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ABSTRACT In genome-based prediction there is considerable uncertainty about the statistical model and method required to maximize
prediction accuracy. For traits influenced by a small number of quantitative trait loci (QTL), predictions are expected to benefit from
methods performing variable selection [e.g., BayesB or the least absolute shrinkage and selection operator (LASSO)] compared to
methods distributing effects across the genome [ridge regression best linear unbiased prediction (RR-BLUP)]. We investigate the
assumptions underlying successful variable selection by combining computer simulations with large-scale experimental data sets from
rice (Oryza sativa L.), wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.). We demonstrate that variable selection can be
successful when the number of phenotyped individuals is much larger than the number of causal mutations contributing to the trait.
We show that the sample size required for efficient variable selection increases dramatically with decreasing trait heritabilities and
increasing extent of linkage disequilibrium (LD). We contrast and discuss contradictory results from simulation and experimental studies
with respect to superiority of variable selection methods over RR-BLUP. Our results demonstrate that due to long-range LD, medium
heritabilities, and small sample sizes, superiority of variable selection methods cannot be expected in plant breeding populations even
for traits like FRIGIDA gene expression in Arabidopsis and flowering time in rice, assumed to be influenced by a few major QTL. We
extend our conclusions to the analysis of whole-genome sequence data and infer upper bounds for the number of causal mutations
which can be identified by LASSO. Our results have major impact on the choice of statistical method needed to make credible

inferences about genetic architecture and prediction accuracy of complex traits.

ENOME-BASED prediction of genotypic values from

marker or sequence information has been shown to
be a valuable tool in plant and animal breeding (Meuwissen
et al. 2001; Meuwissen and Goddard 2010; Albrecht et al.
2011). A series of statistical methods mainly differing in the
extent of regularization and variable selection has been pro-
posed in the literature (a review is in de los Campos et al.
2013). Simulation studies revealed clear differences be-
tween methods with respect to their predictive ability. Sev-
eral factors affecting the prediction performance of these
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methods such as genetic trait architecture, span of linkage
disequilibrium (LD), sample size, trait heritability, and
marker density have been identified (Zhong et al. 2009;
Daetwyler et al. 2010; Habier et al. 2010). However, how
these methods account for the respective factors is still not
fully understood, causing uncertainty about the best choice
of method for a given population and trait.
High-throughput genotyping platforms deliver data sets
where the number of available observations n is typically
smaller than the number of markers p. In these high-dimensional
data sets, strategies beyond the classical fixed linear regres-
sion model are required because the problem is underdeter-
mined; i.e., there are more unknown parameters than
observations (Hastie et al. 2009). Penalized regression tech-
niques constrain the size of the regression coefficients by
a penalty function to ensure stable estimates even when
n < p. The form of the penalty function crucially affects
properties of the respective methods. A frequently used
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method is ridge regression best linear unbiased prediction
(RR-BLUP) (Meuwissen et al. 2001), where the penalty
function is defined by the sum of the squared regression
coefficients. Here, estimates of marker effects are strongly
affected by collinearity between predictors through the so-
called grouping effect (Ishwaran and Rao 2011). In RR-
BLUP an upper bound exists for pairwise differences be-
tween estimated SNP effects, which is a function of their
correlation coefficient and of the extent of regularization.
All predictors are retained in the model, and marker effects
within a block of correlated SNPs tend toward the same value,
leading to estimates of low precision.

On the other hand, variable selection methods such as
the least absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996) or BayesB (Meuwissen et al. 2001)
attempt to bridge the gap between a small n and large
p through variable selection in addition to regularization;
i.e., some variables are effectively removed from the model.
In theory, removing markers not in LD with a QTL through
variable selection can help to improve prediction perfor-
mance by reducing the prediction variance but at the ex-
pense of an increased estimation bias (Hastie et al. 2009).
LASSO uses the sum of absolute values of the regression
coefficients as a penalty function, which leads to a sparse
solution with less than min(n, p) nonzero elements retained
in the model (Hastie et al. 2009). BayesB uses as prior for
the marker effects a mixture of a t-distribution and a point
mass at zero to induce variable selection (de los Campos
et al. 2013). Methods LASSO and BayesB do not exhibit
the grouping effect and, therefore, should be able to tag
QTL by individual SNPs. Zou and Hastie (2005) introduced
the elastic net as a method that combines the properties of
both LASSO and RR-BLUP. The elastic net performs variable
selection but a potential advantage over LASSO is that for
n < p it can retain more than n markers in the model.
Moreover, the elastic net can select groups of correlated
predictors while the LASSO is expected to select randomly
one representative out of a group of correlated variables
(Zou and Hastie 2005).

It has been hypothesized that methods employing vari-
able selection are superior to RR-BLUP for traits that are
influenced by a small number of QTL or when QTL effects
are distributed nonuniformly across the genome (Daetwyler
et al. 2010; Hayes et al. 2010). According to Meuwissen and
Goddard (2010), the same should hold when predictions are
based on whole-genome sequence data, where functional
mutations affecting a trait of interest are included in the
data with high probability. Furthermore, predictions across
several selection cycles, as well as across breeds in animal
genetics or across heterotic pools in hybrid plant breeding,
may benefit from methods that return the genomic position
of functional polymorphisms with higher accuracy rather
than distributing effects across the genome. Results from
simulation studies support this hypothesis and suggest a su-
periority of methods employing variable selection, such as
BayesB or LASSO (Daetwyler et al. 2010; Meuwissen and
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Goddard 2010; Clark et al. 2011), over RR-BLUP for specific
traits and populations.

Recently, method comparisons have been published for
a number of plant populations (Heslot et al. 2012; Pérez-
Rodriguez et al. 2012; Riedelsheimer et al. 2012). Using
experimental data, only minor differences in prediction per-
formance have been reported between methods with and
without variable selection. Most authors concluded that this
might reflect an infinitesimal genetic model underlying the
traits under study. However, the ability of variable selection
methods to identify a true model has not been well studied
for plant breeding populations with a large extent of LD,
potential substructure, and fairly small sample sizes relative
to those in human genetics or animal breeding. It is known
from statistical theory that a breakdown phenomenon de-
termined by the number of true nonzero regression coeffi-
cients (po), the number of predictors (p), and the number of
observations (n) exists when a given variable selection
method’s ability to recover the set of true nonzero coeffi-
cients breaks down (Donoho and Stodden 2006; Ishwaran
and Rao 2011). In genome-based prediction true nonzero
coefficients in the model can arise due to causal mutations,
markers in LD with an unobserved QTL, or markers involved
in epistatic interactions. To successfully perform variable
selection with high-dimensional data (n < p) it is required
that the model complexity level defined as p = po/n is
(much) smaller than 1.

