Overcompensation in Response to Herbivory in Arabidopsis thaliana: The Role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway

Madhura H. Siddappaji,* Daniel R. Scholes,*^{,†} Martin Bohn,[‡] and Ken N. Paige*^{,†,1} *School of Integrative Biology, [†]Program in Ecology, Evolution, and Conservation Biology, and [‡]Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

ABSTRACT That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (*i.e.*, plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of *Arabidopsis thaliana*, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensation: glucose-6-phosphate-1-dehydrogenase (*G6PDH1*). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of *G6PDH1* verify its role in compensation. *G6PDH1* is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression.

THE loss of plant tissue to herbivores is an important selective agent shaping plant phenotypes. Most studies of plant adaptation, to date, have focused on the evolution of structural or chemical defensive traits that reduce or prevent tissue damage by herbivores (Berenbaum *et al.* 1986; Mauricio *et al.* 1997; Agrawal 1998). However, herbivores may also select for traits that allow plants to maintain fitness in the face of tissue loss (Stowe *et al.* 2000). Plant genotypes that can compensate for tissues lost with little or no decrement in fitness relative to those that are undamaged represent such an example and are termed "tolerant" (see Stowe *et al.* 2000 for a review). Interest in tolerance was motivated by empirical studies demonstrating that herbivore damage,

Copyright © 2013 by the Genetics Society of America

doi: 10.1534/genetics.113.154351

Manuscript received June 24, 2013; accepted for publication August 1, 2013

Supporting information is available online at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.154351/-/DC1.

under certain circumstances, can increase, rather than decrease, plant reproductive success (a specialized case termed "overcompensation," i.e., increased flower, fruit, and seed production following herbivory). Specifically, studies by Paige and Whitham (1987) showed that when mule deer and elk removed 95% or more of the aboveground biomass of the monocarpic biennial scarlet gilia, *Ipomopsis aggregata*, the product of lifetime seed production, seed germination, and seedling survival averaged 3.0 times that of uneaten controls (see also Paige 1992, 1994, 1999). Since the initial study of Paige and Whitham (1987) evidence for increased flower, fruit, and seed production following herbivory has also been found for numerous plant species including Ipomopsis arizonica (Maschinski and Whitham 1989), Gentianella campestris, G. amarella (Nilsson et al. 1996; Lennartsson et al. 1997), Arabidopsis thaliana (Mauricio et al. 1997; Weinig et al. 2003), and Erysimum strictum (Rautio et al. 2005) to name but a few.

There is also evidence that genetic variation for tolerance/ overcompensation exists. For example, studies comparing

¹Corresponding author: 505 S. Goodwin Ave., 515 Morrill Hall, University of Illinois, Urbana, IL 61801. E-mail: k-paige@illinois.edu

historically grazed and ungrazed populations of the plant *G. campestris* indicate that repeatedly grazed populations overcompensate, while ungrazed populations remain completely intolerant (Lennartsson *et al.* 1997). Furthermore, numerous genetic lineages within a plant species exhibit repeatable patterns of overcompensation, whereas others express only patterns of equal or undercompensation (Mauricio *et al.* 1997; Tiffin and Rausher 1999; Juenger and Bergelson 2000; Weinig *et al.* 2003). Although these observations provide evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction in plant species exhibiting growth compensation.

A recent study by Scholes and Paige (2011) showed that Arabidopsis sometimes responds to the removal of apical dominance at the whole-genome level through endoreduplication, the replication of the genome without mitosis, leading to endopolyploidy, an increase in cellular chromosome number. Different ecotypes of A. thaliana show different degrees of endoreduplication in response to loss of apical dominance, and the degree of endopolyploidy achieved is positively correlated with measures of fitness (i.e., the higher the DNA content the higher the fitness in the context of removal of apical dominance). Endoreduplication may have genetic effects that could lead to rapid regrowth and enhanced fitness by increasing gene expression through additional gene copies (Barow 2006). Although we know a great deal about the genetic basis of endoreduplication per se (Vlieghe et al. 2005; Imai et al. 2006; Yoshizumi et al. 2006) and have evidence that it plays a role in fitness compensation (Scholes and Paige 2011) we still do not know the underpinning genes or gene pathways affecting fitness compensation following endoreduplication in Arabidopsis (or any other plant species exhibiting growth compensation).

