
ation. When cell extracts are subjected to SDS–PAGE follow-
ing lysis at room temperature, BamA remains fully folded
and, consequently, migrates at a lower apparent molecular
weight than heat-denatured BamA (see Figure 4A). However,
mutations that affect folding or stability of the BamA b-barrel
domain result in unfolding of the b-barrel even at low tem-
perature, thus altering electrophoretic mobility (Tellez and
Misra 2012). We observe that both the bamAR661G and
bamAD740G mutations abrogate heat modifiability of BamA,
sensitizing the b-barrel to SDS denaturation even at room
temperature (Figure 4A).

Mutual intragenic suppressors relieve defects related to
R661 and D740 substitutions

Spontaneous intragenic suppressors of the bamAD740G mu-
tation were isolated by incubating the strain expressing this
variant at 37� on LB plates containing 0.5% SDS/1 mM
EDTA. Those colonies that arose were purified, and the

pBamAD740G plasmid was purified from each suppressor for
linkage analysis. Intragenic suppressor mutations were mapped
by transforming the parental bamA depletion strain (JCM320)
with plasmid purified from each suppressor strain. The plasmid-
borne bamA ORF was then sequenced in those transform-
ants that exhibited the suppressor phenotype (SDS/EDTAR).

In addition to revertants, six independent intragenic
suppressor mutations that restore the permeability barrier in
the bamAD740G mutant were identified (Table 1). Second-
site substitutions in BamA that confer detergent resistance
map to several locations based on sequence alignment with
FhaC: b11/b12, the neighboring b-strands that are separated
by Loop 6 (G631V, G631W, F718L); the extracellular end of
b10 (E607A); b1 (T423I), and the C-terminal POTRA do-
main (P5) within the periplasmic extension (F395V) (Figure
2, green; see Figure S2 for POTRA alignment) (Papadopoulos
and Agarwala 2007; Jacob-Dubuisson et al. 2009).

Given the postulated functional relationship between
R661 and D740, we reasoned that if these residues indeed
participate in a common chemical process, then suppressor
mutations that restore OM permeability in one mutant
(bamAD740G) might well have the same effect in the other
(bamAR661G). To test this, we introduced each of the sup-
pressor mutations listed above into pBamAR661G by site-
directed mutagenesis and determined the permeability
phenotypes of the resulting strains. As shown in Table 1,
each mutation isolated as a suppressor of bamAD740G
also restores SDS/EDTA resistance in the bamAR661G mu-
tant, implying that the bamAD740G and bamAR661G muta-
tions give rise to a common defect that causes detergent
sensitivity.

As each of the intragenic suppressor mutations restores
detergent resistance to the bamAD740G and bamAR661G
mutants, we wished to determine whether heat modifiability
is also restored in the presence of these mutations. Although
the G631W substitution restores BamA levels and wild-type
detergent sensitivity for each point mutant (Figure 4B and
Table 1), BamAR661G migrates as an unfolded species in the
absence of heat treatment even in combination with the
G631W suppressor (Figure 4A). Apparently the suppressors
described here need not restore function by restoring BamA
b-barrel stability.

Figure 4 BamA folding and stability in
the presence of barrel mutations and
suppressors. (A) Samples of the indi-
cated strains were lysed gently and in-
cubated at either 100� (+) or 24� (2) for
10 min prior to SDS–PAGE. Stably
folded BamA (fBamA) migrates at a
lower apparent molecular weight than
the denatured protein (uBamA). (B)
Whole-cell extracts were prepared using
stationary-phase (overnight) cultures of
the indicated strains. Samples were sub-
jected to SDS–PAGE and immunoblot-
ting for BamA and LamB.
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Adding a structured prior to the empirical correlation
matrix increases TP50 rates for FhaC

While DCA was successful in identifying the BamA R661–
D740 pair, we wondered if the algorithm might be further
optimized for our purposes. There are a number of reasons
to expect that OMPs like BamA and FhaC might pose a prob-
lem for DCA. The b-barrel of OMPs is a unique structure,
one on which DCA has not yet been tested. More generally,
OMPs are large proteins, and the number of sequences re-
quired to accurately estimate covariance matrix entries
scales with protein length L. In this analysis the effective
number of sequences used is relatively small, on the order
of 3–4L, which may lead to some spurious correlations caused
by noise.