The critical assumptions needed for successful variable
selection have not been addressed in the context of genome-
based prediction. However, these assumptions are of high
relevance when determining the potential of a given method
to remove predictors from the model without loss of
information, as well as when making inferences about the
genetic architecture underlying the trait of interest. We
chose four frequently used methods in genome-based pre-
diction, LASSO, the elastic net, BayesB, and RR-BLUP and
investigated their performance in a computer simulation
study. These methods can be ranked according to their
variable selection intensity. While LASSO produces the
sparsest solution, the elastic net and BayesB perform less
stringent variable selection and RR-BLUP retains all markers
in the model. Predictive performance of the four methods
was also compared for a series of traits with presumably
different genetic architecture as inferred from genome-wide
association (GWA) studies in three experimental data sets of
rice (Oryza sativa L.), wheat (Triticum aestivum L.), and the
model plant Arabidopsis thaliana (L.) showing very distinct
patterns of LD, population size, and stratification (Table 1).

The objectives of this study were (1) to explore in silico
the efficiency of variable selection methods under different
levels of model complexity (p) and determinedness (n/p) in
the context of genome-based prediction; (2) to investigate
the influence of the LD structure, of the number of QTL, and
of the trait heritability on the predictive ability of the differ-
ent methods; (3) to elucidate contradictory results from
computer simulations and experimental data with respect



Table 1 Description of experimental data sets

Species
Rice? Wheat? Arabidopsis*

No. observations n 413 254 199

No. SNPs p 36,901 2,056 215,908
No. chromosomes 12 21 5
Average distance of neighboring SNPs 10.1 kb NA 0.55 kb
Average minor allele frequency 0.26 0.20 0.24
Average r? of neighboring SNPs 0.39 NA 0.26

Traits analyzed (acronym)
(flowering time)
Plant height

Panicle length
Length of seed with hull
(seed length)

Days to heading in Aberdeen

Yield Flowering time in the field
(flowering time)

Plant diameter at flowering
(plant diameter)

FRIGIDA (FRI) gene expression

Plant diameter grown at 10°
(plant width)

Thousand-kernel weight

Days to heading

? Data sets previously described in Zhao et al. (2011).
b Data sets previously described in Poland et al. (2012).
¢ Data sets previously described in Atwell et al. (2010).
9 Marker positions not available.

to the performance of variable selection methods compared
to RR-BLUP; and (4) to assess prediction performance of
LASSO, the elastic net, BayesB, and RR-BLUP in experimen-
tal data sets using traits of different genetic architecture. By
combining computer simulations and experimental data we
investigated the joint influence of factors such as genetic
trait architecture and sample size and ensured that we ex-
plored scenarios relevant for real life experimental data.
Finally, we discuss whether the assumptions required to ben-
efit from variable selection are met in plant breeding pop-
ulations employed in genome-based prediction.

Materials and Methods
Plant material

The rice (O. sativa L.) data set was recently analyzed by Zhao
et al. (2011) and is publicly available. Data were downloaded
from http://www.ricediversity.org/data/. The germplasm
consists of a global diversity panel with 413 rice varieties
from six subpopulations (Supporting Information, Figure
S1). Individuals in the rice data were highly homozygous
with a small fraction of residual heterozygosity (0.48%).
Phenotypic data on 34 traits and genotypic data from an
Affymetrix 44K SNP array were available. A final set of
36,901 high-quality SNPs was used for this study after qual-
ity control conducted by Zhao et al. (2011). Missing values
in the marker matrices (4.3%) were reconstructed based on
flanking markers, using Beagle (Browning and Browning
2009). Results from the GWA study using the mixed-
model approach in Zhao et al. (2011) were used to iden-
tify four quantitative traits (flowering time, plant height,
panicle length, and seed length) with contrasting genetic
architectures.

The wheat (T. aestivum L.) data set was provided by
Poland et al. (2012) and was downloaded from the corre-
sponding supplemental material. It comprises 254 advanced

breeding lines from the Centro Internacional de Mejoramiento
de Maiz y Trigo (CIMMYT) wheat breeding program. The Fg
lines were derived from 122 crosses contributing from 1 to 12
lines, leading to familial substructure in the data (Figure S1).
All lines were genotyped using a genotyping-by-sequencing
approach, and 41,371 polymorphic SNPs were discovered
(Poland et al. 2012). To minimize the number of missing ge-
notypic scores, we selected the 2056 SNPs with the lowest
number of missing values. In the absence of a reference ge-
nome, no physical positions can be assigned to the SNPs.
Hence, remaining missing values (14%) were imputed based
on the marginal allele frequencies. All lines were phenotyped
in the year 2010 in Mexico in seven trials with three replica-
tions under irrigated and drought conditions. Here, we ana-
lyzed the adjusted means for the traits yield, thousand-kernel
weight, and days to heading under irrigated conditions as pro-
vided by Poland et al. (2012).

The A. thaliana (L.) data set was previously described
and analyzed by Atwell et al. (2010). Data were downloaded
from https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb
and consisted of 199 accessions genotyped with a custom
Affymetrix 250K SNP chip and phenotyped for a total of
107 traits. All individuals were fully homozygous inbred lines.
SNPs were preselected for quality control according to the
protocol in Atwell et al. (2010), resulting in 216,130 SNPs
for the analysis. We updated the SNP positions to the current
Arabidopsis Information Resource (TAIR) 10 assembly
(http://www.arabidopsis.org) and removed 222 SNPs with
mismatches to the reference genome, resulting in 215,908
high-quality SNPs used in this study. Atwell et al. (2010)
conducted a GWA study, using the efficient mixed-model
association (EMMA) program to test for associations of single
SNPs after correcting for population stratification. From their
results, we identified four quantitative traits [flowering time,
plant diameter, FRIGIDA (FRI) gene expression, and plant
width] with a contrasting genetic architecture that were
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analyzed in this study (Table 1). For the trait FRI gene ex-
pression, functional deletions at the FRI gene locus were in-
cluded into the marker matrix by coding them as a SNP.

Linkage disequilibrium

LD between marker pairs was estimated with the software
PLINK (Purcell et al. 2007, version 1.07) as the squared
correlation (r2) between alleles at two loci (Hill and Robertson
1968). Short-range LD decay was measured by examining the
average 12 of neighboring SNPs and values for the rice and
Arabidopsis data sets are given in Table 1. Long-range LD decay
was visualized with the network R package (Butts 2008). An
LD network was constructed by connecting all SNP pairs with
an r2 value above a certain threshold with an edge, while all
other pairs were omitted from the network. To compare the LD
in the experimental data sets based on a similar number of
SNPs, we evaluated the 2056 SNPs of the wheat data set
and 100 randomly selected subsets of 2000 SNPs for rice
and Arabidopsis, respectively. The average density of a network
was computed by the ratio of observed to potential edges
(Butts 2008), using thresholds for 2 of 0.75, 0.50, and 0.25.
For p SNPs, the number of potential edges in a network is
given by p - (p — 1)/2. Extensive long-range LD will cause
many edges between SNP pairs because their pairwise r2 value
is above the threshold and the density will be large. The extent
of long-range LD is visualized in a single network for each data
set in Figure S2. The average densities for the wheat and 100
samples of the rice and Arabidopsis data set are presented in
Table S1. The largest density was observed in the rice data,
partly due to the admixture of subpopulations, with several
SNPs being monomorphic within subpopulations but polymor-
phic across subpopulations. For the wheat data set, we recog-
nize that the LD pattern will be influenced by both the imputing
algorithm and the selected subset of markers. The ob-
served density must be interpreted as a lower bound es-
timate because the extent of LD can be deflated by an
imputing scheme that does not take into account flanking
marker information.