As a first step, we have taken advantage of the known compensatory variation in the annual plant A. thaliana, combined with commercially available microarrays and QTL analyses to begin to assess the molecular basis of overcompensation (increased fitness) following apical damage. In addition, we use a gene knockout and complementation approach to assess the phenotypic effects of one promising candidate gene uncovered from the microarray/QTL screen. Specifically, we (1) characterize fitness variation, following the removal of apical dominance, of recombinant inbred lines (RILs) generated from a cross between Landsberg $erecta \times Columbia$; (2) determine seasonal variation in the compensatory response; (3) identify QTL responsible for the variation in compensation; (4) quantify differential gene expression underlying clipped and unclipped individuals of the Columbia ecotype using a commercially available microarray platform; (5) combine QTL and microarray data to narrow the genes responsible for the compensatory response; (6) evaluate the compensatory response of Transfer DNA (T-DNA) knockout lines of a promising candidate gene, glucose-6-phosphate-1dehydrogenase (G6PDH1, At5g35790.1); (7) perform quantitative RT-PCR (qRT-PCR) on *G6PDH1* to verify differences in expression between overcompensating (Columbia) and undercompensating (Landsberg *erecta*) plants; and (8) construct and assess the fitness response of a transgenic line for the complementation of *G6PDH1*. Twenty-five years ago we published the first empirical data supporting the idea that herbivore damage can lead to enhanced fitness (Paige and Whitham 1987). Here we present the first evidence for the molecular basis of this response.

Materials and Methods

Fitness variation

A total of 96 RILs (Lister and Dean 1993) of A. thaliana developed from a cross between Columbia (an overcompensating genotype) and Landsberg erecta (an undercompensating genotype) were used to assess fitness variation following the removal of apical dominance (to simulate mammalian herbivory) (Scholes and Paige 2011). The 96 F_2 lines were advanced through inbreeding and single-seed descent for more than eight generations (Lister and Dean 1993) and are available through The Arabidopsis Information Resource. The RILs and their parental lines (Columbia and Landsberg erecta) were grown for two seasons (Spring 2007 and Fall 2008) in a greenhouse on the campus of the University of Illinois, Champaign, under 12 hr of light ($\sim 100 \ \mu E/m^2/sec$) and dark. Plants were grown individually in 3.5-inch pots using LI Sunshine mix. Temperatures within the greenhouse ranged from 22° to 26°. Seeds/seedlings were kept moist during germination, and plants were watered daily to maintain soil moisture without saturating the soil. Plants were not fertilized. Ten plants per line (960 plants) were grown from seed, and half (five per line) were randomly chosen and clipped at a 6-cm inflorescence height down to ~ 1 cm to simulate mammalian herbivory; the remaining five served as undamaged controls. At the end of the flowering season the numbers of siliques per plant were recorded. Our previous studies have shown that siliques are a good measure of plant fitness in that there are no significant differences in seed weights or germination success between clipped and unclipped plants of either Columbia or Landsberg erecta. In addition, clipped plants of Columbia produced significantly greater numbers of seed, whereas clipped plants of Landsberg erecta produced significantly fewer seeds (Scholes and Paige 2011) in comparison to unclipped controls. The seeds from unclipped plants collected during the first season were used to generate the second-season plants.

Potential differences in silique production were assessed using an Analysis of Variance (Systat 13) comparing plants with apical meristem damage to undamaged controls for each recombinant inbred line. Comparisons were made both within and between years to assess fitness variation among RILs and within-line repeatability across the 2 years. Silique counts were square-root-transformed to approximate normality. RILs were classified as under- (silique production significantly lower than the undamaged control), equal (silique production not statistically different from the undamaged control), or overcompensators (silique production significantly higher than the undamaged control) based on an Analysis of Variance for each RIL and year.