To address the noise caused by small sequence sample
size, we use a statistical technique called shrinkage to regu-
larize the empirical correlation matrix C (Ledoit and Wolf
2003, 2004; Jones et al. 2012). Although the empirical cor-
relation matrix as a whole is highly undersampled, the sin-
gle-site frequencies that determine the variances along the
major diagonal are well sampled. This suggests that we can
use these frequencies to impose structure on the covariance
matrix. To this end we calculated an estimator C* of the true
covariance matrix as a weighted average of a model matrix
M and the empirical correlation matrix C,

C* ¼ aMþ ð12aÞC; (7)

where a 2 (0,1) is the shrinkage intensity, which determines
the amount of structure imposed on the data. (Note that for
a shrinkage intensity of 0, C* equals C, and DCA is un-
changed from its original form.) The model matrix M is de-
fined as

M ¼ diagðCÞ; (8)

where diag(C) is a matrix with the same dimensions and
major diagonal as C but with off diagonal entries equal to
zero. The model implies that to first order, we expect resi-
dues at different sites to mutate independently of one an-
other and according to the frequencies present in the data.
The validity of this model is an area of ongoing investiga-
tion; in this manuscript we simply ask whether applying
shrinkage in this way improves our ability to identify residue
pairs that are in close proximity in the FhaC structure.

Using FhaC as a test case, we found that using a nonzero
shrinkage intensity a significantly improves DCA TP rates.
The TP50 rate was 0.84 or above for all a tested between
a = 0.1 and a = 1.0 compared to 0.64 for a = 0 (Figure 5A).
The positive effect of increasing a continues through at least
the top 250 predictions, where, for example, a = 0.2 improves
the TP rate from 0.46 to 0.63 (Figure 5A). Throughout the rest
of our analysis we employ a = 0.6 as it seems to have a slight
advantage over other a when making 50 or fewer predictions.
Optimization of a is the subject of ongoing investigation.

Interestingly, we found that increasing a has a dispropor-
tionate effect on pairs containing conserved position(s).
While setting a = 0.6 causes at least a fivefold decrease in
the DIij scores for all pairs, the effect is greater for more
conserved pairs as shown by the median fold decrease plot-
ted in Figure 5B (red curve). This causes a relative increase
in the DIij scores of less-conserved pairs (Figure 5C). The
fact that conserved pairs are less represented among top
predictions when a = 0.6 is troubling from a genetics stand-
point. In this context one is searching for pairs that have
functional importance, i.e., pairs likely to give selectable
phenotypes when mutated. To the extent that the residues
in such pairs are conserved, they will be missed by a method
that is overly biased toward pairs of low conservation.

To balance the bias of DIij scoring that comes with in-
creasing a, we developed a new scoring protocol. While DIij
scores for low entropy pairs may be an order of magnitude
lower than those for pairs of high entropy, we recognize that
there are local outliers even at the low end of the entropy
spectrum. To identify these outliers, we begin by binning
pairs according to sequence entropy and then use DIij scores
to calculate Z-scores on a per-bin basis. The resulting DIZij
scores are then compared and ordered across bins. As
expected, DIZij scoring expands the distribution of entropies
among the top 50 scores to include more low-entropy pairs
for a = 0.6 (compare Figure 5, C and D). Importantly, the
entropy range has not simply expanded to include more
false positives: DIZij scoring corrects the DIij scoring bias
for a = 0.6 with only a minor reduction in TP50 rate, which
drops from 0.88 to 0.86 (Figure 5, C and D).

Despite significant changes to the method, there is
notable overlap between DCAa¼0

DIij and DCAa¼0:6
DIZij predictions.