Genome-based prediction methods

We used methods LASSO, the elastic net, BayesB, and RR-
BLUP for genome-based prediction. All methods employ the
same linear model, using training data with n individuals
and p SNP markers,
y=1u+WB+e, e~ N(0,Io?), )]

with y denoting the n-dimensional vector of phenotypic val-
ues, 1 an n-dimensional vector of ones, u the overall mean,
W the n X p matrix of genotype scores coded as the number
of copies of the minor allele using the synbreed R package
(Wimmer et al. 2012), B the p-dimensional vector of marker
effects, e the n-dimensional vector of residuals, I an n X n
identity matrix, and o2 the residual variance.

Estimates for LASSO, the elastic net, and RR-BLUP can be
obtained from penalized regression by solving
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(& B) = argming, g {ly~1u-WB|3 + Pen(B)}. (@)

where Pen(B) denotes the penalty function, which is de-
fined by the squared L, norm for RR-BLUP with Pen(f) =
MBI = AYPB7, by the Ly norm with Pen(B) = A||B]l, =
/\ij A BJ| for LASSO, and by a mixture of both in the elastic
net with Pen(B) = A1 ||B||; +A2||B|> (Hastie et al. 2009).
Both RR-BLUP and LASSO can be seen as special cases of
the elastic net with A; = 0 and A, = 0, respectively. An
estimate for the regularization parameter A in LASSO was
obtained by scanning a grid of 100 values to select the A that
gives the minimum mean squared error within cross-valida-
tion (CV), using the glmnet R package (Friedman et al
2010). For the elastic net, we used CV on a two-dimensional
grid to optimize A, and A, simultaneously For RR- BLUP we
calculated the noise-to-signal ratio A = ¢ /a with 2 and
O'B being the residual and marker variance component esti-
mates obtained by residual maximum likelihood (REML),
using the ASReml software (Gilmour et al. 2009) according
to Riedelsheimer et al. (2012).

For the BayesB method we followed Meuwissen et al.
(2001). The prior for the marker effect g; forj =1, ..., p
is given by the hierarchical prior

Blo3 ~N(0,03 ),

o ~wdo(-) + (1= mx 2(1,S),
where 84(-) denotes a point mass at zero that assigns zero
variance to the effects of a fraction = of markers. A priori,
only a fraction 1 — 7 of markers was selected to be in the
model and a scaled inverted chi-square distribution y~2(v,
S) was used as prior distribution for the variance of the
marker effects with hyperparameters degrees of freedom »
and scale S. With = > 0 a variable selection feature is in-
troduced in BayesB, and we used 7 = 0.7 for the rice and
wheat data sets and 0.975 for the Arabidopsis data set.
These prior values for 7 were chosen so that (1 — 7) - p
was in the same order of magnitude as the number of SNPs
required to reach a plateau for the predictive ability evalu-
ated with RR-BLUP and random marker subsets (Figure S3,
Figure S4, and Figure S5). In the experimental data sets and
computer simulations we chose v = 5 for all traits and S
according to Ober et al. (2012).

The BayesB method was fitted using the Metropolis—
Hastings algorithm implemented in the GenSel software
(Fernando and Garrick 2009, versions 4.0.1 and 4.36R,
http://bigs.ansci.iastate.edu) for all experimental data sets.
In all computer simulations, we employed an implementa-
tion of the algorithm in R (R Development Core Team
2012). For the analysis of the experimental data sets in
GenSel, a chain of length 50,000 was generated with the
first 10,000 samples declared as burn-in and the last 40,000
samples were used for posterior inference. For the computer
simulations, we used 5000 iterations including a burn-in of
1000. The reduced chain length was found to be sufficient
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for the lower number of SNP markers that was used in the
computer simulations. Differences compared to analyses
with 13,000 iterations including a burn-in of 3000 were
found to be small in selected scenarios representing the
extremes of the simulation scheme. In addition, we observed
only minor differences in the posterior distributions between
two replicated chains and interpreted this as evidence that
the algorithm converged.

Cross-validation and predictive ability

Fivefold CV was used to assess the prediction performance
of the different statistical methods in the experimental data
sets and computer simulations. Following Albrecht et al.
(2011), the data set was divided into five mutually exclusive
subsets; four of them formed the estimation set (ES) for
fitting marker effects and the fifth subset was used as a test
set (TS). We predicted the genotypic values in the TS
according to

815 = WrsPBgs,

where the matrix Wpg encodes the marker genotypes for
the individuals in the TS, using the same reference alleles
as in the ES, and Pgg are the estimates of the marker
effects derived from the ES. Regularization parameters
in LASSO, the elastic net, and RR-BLUP were derived from
the ES.

Pearson’s correlation coefficient rg, =r(grs, yrs) be-
tween predicted genotypic values (gg) and observed phe-
notypic values (yrs) in the TS describes the predictive ability
of a method in experimental and simulated data. The accu-
racy rg; = r(8rs, 8rs) of a method describes the correlation
between predicted and true genotypic values and was avail-
able only for simulated data sets. In all scenarios, accuracies
can be approximated from the predictive ability as
I'eg = I'yy/h, where h is the square root of the trait heritability
(Legarra et al. 2008). For the experimental data sets, we
report the average predictive ability from 10 replications
of the CV scheme. Standard errors of the predictive abilities
were calculated from the means of the replications.