QTL analysis

QTL were identified by importing phenotypic (differential fitness data) and genotypic data sets (Nottingham Arabidopsis Stock Centre, AtEnsembl, http://atensembl.arabidopsis. info) into QTL Cartographer version 2.5 (Wang et al. 2010). Fitness data were pooled from 2 years using the average response across years and subtracting clipped from unclipped plants for each RIL. There were 14 of 96 lines for which we had only 1 year's data; these were used in our QTL mapping study as well using Least Square (LS) means of fitness to adjust for unbalanced measures. A total of 141 markers equally distributed on all chromosomes with an average interval of \sim 4.5 cM were selected (Zeng 1994). The data were initially analyzed using composite interval mapping (CIM) (Jansen and Stam 1994; Zeng 1994) to find QTL. Cofactors for CIM were selected from the forward and backward regression option. Significant QTL (LOD score of 2.5 and above) (Zeng 1994) from CIM were used to find other significant QTL and interactions among QTL elsewhere in the genome using multiple interval mapping. The model that minimized Akaike's information criterion with penalty = 1 (Jansen 1993) was selected and applied to estimate the additive effect and the proportion of the fitness variation explained by each QTL. Effect sizes were calculated in QTL Cartographer version 2.5 (Wang et al. 2010) as the average percentage residual variance attributed to a QTL after removing the effects of covariates and all other OTL.

Although QTL can help in identifying regions of the genome responsible for compensation, it is difficult to identify specific candidate genes, as a single QTL likely contains hundreds of genes [a single QTL ranges from 10 to 20 cM in size with \sim 1 cM of *Arabidopsis* covering 210 kb of the genome (Peters *et al.* 2001)] of which some may and some may not be responsible for observed patterns of fitness compensation. Considering the number of QTL obtained, we combined QTL mapping with microarray expression data to help in identifying potential candidate genes. Wayne and McIntyre (2002), for example, successfully combined data from QTL and microarrays to identify genes responsible for ovariole number in *Drosophila melanogaster*.

Microarray analysis

To identify potential candidate genes located within a QTL region, we carried out a microarray analysis on the Columbia ecotype (one that exhibits patterns of overcompensation) comparing clipped and unclipped individuals (data online at http://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc+GSE44781). Plants were grown in a greenhouse

on the campus of the University of Illinois, Champaign, under 12 hr of light (~100 μ E/m²/sec) and dark. Forty plants were grown individually in 3.5-inch pots using LI Sunshine mix. Temperatures within the greenhouse ranged from 22° to 26°. Seeds/seedlings were kept moist during germination, and plants were watered daily to maintain soil moisture without saturating the soil. Plants were not fertilized. Axillary tissue was collected 6 days after clipping from both clipped (meristematic regrowth tissue) and unclipped plants (axillary meristematic tissue that naturally arises prior to clipping-similar in position, size, and location at the base of the unclipped plants' primary inflorescence); three Affymetrix oligonucleotide arrays with eight pooled clipped plants/chip and two Affymetrix oligonucleotide arrays with eight pooled unclipped plants/chip were compared in this experiment. We used the Arabidopsis Affymetrix GeneChip containing >22,500 probe sets representing $\sim 24,000$ gene sequences. This array is based on information from the International Arabidopsis Sequencing Project completed in December 2000 and is constructed by light-directed synthesis of oligonucleotides directly onto a glass "chip" approximately the size of glass coverslip. Each gene is represented on the array by a set of 20 oligonucleotide probes representing 25-mer sequences from some portion of the gene. Gene expression in a target sample is assessed by hybridization.