Of the top 50 pairs predicted by each method, 28 are shared,
including 24 TPs (Figure 5E, quadrant I). Indeed, it is

Table 1 Effect of bamAD740G suppressor mutations on SDS-EDTA sensitivity

Parent allele

Intragenic secondary mutations and phenotypesa

POTRA5 b-barrel

Noneb 395V 423I 607A 631V 631W 718L

bamAWT R R R R R R R
bamAR661G S R R R R R R
bamAD740G S R R R R R R
a Phenotype refers to the growth of strains with the indicated genotypes on LB containing 0.5% SDS + 1.0 mM EDTA. Strains that exhibit growth after overnight incubation
at 37� are considered resistant (R), and those that do not are considered sensitive (S).

b No secondary mutation.
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generally true that DCAa¼0
DIij and DCAa¼0:6

DIZij scores are corre-
lated (Figure S3). However, DCAa¼0:6

DIZij also identifies a set of
nonoverlapping pairs with a particularly high TP rate of 0.86,
which is more than double the TP rate of the set of nonover-
lapping DCAa¼0

DIij pairs (Figure 5E, quadrants II and IV).
Encouraged by the results for FhaC, we repeated our

analysis of BamA using DCAa¼0:6
DIZij . We found that of the 8

intra-POTRA5 interactions among the DIZij top 50, all are
TPs, suggesting that DCAa¼0:6

DIZij also performs well for BamA

(Figure 5F). Again there is significant overlap between
DCAa¼0

DIij and DCAa¼0:6
DIZij predictions—28 pairs including 5 TPs

(Figure 5F, quadrant I). We note that the R661–D740 pair is
among these shared predictions.

Discussion

The number of available sequences poses a major problem
for covariance analysis. In general for a covariance matrix to

Figure 5 Optimization of DCA. Only
pairs separated by at least five positions
in primary sequence are considered.
(A–E) DCA was applied to FhaC as in Fig-
ure 1, A and B, with the same definition
of true positives. (A) Effect of shrinkage
intensity a on DCA true positive rates. (B)
Effect of shrinkage intensity a = 0.6 on
DIij scores. Fold reduction in DIij score is
plotted against the minimum pair entropy
Smin(i,j) for each pair; the red curve shows
the median fold reduction in DIij score
over 50 bins of Smin(i,j). (C and D) DIij
scores for shrinkage intensity a = 0.6
plotted against minimum pair entropy
Smin(i,j). The top 50 pairs according to (C)
DIij and (D) DIZij scoring (a = 0.6) are
highlighted. In C the dashed black line
is the cutoff for pairs with the 50 highest
DIij scores. (E and F) Overlap of the top 50
(E) FhaC and (F) BamA pairs according to
DIij scoring (a = 0) and DIZij scoring (a =
0.6). Horizontal and vertical dashed lines
correspond to the cutoffs for pairs with
the 50 highest DIij and DIZij scores, re-
spectively. (F) DCA was applied to BamA
as in Figure 1D, with the same definition
of true positives. There are no false pos-
itives. Arrow indicates pair R661–D740.
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be invertible, one needs at least as many independent
observations as parameters and perhaps 10 times this
number for a good approximation (Ledoit and Wolf 2004).
When one considers estimating the covariance matrix of
large proteins or protein complexes, the lack of adequate
sequence data becomes overwhelming, especially since
many sequences are not truly independent due to phylog-
eny. Yet our successful results for FhaC (438 amino acids)
and BamA (393 amino acids) agree with the findings of
studies showing that DCA works relatively well even for
large proteins (Hopf et al. 2012). Much of this success is
likely due to the use of large numbers of pseudocounts, an
approach that bears striking similarity statistical shrinkage
in practice. Our results for FhaC and BamA suggest that DCA
might be improved significantly by a unified approach to
data regularization combining the benefits of both pseudo-
counts and shrinkage.