Computer simulations

Computer simulations were employed to assess the perfor-
mance of the statistical methods LASSO, the elastic net,
BayesB, and RR-BLUP under scenarios differing in sample
size, LD structure, genetic trait architecture, and trait
heritability. First, we investigated the ability of the statistical
methods to recover true models of varying complexity in an
underdetermined system with more markers than observa-
tions. No correlation structure between predictor variables
was simulated. Next, we used the marker information of the
experimental data to simulate data sets that allowed us to
investigate the influence of LD, trait architecture, and
heritability on model performance. The following simulation
procedures were conducted (see also the overview in Figure
S6):

1. Following Donoho and Stodden (2006), we generated
400 different scenarios varying for model complexity
p = po/n and determinedness level n/p. Values for
p and n/p ranged from 0.05 to 1.00 with increments of
0.05. Although p can take any positive value, we focused
on p € [0, 1] because it was expected that the ability of
the variable selection methods to recover the true model
breaks down outside this interval (Donoho and Stodden
2006). In each scenario, we simulated p = 2000 inde-
pendent biallelic SNP marker genotypes for n individuals
according to the determinedness level. For each individ-
ual and SNP, the marker genotype was sampled from
a Bernoulli distribution, taking the value of 2 with prob-
ability 0.3 and the value of O with probability 0.7, re-
spectively. The marker genotypes were combined in the
n X p marker matrix W. Next, a subset of p, SNPs was
declared to be true nonzero coefficients with effect sizes
randomly sampled from a U(0, 100/p) distribution. All
P — Po remaining markers were declared as true zero
coefficients and hence the vector of the true marker
effects is given as By = (Bo1,- - -, Bop,» 05 - -+, 0)". True ge-
notypic values were calculated as g = WB, and pheno-
typic records were simulated as y = g + e with e ~ N(O,
Io?) and 0% = Var(g) - (1 — h?)/h? to obtain a trait
heritability of h2. For each scenario, we estimated the
marker effects in the whole data set, using LASSO, the
elastic net, BayesB (7 = 0.80), and RR-BLUP. These esti-
mates were used to calculate the normalized L, error accord-
ing to Donoho and Stodden (2006) as a measure for the
accuracy of estimated marker effects for each scenario as

(o gy Bl

2(B:60) =y,

between true (o) and estimated (ﬁ) marker effects,
where ||-||» denotes the L, norm of a vector. The normal-
ized L, error loss function is € [0, «) and evaluates the
performance over true zero and nonzero coefficients. A
small normalized L, error indicates good agreement be-
tween estimated and simulated marker effects. A nor-
malized L, error of 1 implies that the sum of squared
differences between estimated marker effects and simu-
lated marker effects was equal to the sum of squared
simulated marker effects. Normalized L, errors of all
400 scenarios were visualized with heat maps. All sce-
narios were replicated four times for each method and
results were presented as averages over replications. We
also generated scenarios resembling the data structure of
whole-genome sequence data, using p = 250,000 and
n = 200. Here, we performed scenarios differing in level
of model complexity (po/n = 0.02,...,0.20 with incre-
ments of 0.02) and trait heritability (h? = 0.25, 0.50,
0.75, and 1.00). For each scenario, we performed 10
replications. For LASSO, we investigated the ability to
detect the true nonzero coefficients by calculating the
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sensitivity according to Pepe (2004) as the empirical
conditional probability that a true nonzero coefficient

received a nonzero estimate; ie., P<‘[§J‘ >O‘ﬁ0j>0>

forallj =1,...,po.

. We evaluated scenarios in which the LD structure of the

experimental data sets was reflected. These scenarios
were generated to evaluate the predictive ability for dif-
ferent genetic trait architectures and heritabilities de-
fined in silico but with data structures similar to those
in the experimental data sets. Retaining original sample
sizes from experimental data [rice (n = 413), wheat
(n = 254), and Arabidopsis (n = 199)], we randomly
selected 2000 SNPs from each data set to obtain LD
structures in three simulation scenarios with large
(rice), medium (wheat), and small (Arabidopsis) extents
of LD, respectively (Table S1 and Figure S2). From these
2000 SNPs we randomly declared py SNPs (py = 1, 10,
and 100) to be causal mutations under the restriction
that the minor allele frequency (MAF) of the SNP was
>0.05. All causal mutations were assigned additive
genetic effects of equal magnitude and genotypic val-
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0.102030405060.70809 1

Determinedness level n/p

RR-BLUP

Elastic net

Figure 1 (A-D) Accuracy of estimated
marker effects in computer simulations
using independent predictor variables.
Simulations were conducted according
to procedure 1 (Figure S6). In each sce-
nario p = 2000 independent markers
were simulated and h? = 0.75 was used
to simulate n phenotypic records. The
normalized L, errors of LASSO, the elas-
A tic net, BayesB, and RR-BLUP are dis-
L2(8, Bo) played as geat maps for a grid of 20
0.8 Vvalues between 0.05 and 1.00 for the
determinedness level n/p and model
0.8 . .
complexity level po/n, respectively. The
0.7 color key presents the normalized L, er-
0.6 ror averaged over four replications for
each scenario.

0.5
04
0.3
0.2

010203040506070809 1

Determinedness level n/p

ues were obtained by the sum of all mutation effects.
Analogously to procedure 1, random Gaussian errors
were simulated to obtain phenotypic records with
h? = 0.1, 0.5, and 0.9. For each combination of data
set, po, and h2, we performed 10 replications by sam-
pling new sets of 2000 SNP markers from the experi-
mental data sets and assigning new causal mutations.
The predictive ability of both BayesB (= = 0.95) and
RR-BLUP was assessed with fivefold CV within each
replication.

. We assessed the joint influence of the model complexity

and determinedness level on the normalized L, error in
scenarios with correlated markers. Here, it was not suf-
ficient to sample SNP genotypes from the experimental
data as in procedure 2 because these were fixed with
respect to sample size. To obtain scenarios with varying
sample sizes, we first simulated independent marker data
W according to procedure 1. Next, we conveyed the LD
structure of the rice, wheat, and Arabidopsis data sets to
the simulated data. The LD structure from the experi-
mental data was assessed by randomly selecting 2000
SNPs and computing their 2000 X 2000 empirical corre-
lation matrix 3. Because empirical correlation matrices


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.150078/-/DC1/genetics.113.150078-10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.150078/-/DC1/genetics.113.150078-6.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.150078/-/DC1/genetics.113.150078-7.pdf

are not necessarily positive definite, we used the nearPD
function of the Matrix R package (Bates and Maechler
2012) to construct a positive definite matrix from 3,
denoted by 3. A Cholesky decomposition was used to
construct a 2000 X 2000 upper-diagonal matrix U such
that U'U = X", By multiplying WU = W" we conveyed
the correlation structure of each experimental data set to
the simulated data. However, values in W* were not bi-
nary and hence we used component-wise thresholding
foralli =1,...,nandj = 1,...,2000 to obtain a new
matrix W** of the same dimension but entries were trans-
formed using

wy =0, if wi=q1- (wj)
wy =2, if wi>q1, (wj)

with W:] being the ijth element in matrix W~
and qlfpj(w;) the (1 — p)th quantile of column w;.
The value for p; equaled the MAF of marker j as observed
in the experimental data set. Finally, the simulated data
set W' consisted of n individuals and 2000 markers,
where the MAF and correlation structure were similar
to those of a specific experimental data set. To account
for the variability in the sampling of the SNP markers, we
evaluated each of the 400 scenarios with 10 different
marker subsets and reported the average values across rep-
lications.

Results and Discussion
Breakdown behavior of variable selection methods

We evaluated the ability of the four methods to cope with
high-dimensional data sets and models of varying complex-
ity (simulation procedure 1, Figure S6). In Figure 1, method
performance is given for 400 simulated scenarios differing in
the number of observations n and the number of true non-
zero coefficients po for LASSO, the elastic net, BayesB, and
RR-BLUP (p = 2000 and h? = 0.75). We observed a large
influence of the model complexity level on the average nor-
malized L, error in LASSO, the elastic net, and BayesB, but
not in RR-BLUP. The average normalized L, error of all
methods increased with decreasing determinedness level
n/p, i.e., more markers per observation. To infer upper
bounds for the number of true nonzero coefficients that
can be accurately determined by the variable selection meth-
ods, we calculated the probability that the min(py, 20) larg-
est true nonzero effects were included in the model, for all
400 scenarios. For LASSO, a probability >0.8 was generally
achieved in scenarios with a normalized L, error <0.5
(Figure 2).

We assume that a normalized L, error of 0.5 is an upper
bound for accurately estimated marker effects. Now, we can

0.8

0.6

Sensitivity

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized L, error

Figure 2 Averaged normalized L, error vs. the averaged sensitivity of
LASSO across all 400 scenarios with four replications as in Figure 1. The
sensitivity was evaluated as the empirical conditional probability that one
of the min(po, 20) largest true nonzero coefficients was identified.

infer from Figure 1 the maximum level of model complexity
where the normalized L, error is <0.5 for each level of de-
terminedness. For BayesB, a complexity level p = po/n = 0.2
is required to obtain an average normalized L, error <0.5
for n/p = 1. Thus, n = 5p, are required, i.e., more than five
phenotypic records per true nonzero coefficient, to accu-
rately estimate marker effects. When the level of deter-
minedness is decreased to n/p = 0.05, more than 20
phenotypic records per true nonzero coefficient are required
for a normalized L, error <0.5. These numbers are in good
agreement with theoretical and empirical thresholds
given by Donoho and Stodden (2006) for LASSO to per-
form comparably to an all-subset search. Over the 400
scenarios, the performance of the elastic net was more
similar to that of LASSO than to that of RR-BLUP, which
was expected for scenarios without pronounced correla-
tion structure.

To investigate the influence of different model complex-
ity levels on the accuracy of estimated marker effects more
closely, we fixed the determinedness level n/p at 0.5 and
0.05, corresponding to scenarios of sample sizes n = 1000
and n = 100, respectively. The four methods revealed dif-
ferent curve characteristics for the normalized L, error as
a function of model complexity level (Figure 3). Even
though there was no strong collinearity among markers, in-
dividual marker effects were estimated with low precision in
RR-BLUP and the level of the normalized L, error was >0.5
irrespective of the model complexity level. In contrast,
LASSO, the elastic net, and BayesB benefited from a low
model complexity level. As expected, the performance of
all methods was higher for n = 1000 compared to n =
100. LASSO was found to perform better than the other
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variable selection methods for low levels of model com-
plexity and n/p = 0.05. However, in general no method
consistently dominated the other methods with respect to
the normalized L, error.

The effect of different levels of noise on the performance
of the statistical methods was investigated in simulated
scenarios with different trait heritabilities and fixed de-
terminedness level n/p = 0.5 (Figure 4). As expected, differ-
ences in the performance of the variable selection methods
and RR-BLUP disappeared earlier with h> = 0.5 than with
h? = 1.0. The ability of LASSO, the elastic net, and BayesB to
accurately recover and estimate the effects of true nonzero
coefficients with h? = 1.0 held until a complexity level of
p = 0.3 was reached, a value similar to that observed for
LASSO by Stodden (2006). The elastic net outperformed the
other methods for medium levels of model complexity and
h? = 1.0 while BayesB and RR-BLUP gave the lowest nor-
malized L, error for h? = 0.5 and high levels of model
complexity.

We conclude that the breakdown behavior of the variable
selection methods with respect to recovering the true model
was mainly dominated by dimensionality. Thus, we can use
marker effects to learn about genetic trait architecture only
if the trait has a sparse representation. In this case, methods
such as LASSO, BayesB, and fixed-effect regression methods
commonly used in GWA studies will lead to marker effects of
higher precision than RR-BLUP because they do not exhibit
the grouping effect. However, as soon as the trait architec-
ture becomes more complex, the methods will not be
successful in identifying SNP markers tagging a QTL with
high probability. Recall that model complexity was pre-
sented as a function of n. With sample sizes commonly
employed in plant breeding for GWA studies and genome-
based prediction we tend to explore scenarios in the top left
corner of the heat maps in Figure 1. Here, all methods lead
to estimated marker effects of low precision and differences
between methods melt. Only increasing the sample size n
can alleviate this curse of dimensionality.
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Table 2 Predictive abilities in computer simulations using LASSO,
the elastic net, and RR-BLUP

Model complexity level p = po/n

n/p Method 0.10 0.25 0.50 1.00
0.10 LASSO 0.69 £ 0.02 0.41 x=0.02 0.20 £ 0.05 0.09 = 0.04
Elastic net 0.62 = 0.02 0.35 = 0.03 0.19 = 0.03 0.09 = 0.03
RR-BLUP  0.20 £ 0.03 0.21 £ 0.03 0.22 £ 0.03 0.22 = 0.03
0.25 LASSO 0.73 £ 0.01 0.46 = 0.02 0.29 £ 0.03 0.13 £ 0.05
Elastic net 0.73 = 0.01 0.48 = 0.03 0.33 = 0.02 0.19 = 0.02
RR-BLUP  0.38 = 0.01 0.35 = 0.01 0.34 = 0.02 0.34 = 0.01
0.50 LASSO 0.77 = 0.01 0.57 £0.02 0.39 = 0.02 0.26 = 0.02
Elastic net 0.76 = 0.01 0.60 = 0.01 0.43 = 0.01 0.31 = 0.01
RR-BLUP  0.47 = 0.01 0.48 £ 0.01 0.49 = 0.01 0.48 = 0.01
1.00 LASSO 0.79 = 0.003 0.68 £ 0.01 0.52 = 0.01 0.42 = 0.02

Elastic net 0.80 = 0.004 0.67 + 0.004 0.54 = 0.01 0.45 * 0.01
RR-BLUP  0.61 = 0.01 0.62 = 0.01 0.61 = 0.01 0.60 = 0.01

Average predictive abilities = SEs were estimated using fivefold cross-validation
with 10 replications for each scenario. All scenarios were simulated according to
procedure 1 (Figure S6), using p = 2000 independent markers and h? = 0.75.