While this is not the first time shrinkage has been applied
to the problem of protein covariance, it is to our knowledge
the first time it has been applied to DCA. Our model matrix
M also differs markedly from previous studies, which use
a single variance measure or factor to weight all variables
on the matrix diagonal. Jones et al. (2012) recently reported
using the model Ms ¼ SI to regularize a protein covariance
matrix where S is the mean of the variances occupying the
diagonal of the empirical correlation matrix C and I is the
identity matrix. We found that our model matrix M, which
allows for positional effects on amino acid frequencies, out-
performs Ms when used with DCA, increasing FhaC TP50
rates from 0.76 to 0.88 (Figure S4). Whether the benefit
of model matrix M is unique to FhaC remains to be seen;
however, our results clearly suggest that shrinkage can be
used to improve DCA output.

Highly conserved residues also pose a problem for co-
variance analysis. Every unique sequence in a MSA repre-
sents an evolutionary experiment in which selection has
tested the relationship between protein sequence and
function. DCA analyzes these experiments and returns
a measure of positional coupling; however, our confidence
in that measure depends on the number of experiments, i.e.,
the extent of perturbation at each position. For FhaC our
finding that finite a, which disproportionately lowers the
DIij scores of conserved pairs, increases initial TP50 rates
suggests that the DIij scores of conserved pairs are otherwise
overinflated. Indeed, some implementations of DCA filter
out the most conserved residues to reduce initial false-
positive (FP) rates (Marks et al. 2011; Hopf et al. 2012).
The negative correlation between TP rates and pair conser-
vation is problematic for genetics, as one expects functionally
important pairs to be relatively well conserved as in the case
of R661–D740 of BamA. DIZij scoring solves this problem by
including conserved pairs among the DCAa=0.6 top 50 with-
out significantly diminishing TP50 rates, at least for FhaC.

While DCAa¼0:6
DIZij improves TP50 rates, we note that our TP

designation is based exclusively on residue proximity as de-
termined from crystal structures. Among other possible

causes of covariance, TP rates do not account for possible
direct physical interactions in alternative conformations, po-
tential multimerization sites, or indirect interactions via
small molecules or other factors involved in allostery or sub-
strate binding. For instance, the highest ranked FhaC pair
according to DCAa¼0:6

DIZij is T88–P118, an FP based on the
FhaC crystal structure; however, T88 and P118 are sepa-
rated only by 12 Å, compared to a 34-Å average separation
for all FhaC residues. Furthermore, T88 and P118 each lie in
a disordered and partially unresolved region linking an
N-terminal b-barrel plug to POTRA1. It may be that T88
and P118 actually participate in a physical interaction in vivo.
It is therefore likely that some FPs may represent true biolog-
ical interactions. Similarly, it is likely that many of our TPs,
while colocalizing in a given structure, may not yield select-
able phenotypes when mutated. Whether DCAa¼0

DIij , DCA
a¼0:6
DIZij ,

or some other DCA variant is best suited to identify function-
ally related residues is still an open question, and we note
that both methods ranked the functionally related BamA
R661–D740 pair among the top 50 predictions.

There is substantial data suggesting that BamA R661 is
important for function. R661 lies in the highly conserved
RGF/Y motif of L6. It has been shown that deletion or
wholesale substitution of the BamA RGF/Y motif renders
cells conditionally lethal when grown on rich media, confers
sensitivity to membrane impermeant antibiotics, reduces
levels of BamA and OMPs, and causes b-barrel instability
(Leonard-Rivera and Misra 2012). A bamAR661E allele
was also found to confer antibiotic sensitivity, reduce BamA
levels, and destabilize the b-barrel (Leonard-Rivera and
Misra 2012). The importance of R661 and the RGF/Y motif
is also evident in work with the BamA paralog FhaC, a mem-
ber of the two-partner secretion (TpsA/TpsB) pathway for
filamentous hemagglutinin adhesin (FHA). Deletion of FhaC
L6 does not prevent its own folding and assembly but does
prevent FhaC from exporting its TpsA partner, FHA. Like-
wise, mutation of the R661 analog reduces FHA secretion
by 90% (Clantin et al. 2007; Delattre et al. 2010).