Because variable selection methods were favored over
RR-BLUP with respect to the normalized L, error of marker
effect estimates given a low complexity level, we expected
them to outperform RR-BLUP in genome-based prediction
for traits of low complexity. To verify this hypothesis, we
evaluated the predictive ability of LASSO, the elastic net,
and RR-BLUP under different levels of model complexity
and determinedness, using CV (simulation procedure 1, Fig-
ure S6). Results given in Table 2 show that differences be-
tween methods with respect to accuracy of marker effect
estimates measured by the normalized L, error translated
into differences in predictive abilities. LASSO performed bet-
ter than RR-BLUP when the level of model complexity was
p = 0.1, but RR-BLUP outperformed LASSO in scenarios
with p = 0.5. The elastic net did improve prediction perfor-
mance compared to RR-BLUP and LASSO in scenarios with
intermediate determinedness and model complexity levels.
However, the performance of the elastic net was dominated
by one of its special cases in most scenarios. It was sufficient
to use the L, norm in LASSO for regularization in scenarios
with low model complexity while in scenarios with high
model complexity it was sufficient to use only the L, norm
for regularization within RR-BLUP. As expected, predictive
ability of all methods increased with increasing determined-
ness level, i.e., more observations per marker. As was al-
ready evident from the heat map in Figure 1, prediction
accuracies of the variable selection methods close to 1 could
be achieved only when using >10 observations per true
nonzero coefficient, i.e., for p = 0.1. Under this scenario,
RR-BLUP was not optimal for prediction and differences
between the predictive abilities of the methods were consis-
tent with those in Meuwissen and Goddard (2010).

Discrepancies in method comparisons between
simulated and experimental data

The hypothesis that genetic trait architecture has a strong
influence on the relative performance of prediction methods
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Figure 5 Meta-analysis of relative performance of BayesB compared to
RR-BLUP with results from the literature. Results were extracted from the
studies in Zhong et al. (2009), Daetwyler et al. (2010), Meuwissen and
Goddard (2010), and Zhang et al. (2010), differing with respect to the
number of QTL (Ngri) and sample size (n) of the training data set. Relative
performance is defined as the ratio of accuracy or predictive ability of
BayesB over RR-BLUP.

is mainly supported by simulation studies comparing BayesB
with RR-BLUP under scenarios differing in the number of
simulated QTL (Ngr1) and sample size n. Treating Ngry, as
a proxy for po, we compared the relative performance of
methods BayesB and RR-BLUP as a function of Ngri/n in
four recently published simulation studies (Zhong et al.
2009; Daetwyler et al. 2010; Meuwissen and Goddard
2010; Zhang et al. 2010). BayesB outperformed RR-BLUP
by up to 80% if the complexity level Nor/n was smaller
than 0.5 (Figure 5). However, with increasing complexity
level, the relative superiority of BayesB over RR-BLUP
sharply decreased in all studies and vanished for Nor/n
> 0.5. This decrease in relative performance of BayesB with
increasing number of simulated QTL has been discussed
earlier (e.g., Daetwyler et al. 2010 or de los Campos et al.
2013). However, it has not yet been related to the sample
size and to the breakdown behavior of the respective
methods.

To investigate prediction performance of LASSO, the
elastic net, BayesB, and RR-BLUP for experimental data with
different levels of model complexity and determinedness we
chose three experimental data sets differing with respect to
sample size n, marker coverage, extent of LD, and substruc-
ture (Table 1). We selected traits for which prior knowledge
about the genetic architecture based on GWA studies was
available. The traits flowering time in the rice data set and
FRI gene expression in the Arabidopsis data set were used as
candidates for traits exhibiting a sparse genetic architecture
(Atwell et al. 2010; Zhao et al. 2011) while the remaining
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Table 3 Predictive abilities obtained with LASSO, the elastic net, BayesB, and RR-BLUP for three experimental data sets

Predictive ability

Data Trait n LASSO Elastic net BayesB RR-BLUP
Rice Flowering time 359 0.46 = 0.013 0.52 = 0.011 0.59 = 0.006 0.59 = 0.007
Plant height 383 0.71 = 0.005 0.73 = 0.003 0.76 = 0.002 0.76 = 0.002
Panicle length 375 0.60 = 0.004 0.61 = 0.007 0.66 = 0.006 0.66 = 0.006
Seed length 377 0.75 = 0.003 0.78 = 0.003 0.75 = 0.003 0.75 = 0.003
Wheat Yield 254 0.44 = 0.010 0.43 = 0.006 0.51 = 0.006 0.51 = 0.005
TKwWa 254 0.48 = 0.010 0.48 = 0.011 0.55 = 0.004 0.55 = 0.004
Days to heading 254 0.60 = 0.005 0.61 = 0.008 0.66 = 0.005 0.66 = 0.004
Arabidopsis Flowering time 180 0.71 = 0.008 0.65 = 0.004 0.75 = 0.004 0.75 = 0.004
Plant diameter 180 0.47 = 0.012 0.49 = 0.016 0.51 = 0.006 0.51 = 0.007
FRIP 164 0.48 = 0.020 0.36 = 0.026 0.41 = 0.014 0.41 = 0.013
Plant width 176 0.46 = 0.024 0.49 = 0.010 0.44 = 0.009 0.43 = 0.009
Predictive abilities for all 11 traits were estimated using fivefold cross-validation and results were averaged over 10 replications + SE.

2 TKW, thousand-kernel weight.
b ERI, FRI gene expression.

traits were known to exhibit a more complex genetic archi-
tecture. Because heritability estimates are not comparable
across data sets and traits, estimated predictive abilities
and not accuracies are reported for the three populations
and 11 traits. Thus, prediction performance can be com-
pared across methods but not across traits. As in previous
studies with experimental data (Heslot et al. 2012), we ob-
served only minor interactions between genetic trait archi-
tecture and method with respect to prediction performance
(Table 3). For traits assumed to have a low complexity level
based on the GWA studies, variable selection did not consis-
tently increase prediction performance, probably due to
a combination of small sample sizes and medium trait
heritabilities.

For the rice data set, it should be noted that the estimated
predictive abilities were inflated by the admixture of
genetically and phenotypically diverse subpopulations.
However, no method was consistently superior when CV
was performed only within subpopulations (results not
shown). We also investigated the influence of the marker
density on prediction performance in the rice data set.
Differences in predictive ability between the methods were
not significant irrespective of the marker density (Figure
S3). The predictive abilities obtained for the wheat data
set were higher in this study compared to Poland et al.
(2012) because we did not account for the family structure
in our CV scheme.

BayesB did not enhance prediction performance com-
pared to RR-BLUP but computational load was much higher.
Predictive abilities obtained with LASSO were significantly
reduced for 8 of the 11 traits compared to those with RR-
BLUP. Recall that LASSO selects less than min(n, p) coeffi-
cients (the average numbers of selected markers for all traits
are given in Table S2). Thus, for complex traits with a large
number of QTL, we might have missed several nonzero coef-
ficients in LASSO, leading to a loss of predictive ability. The
inferiority of LASSO compared to RR-BLUP was most pro-
nounced in the rice data that exhibit large long-range LD
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(Table S1). The elastic net improved prediction accuracies
compared to LASSO for all four traits in the rice data set.
However, in most cases the elastic net did not outperform
RR-BLUP. For FRI gene expression in the Arabidopsis data
set, a trait that was assumed to be influenced by a small
number of loci, LASSO outperformed BayesB, the elastic
net, and RR-BLUP. While LASSO was optimized for predic-
tion using internal CV, in BayesB the fraction of selected
markers was a priori the same for all traits within one data
set. Hence, variable selection in BayesB was not as stringent
as in LASSO and too many variables might have been se-
lected for this trait. There are extensions of BayesB available
such as BayesCa, which addresses this issue by treating the
fraction of selected markers as random (Habier et al. 2011)
and might lead to a small improvement in predictive ability
for traits such as FRI gene expression.

The question arose why predictive abilities observed
in experimental data (Table 3) did not differ as much
between methods as inferred from computer simulations
(Table 2). In the literature, two sources of prediction ac-
curacy have been discussed (Habier et al. 2007, 2010):
accuracy due to marker-QTL LD and accuracy due to ge-
netic relationships among individuals. In all experimental
data sets, genetic relationships were observed (Figure S1).
We hypothesize that in experimental data, a certain level of
predictive ability was due to the presence of genetic rela-
tionships but this was not the case in computer simulations.
With experimental data, all four methods seemed to ex-
ploit genetic relationships for prediction by assigning equal
genotypic values to relatives sharing a large fraction of the
genome (Hofheinz et al. 2012). Thus, for prediction of
genomic breeding values, RR-BLUP is a good choice because
this method is robust and computationally efficient. If there is
prior knowledge that the trait has a sparse genetic architec-
ture, as expected for metabolic data (Riedelsheimer et al.
2012), LASSO may be a good alternative. Moreover, variable
selection might enhance the accuracy of predictions for
genetic predisposition in humans with extremely large
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populations of nominally unrelated individuals (de Los Cam-
pos et al. 2010).

Influence of LD and trait heritability

To assess the influence of correlations among predictor
variables on the normalized L, error of estimated marker
effects, we simulated three additional scenarios, imposing
the correlation structure of each of the three experimental
data sets on the 2000 SNP markers (simulation procedure 3,
Figure S6). Performance of LASSO at different levels of
model complexity, determinedness, and extent of LD is visu-
alized in Figure 6. The normalized L, error was larger
throughout all three scenarios exhibiting LD compared to
the scenarios with independent markers as depicted in Fig-
ure 1. The loss in efficiency was less pronounced in the
scenarios where the correlations among markers were con-
veyed from the Arabidopsis data set, followed by the wheat
and the rice data sets. Based on the extent of LD (Table S1),
this order was expected. For a given combination of model
complexity and determinedness level, the number of obser-
vations that were required to estimate one true nonzero
coefficient with the same average normalized L, error com-
pared to the simulations with independent markers was at
least doubled in the simulations where the LD structure was

TTT T T T T T I T T I T T T rITrld
0102030405060.70809 1

malized L, error of LASSO with correlated
predictor variables. The correlation struc-
ture of the simulated marker data was
superimposed from the three experimen-
tal data sets (rice, wheat, and Arabidop-
sis). The simulations were conducted
according to procedure 3 (Figure S6).
Each of the 400 scenarios (p = 2000
and h? = 0.75) was repeated 10 times
and results were averaged over replications.

Determinedness level n/p

adopted from the Arabidopsis data set. LASSO tended to
randomly select one variable from a group of correlated
variables and hence a loss in efficiency can be expected
when the variables exhibit strong correlations. This is espe-
cially true for highly selected populations where a large ex-
tent of LD is expected due to small effective population
sizes. The elastic net was expected to overcome these
problems of LASSO by allowing selection of groups of var-
iables. However, based on the normalized L, error, a con-
sistent advantage of the elastic net could not be observed
(Figure S7).

Next, we investigated the joint influence of LD, trait
heritability, and genetic trait architecture on the relative
prediction performance of BayesB and RR-BLUP with
simulation scenarios generated according to simulation
procedure 2 (Figure S6). The performance of BayesB and
RR-BLUP strongly depended on the values of h2, Nor, and
on the experimental and on the experimental data set used
for the simulations (Table 4). For each data set, BayesB
tended to perform better for medium to high heritabilities
and sparse trait architectures. No superiority of BayesB over
RR-BLUP was observed for h2 = 0.1 or N, = 100. Remark-
able differences in the relative performance of BayesB and
RR-BLUP were observed between the different data sets.
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Table 4 Predictive abilities from BayesB and RR-BLUP for simulations with different numbers of QTL and heritabilities

Rice (n = 413) Wheat (n = 254) Arabidopsis (n = 199)

h? No. QTL BayesB RR-BLUP BayesB RR-BLUP BayesB RR-BLUP
0.1 1 0.16 £ 0.035 0.17 = 0.033 0.17 £ 0.021 0.18 £ 0.020 0.08 = 0.038 0.06 = 0.030
10 0.26 = 0.025 0.26 = 0.021 0.14 = 0.023 0.13 = 0.018 0.07 = 0.025 0.08 = 0.032
100 0.30 £ 0.012 0.30 = 0.014 0.13 £ 0.034 0.22 £ 0.022 0.09 = 0.031 0.09 £ 0.038
0.5 1 0.68 = 0.012 0.56 = 0.032 0.68 = 0.008 0.50 = 0.021 0.64 = 0.027 0.27 = 0.035
10 0.65 += 0.006 0.65 = 0.008 0.50 £ 0.012 0.47 £ 0.014 0.33 = 0.024 0.27 £ 0.015
100 0.71 = 0.004 0.71 = 0.004 0.48 = 0.027 0.55 = 0.023 0.29 = 0.030 0.27 = 0.034
0.9 1 0.94 + 0.003 0.81 = 0.018 0.94 + 0.002 0.75 £ 0.020 0.94 = 0.003 0.43 £ 0.039
10 0.94 = 0.001 0.88 = 0.014 0.93 = 0.003 0.74 = 0.008 0.92 = 0.009 0.51 = 0.029
100 0.94 + 0.002 0.94 = 0.002 0.78 = 0.019 0.83 = 0.015 0.47 = 0.030 0.50 £ 0.028

The simulations were conducted according to procedure 2 (Figure S6). Predictive abilities were estimated with fivefold cross-validation for BayesB and RR-BLUP based on
marker genotypes for 2000 randomly selected markers and 1, 10, and 100 simulated causal mutations. We report the average predictive ability = SE of 10 replications for

each scenario.