While there is no prior evidence that BamA D740 is
important for function, it has been established that other
b-barrel residues play more than a simple structural role in
BamA. b-barrel mutations have been found to suppress the
severe conditional growth phenotype exhibited by bamBE
double mutants (Tellez and Misra 2012). The fact that
b-barrel mutations can restore function to a Bam machine
lacking two lipoprotein components implies that these resi-
dues contribute to overall complex function. Interestingly,
bamBE double mutants show BamA b-barrel instability,
which is not always corrected by suppressors of the condi-
tional growth defect (Tellez and Misra 2012). But without
DCA analysis there was little reason to expect that D740 in
particular is important for function and none to suggest that
R661 and D740 engage in a functional interaction.

Three lines of genetic evidence presented here support
the prediction that BamA R661 and D740 interact in vivo.
First, the bamAR661G and bamAD740G single mutations
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confer similar phenotypes, compromising the OM perme-
ability barrier, reducing levels of BamA, and decreasing
b-barrel stability. The effect on b-barrel stability is the most
compelling of these phenotypes because it is unique: we
have a number of BamA missense mutations that affect
OM permeability, OMP assembly, and BamA levels without
affecting heat modifiability of the BamA b-barrel. Second,
the bamAR661G+D740G double mutant shows synthetic
phenotypes including increased permeability to small mole-
cule antibiotics and reduced levels of the model OMP LamB.
Third, we found that the bamAR661G and bamAD740G
alleles share common suppressors, suggesting that each con-
fers a similar defect. Together these data strongly support
the DCA prediction that R661 of L6 and D740 of the b-barrel
engage in a functional interaction, and we suggest that this
interaction is direct.

There is precedent for a direct interaction between BamA
L6 and the b-barrel. While no structure for the BamA
b-barrel is currently available, a nearly full-length FhaC
crystal structure has been solved (Clantin et al. 2007). Res-
olution of L6 is not sufficient to establish definitive interac-
tions among loop and b-barrel residues; however, it is clear
that L6 can fold into the lumen of the FhaC b-barrel. It has
also been established that FhaC L6 has a surface-exposed
conformation, which can be detected by susceptibility to
exogenous protease added to whole cells (Jacob-Dubuisson
et al. 1999; Guédin et al. 2000). Importantly, L6 is accessible
to protease only when the FhaC substrate FHA is present,
indicating that loop localization is related to substrate binding
and secretion (Jacob-Dubuisson et al. 1999; Guédin et al.
2000). In similar protease experiments, E. coli BamA has also
been shown to adopt multiple conformations (Rigel et al.
2012). Cysteine labeling with a high Mr polyethylene glycol
derivative identifies two residues in L6, C690, and C700, as
part of this conformational change, suggesting that, like
FhaC, BamA L6 has luminal and extracellular conformations
involved in substrate assembly (Rigel et al. 2013).

Given the potential for L6 to interact with the b-barrel
and the obvious chemical logic to an arginine–aspartate in-
teraction, we propose that R661 and D740 form a salt bridge
in vivo. That substitution of either residue with glycine
causes destabilization of the b-barrel suggests this putative
salt bridge is important for BamA stability, although it is not
essential for function as neither the bamAR661G nor the
bamAD740G mutation confers a striking OMP assembly de-
fect. This separability of b-barrel stability and function is
further supported by the fact that suppressors of the
bamAR661G and bamAD740G mutations restore SDS–EDTA
resistance without restoring b-barrel stability. It is likely that
these are bypass suppressors that restore BamA function
without restoring the L6–b-barrel interaction lost with dis-
ruption of the R661–D740 salt bridge.

The synthetic phenotypes displayed by the bamAR661G+D740G
double mutant are not readily explained by loss of the pu-
tative R661–D740 salt bridge alone, since either single mu-
tation would completely disrupt the ionic interaction. To

explain their synthetic phenotypes, we hypothesize that
R661 and D740 have secondary functions separate from
their common salt bridge, which are important for stabiliza-
tion of the b-barrel. This hypothesis follows from the fact
that b-barrel stability is maintained even in the absence of
BamE, a condition under which L6 shows increased dissoci-
ation from the b-barrel (Tellez and Misra 2012; Rigel et al.
2012, 2013). Because the putative R661–D740 salt bridge is
almost certainly disrupted when L6 adopts its loop-out con-
formation, these data suggest that the salt bridge alone can-
not account for stability of the b-barrel. Rather, it is likely
that these residues participate in other direct—possibly
ionic—interactions that stabilize the b-barrel in alternative
conformations of BamA. The synthetic effects observed in
a bamAR661G+D740G double mutant would then be
caused by the loss of these secondary interactions.

Our current model of BamA function proposes that OMP
assembly is accomplished through conformational cycling
of BamA and its essential lipoprotein partner BamD (Ricci
et al. 2012; Rigel et al. 2013). In this cycle BamA adopts at
least two distinct conformations, characterized by the lu-
minal and extracellular conformations of L6, each of
which seems to be stabilized by R661 and D740. Given
the dramatic change in substrate conformation that occurs
during OMP assembly, it is not surprising that the Bam
machine might undergo significant conformational changes
itself.

Such a model requires that BamA integrate signals of
substrate binding, folding, and assembly, of lipoprotein
conformations, and of its own domain conformations in
order to execute OMP assembly. This process implies
a complex network of residues spanning multiple proteins
that serves to communicate, transduce, and execute confor-
mational changes. For instance, BamA POTRA5 has been
implicated in communicating conformational changes be-
tween BamAD (Ricci et al. 2012). Whether R661 and D740
help regulate this process is unclear, but we note that the
suppressors common to the bamAR661G and bamAD740G
alleles are distributed throughout POTRA5 and the BamA
b-barrel.

We are just beginning the process of discovering the
network of Bam residues involved in OMP assembly, but it
seems that DCA will be an integral part of this work. The
limiting step in our analysis so far has been the identification
of informative mutations. BamA is robust to point mutation,
and there is no straightforward selection for Bam mutants.
DCA has the potential to circumvent these difficulties in this
and in many other complicated genetic systems. DCA is
likely to prove particularly useful for uncovering the kind of
complex residue network that we hypothesize may play an
important role in BamA function. By identifying functionally
related residues, DCA of Bam components may yield network
residues in pairs or even groups. Combined with suppressor
analysis, this approach has the potential to greatly accelerate
our line of genetic inquiry and others like it across experi-
mental systems and organisms.
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Supporting Methods 

Sequence Reweighting and Pseudocounts 

 In order to control for sequence bias in our MSA, sets of sequences that exceed a certain identity threshold 

are down-weighted as a group (Weigt et al. 2009; Marks et al. 2011; Morcos et al. 2011; Hopf et al. 2012).  For every 

sequence m in an MSA, the number of “identical” sequences km is defined as 



km   (Ai

m,Bi

n )  xL
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                                                                [S1] 

where θ is a step function equal to one if its argument is greater than or equal to zero and zero if the summation is 

negative, δ is the Kronecker symbol used for counting, which is equal to one if Ai
m equals Bi

n and to zero otherwise, 

and x is the identity threshold, defined here as 0.7.  When counting pair and single amino acid frequencies, the 

contribution of sequence m is down-weighted by 1/km.  The effective number of sequences in an alignment is 

therefore not M but Meff, where 
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Pair and single amino acid frequencies are then calculated according to the relationships 
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where λ is a pseudocount term used to ameliorate statistical noise due to underrepresented amino acids and pairs.  

Here we set λ equal to Meff.  Note that the empirical correlation matrix is not invertible before pseudocounts are 

incorporated. 