The advantage of BayesB was most pronounced in the sim-
ulations based on the Arabidopsis genotypes, which was
expected due to the low extent of LD. For the scenarios
where the LD structure was adopted from rice, the superi-
ority of BayesB over RR-BLUP had already disappeared with
10 QTL and h? = 0.5. Presumably, the large extent of LD did
not permit efficient variable selection in the scenario based
on the rice data set.

When considering the absolute values of the predictive
abilities, we found a large influence of the data set on the
performance of RR-BLUP. Across almost all scenarios, the
largest predictive ability was observed in the scenarios
where the LD structure and sample size were conveyed
from the rice data set. Within each data set, the predictive
ability of RR-BLUP increased with increasing number of QTL
and increasing heritability. In contrast, the predictive ability
of BayesB was similar across data sets in scenarios with
medium to high heritabilities and true models of low
complexity. With Nori, = 1 and h2 = 0.5 or 0.9, accuracies
close to one were observed for BayesB. Interestingly, the
predictive ability of BayesB increased with Norp. for h? =
0.1 and h? = 0.5 in the simulations based on the rice data
set, while it decreased with Ngr, in most of the other sce-
narios. Presumably, the large extent of LD in the rice data
led to a situation where BayesB failed to identify the causal
mutation with Nor;, = 1. This confirms that both the sparsity
of the true model and the absence of strong correlations in
the marker matrix are crucial assumptions for successful
variable selection.

We also compared the results from computer simulations
in Table 4 with experimental results from Table 3 to inter-
pret the absolute values found for predictive abilities in the
experimental data sets. For FRI gene expression, a predictive
ability of 0.41 was observed for BayesB. Based on results
from the GWA study in Atwell et al. (2010), we assumed
a sparse architecture for this trait. After considering the pre-
dictive abilities in Table 4 for Nor, = 1 and the Arabidopsis
genotypes, we would expect a fairly low heritability be-
tween 0.1 and 0.5 for this trait. As can be seen from Table
4, BayesB was only better than RR-BLUP for prediction in
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the scenarios with h? = 0.5 and h? = 0.9. These findings
explain why BayesB failed to outperform RR-BLUP for FRI
gene expression. Although this trait was supposed to have
a sparse architecture, no advantage of BayesB was observed
with respect to prediction performance, because the trait has
presumably a low heritability as expected for gene expres-
sion data.

Prediction with whole-genome sequence data

The promise of whole-genome sequence data is that
causal variants will be included in the data with high
probability (Meuwissen and Goddard 2010). Compared to
SNP marker data we expect that p changes dramatically
but not po and, hence, with whole-genome sequence data
we explore experimental designs with a very low deter-
minedness level. The limitations of the different methods
to handle high levels of underdeterminedness are demon-
strated in Figure 1. Thus, for predictions using whole-
genome sequence data, we expect an advantage of variable
selection only for traits with a sparse representation relative
to the sample size. This hypothesis was recently supported by
a first experimental study in Drosophila melanogaster predict-
ing two quantitative traits with whole-genome sequence
data (Ober et al. 2012). No differences in the predictive
ability of BayesB and RR-BLUP were reported for the two
traits.

The ability of LASSO to identify the causal mutations in
whole-genome sequence data was investigated in a scenario
with p = 250,000 independent SNP markers and a small
sample size of n = 200 (such as in Atwell et al. 2010; Ober
et al. 2012). LASSO was selected because it produces
a sparse solution with less than n nonzero elements. This
is desirable if we want to pinpoint causal mutations. For
different model complexity levels and heritabilities we eval-
uated the sensitivity of the method, i.e., the empirical con-
ditional probability that a causal mutation was selected. As
expected, the sensitivity of detecting the true nonzero coef-
ficients decreased with increasing complexity level and de-
creasing heritability (Figure 7). With h2 = 0.5 and n = 200,
the average sensitivity was >0.5 only for py = 4. If more
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mutations underlay phenotypic variation, LASSO failed to
pinpoint these and sensitivity was significantly reduced.
However, even with h? = 1.0, no more than 20 nonzero
coefficients could be identified with an average sensitivity
>0.5. It should also be noted that a considerable number of
false positive nonzero coefficients were reported by LASSO
(on average 39.7 and 19.4 for h? = 1.0 and 0.5, respec-
tively). The excess of false positives partly occurred because
we tuned the regularization parameter in LASSO for predic-
tion using CV. Avoiding false positives will require more
severe regularization to obtain sparser solutions.

We conclude that prediction based on whole-genome
sequence data suffers dramatically from the curse of di-
mensionality. The question arises of whether we can cope
better with the dimensionality of the data by a preselection
of markers to increase the determinedness level n/p. We
could preselect markers according to biological prior infor-
mation; e.g., SNPs can be categorized according to plausible
candidates based on gene ontology categories (Yu et al.
2012). Ideally, these approaches should remove only true
zero coefficients to increase the efficiency of variable selec-
tion within the remaining subset of markers. However, cur-
rently no empirical results on preselecting markers are
available and further research on strategies to preselect
SNPs and their effect on prediction is urgently required.

Concluding remarks

In this study we investigated the performance of the
statistical methods LASSO, the elastic net, and BayesB with
respect to successful variable selection and compared them
to RR-BLUP. Our most important finding is that variable
selection methods can outperform RR-BLUP with respect to
accuracy of marker effects and prediction in high-dimen-
sional data sets, but only if crucial requirements are met. In
scenarios where the number of causal mutations is small
relative to the sample size, where markers do not exhibit
strong LD, and where the trait heritability is high, LASSO,
the elastic net, and BayesB can be advantageous over

RR-BLUP with respect to prediction performance. However, if
these requirements were not met, all three variable selection
methods did not enhance prediction performance and marker
effects were estimated with low precision. In the case of
LASSO, model performance was even considerably derogated
when model complexity and the level of underdetermined-
ness were high. As most traits of agronomic performance can
be assumed to be controlled by a large number of segregating
QTL with small effects (Schon et al. 2004) and because ex-
perimental settings in plant breeding generally suffer from
a large extent of LD, medium trait heritabilities, and relatively
small sample sizes, we recommend using RR-BLUP, which
showed good performance in all experimental settings. The
use of a variable selection method such as LASSO can be
recommended for experimental settings with large effective
population and sample sizes and prior knowledge that the
trait is controlled by few genes of large effect (e.g., resis-
tance traits).

In this study, we compared only additive models,
recognizing that epistatic networks among loci are prevalent
in nature. In first studies, nonlinear methods such as
reproducing kernel Hilbert spaces regression or neural
networks have been shown to perform better than linear
methods in genome-based prediction in wheat (Pérez-
Rodriguez et al. 2012). To the best of our knowledge,
the breakdown behavior as a function of model complex-
ity and determinedness level has been shown only for lin-
ear variable selection methods. Further research on how
nonlinear models are influenced by data dimensionality
would be highly desirable.
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