 

DCA 

According to DCA, the coupling between columns i and j in an MSA is given by the direct information, DIij, 

score according to the relationship 

 



DIij  Pij (A,B)ln
Pij (A,B)

f i(A) f j (B)











A ,B1

q

                                                           [S4] 



R. S. Dwyer et al. 3 SI 

where Pij(A,B) represents the inferred probability of finding amino acid pair (A,B) at positions i and j in the absence of 

interactions with other residues, fi(A) and fj(B) represent the single amino acid frequencies of A and B at positions i 

and j, and the summation is evaluated over all 441 pairs (A,B) possible for a q = 21 state system, where the states 

represent the twenty amino acids and a gap.  Pij(A,B) is itself a function of the inferred coupling energy eij(A,B) and the 

inferred single residue energies 



˜ h i(A)  and 



˜ h j (B)  of amino acids A and B at positions i and j according to 

 



Pij (A,B) 
1

Zij

eij (A,B) ˜ h i(A) ˜ h j (B)                                                  [S5] 

where Zij is the partition function.  The coupling energies eij(A,B) are determined as described below by inverting an 

empirical correlation matrix, C.   

The empirical correlation matrix C is determined from the MSA according to the relationships   

   



Cij (A,B)i j  f ij (A,B)  f i(A) f j (B)
                                                      [S6]

 

                       



Cij (A,B)i j,AB  f i(A) 1 f i(A) 
                                                         [S7]

 

where fi(A) is the frequency of amino acid A in MSA column i, fj(B) is the frequency of amino acid B in MSA column j, 

and fij(A,B) is the frequency of amino acid pair (A,B) in columns i and j.  Calculation of correlations Cij(A,B) where i = j 

but A ≠ B is carried out according to Equation S6.  Note that pair frequencies fij(A,B) are set to zero for these entries 

(despite having a finite value based on pseudocounts, as described below to reflect the fact that no protein sequence 

contains two different amino acids at a single site.  The empirical correlation matrix has the dimensions 20L by 20L 

despite the fact that we employ a q = 21 state model.  This is because one amino acid, in our case the gap, is left out 

of the analysis in order to serve as a reference energy.   

The global nature of the DCA algorithm derives from inversion of the empirical correlation matrix (or the 

composite matrix C* described below), which results in the coupling energy matrix, e: 



e  C
1

. [S8] 

The fields 



˜ h i(A)  and 



˜ h j (B)  from Equation S5 are calculated numerically along with the partition function Zij so 

that the pair probabilities recapitulate the single amino acid frequencies, fi(A) and fj(B), observed in the MSA: 
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Once field and coupling energies have been determined, direct information DIij scores can be evaluated using 

Equations S4 and S5.  The result is a list of DIij scores representing the direct information between every pair of 

positions. 
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Table S1  Strains and plasmids  

Strain/plasmid Genotype and relevant features Reference 

   

E. coli K-12 strains  

MC4100 F- araD139  (argF-lac)U169  rpsL150  relA1   flb5301 deoC1   ptsF25 thi Boyd et al 2000 

JCM158 MC4100  arar/-  Malinverni et al 2006 

JCM320 JCM158  ∆bamA  ∆(λatt-lom)::bla  PBAD bamA  araC Wu et al 2005 

DPR437 JCM320  pDPR1 Ricci et al 2012 

DPR660 JCM320  pBamAR661G This study 

DPR1345 JCM320  pBamAD740G This study 

DPR1346 JCM320  pBamAD740G+R661G This study 

DPR1374 JCM320  pBamAD740G+F395V This study 

DPR1309 JCM320  pBamAD740G+T423I This study 

DPR1310 JCM320  pBamAD740G+E607A This study 

DPR1311 JCM320  pBamAD740G+G631V This study 

DPR1500 JCM320 pBamAD740G+G631W This study 

DPR1313 JCM320  pBamAD740G+F717L This study 

DPR1317 JCM320  pBamAR661G+F395V This study 

DPR1318 JCM320  pBamAR661G+T423I This study 

DPR1319 JCM320  pBamAR661G+E607A This study 

DPR1320 JCM320  pBamAR661G+G631V This study 

DPR1501 JCM320 pBamAR661G+G631W This study 

DPR1321 JCM320  pBamAR661G+F717L This study 

   

Plasmids   

pZS21 Expression vector; λ PL-driven expression, Kanr Lutz & Bujard, 1997 

pBamA (pDPR1) pZS21::bamAWT Kim et al 2007 

pBamAR661G pZS21::bamAR661G This study 



R. S. Dwyer et al. 7 SI 

pBamAD740G pZS21::bamAD740G This study 

pBamAD740G+R661G pZS21::bamAD740G+R661G This study 

pBamAD740G+F395V pZS21::bamAD740G+F395V This study 

pBamAD740G+T423I pZS21::bamAD740G+T423I This study 

pBamAD740G+E607A pZS21::bamAD740G+E607A This study 

pBamAD740G+G631W pZS21::bamAD740G+G631W This study 

pBamAD740G+G631V pZS21::bamAD740G+G631V This study 

pBamAD740G+F717L pZS21::bamAD740G+F717L This study 

pBamAR661G+F395V pZS21::bamAR661G+F395V This study 

pBamAR661G+T423I pZS21::bamAR661G+T423I This study 

pBamAR661G+E607A pZS21::bamAR661G+E607A This study 

pBamAR661G+G631W pZS21::bamAR661G+G631W This study 

pBamAR661G+G631V pZS21::bamAR661G+G631V This study 

pBamAR661G+F717L pZS21::bamAR661G+F717L This study 
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Table S2   Primers 

BamA mutation Primer pairs 

F395V 

5' GAATCGTCTGGGCTTCGTTGAAACTGTCGATAC 3' 

5' GTATCGACAGTTTCAACGAAGCCCAGACGATTC 3’ 

T423I 

5' GTAAAAGAGCGCAACATCGGTAGCTTCAACTTTG 3' 

5' CAAAGTTGAAGCTACCGATGTTGCGCTCTTTTAC 3' 

E607A 

5' CTGGATCGGATAACGCATACTACAAAGTGAC 3' 

5' GTCACTTTGTAGTATGCGTTATCCGATCCAG 3' 

G631V 

5' CAAATGGGTTGTTCTGGTGCGTACCCGCTGGG 3'  

5' CCCAGCGGGTACGCACCAGAACAACCCATTTG 3'  

G631W 

5' CAAATGGGTTGTTCTGTGGCGTACCCGCTGGG 3' 

5' CCCAGCGGGTACGCCACAGAACAACCCATTTG 3' 

R661G 

5' TTCCAGCACCGTGGGCGGCTTCCAGTCCAATA 3' 

5' TATTGGACTGGAAGCCGCCCACGGTGCTGGAA 3' 

F718L 

5' CAGCCTCGAGTTAATCACCCCGACG 3' 

5' CGTCGGGGTGATTAACTCGAGGCTG 3' 

D740G 

5' CTTCCTTCTTCTGGGGTATGGGTACCGTTTG 3' 

5' CCAAACGGTACCCATACCCCAGAAGAAGGAAGTAC 3' 
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Figure S1   Effect of sequence informational entropy Si, Sj on pair DIij score.  Log(DIij Score) is plotted against sequence 
informational entropies Si and Sj for all FhaC pairs shown in Figure 1C. 
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Figure	  S2	  	  	  Alignment	  of	  BamA	  POTRA	  5	  and	  FhaC	  POTRA	  2	  domains.	  	  FhaC	  sequence	  comprises	  residues	  165	  to	  238	  of	  
Bordetella	  pertussis	  FhaC.	  	  BamA	  sequence	  comprises	  residues	  347	  to	  421	  of	  Escherichia	  coli	  BamA.	  	  Sequences	  were	  
aligned	  using	  COBALT.	   	   Secondary	   structure	  was	  determined	   for	   FhaC	  and	  BamA	   from	  crystal	   structures	  2QDZ	  and	  
3OG5,	  respectively.	  
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Figure S3   Correlation of 



DCADI ij

0
 and 



DCADIZ ij

0.6
 scores.  DCA was performed as in Figures 2E,F.  Least squares 

regression line (red) is shown along with correlation coefficient r. 
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Figure S4   Effect of shrinkage with model matrix 

   

M
S
 on DCA true positive rates.  DCA was applied to FhaC as in 

Figures 1A,B with the same true positive definition.  True positive rates are shown for various values of shrinkage 
intensity α between 0 and 1. 
 