Total RNA was extracted with standard TRIzol (Life Technologies, Carlsbad, California) protocols from clipped (n = 3 chips) and unclipped (n = 2 chips) plants. The quality of the RNA was checked at 260 and 280 nm for determination of sample purity and concentration using a nano-drop. Messenger RNA was reverse-transcribed and labeled with the MessageAmp kit (Ambion, Austin, TX) and biotin-labeled dCTP and dGTP (ENZO Diagnostics, Farmingdale, NY). Affymetrix Arabidopsis GeneChip Arrays (Version 2.0) were hybridized at the University of Illinois Keck Center. Feature intensities on each chip were quantified with MAS 5.0 software. Following hybridization, the perfect match (PM) probes for all arrays were initially quantile-normalized with the Affy package in Bioconductor (Irizarry et al. 2003) to remove nonbiological variation among arrays. Only the PM data were used for the remainder of the analysis, and mismatch (MM) probes were ignored because they tend to increase random noise in the data. Data were analyzed using a *t*-test for each gene comparing clipped and unclipped plants. We controlled for multiple testing with a false discovery rate of P < 0.01.

Genes with significant expression upon clipping based on the microarray analysis were then analyzed for gene ontology. Biological process and molecular function information for each gene was obtained via AmiGo Slimmer Tool (v.1.8) analysis of the Gene Ontology (http://www.geneontology. org) database using the Plant GO Slim term set.

qRT-PCR was also performed on Columbia and Landsberg *erecta* plants to verify differences in expression in *G6PDH1* between overcompensating and undercompensating ecotypes, respectively. Total RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA) from rosette/cauline leaf material from clipped and unclipped Columbia and Landsberg erecta plants. Rosette/axillary meristematic tissues were collected at five time points [1 day before the inflorescence reached 6 cm (the height threshold for clipping), 1 day after, 5 days after, 15 days after, and at 50% flowering) in both clipped and unclipped plants to capture the time course of variation in gene expression patterns. Rosette leaves were collected for 1 day before and 1 day after treatments, and axillary meristems (regrowth tissue arising from the base of the plant off of the remaining portion of the primary inflorescence) were collected for the remaining time points. Of course, axillary meristems became more mature as time passed in terms of size and stage of development. The rationale for collecting axillary meristems at later points in time deals with the fact that plants translocate their nutrients to the developing tissues (axillary meristems, cauline leaves, siliques). The rationale for choosing samples before clipping was to check the actual change in gene expression following clipping and to assess any inherent differences between the genotypes in gene expression. The first-strand cDNA was synthesized using reverse transcriptase (SuperScript III, Invitrogen). The reverse transcription was carried out as recommended by the manufacturer. Three biological replicates and three technical replicates (i.e., three reads from each sample) were used for each ecotype and time interval. qRT-PCR was performed on each ecotype (Columbia and Landsberg erecta) and a reference gene from microarray data (ubiquitin) using SYBR green (a fluorescent dye). The G6PDH1 expression data were analyzed using the approach of Pfaffl (2001), where the ratio of a target gene (G6PDH1 in Columbia or Landsberg erecta) is expressed in a sample vs. a reference gene (ubiquitin), followed by an analysis of variance and linear contrasts comparing Columbia to Landsberg erecta. Expression data were square-root-transformed to approximate normality.

T-DNA knockout evaluation

A gene knockout experiment gives firsthand information on the role of a candidate gene in the response of interest (in this case, the degree of compensation) and a direct way of measuring the function of the gene product in situ. In Arabidopsis, T-DNA knockout plants are available for nearly all genes identified to date. A T-DNA inserted within the gene (in the 5' UTR, ORF, or 3' UTR) silences the gene, and plants harboring a T-DNA on both chromosomes are devoid of any gene product (or most of the gene product depending upon the position of the insert) for the gene of interest. Therefore, we assessed the role of the candidate gene (see results below) uncovered in our combined QTL mapping and microarray experiment above, using a T-DNA knockout approach followed by a clipping experiment and a fitness analysis. Mutant knockouts included G6PDH 1 (Sail 1252), G6PDH 2 (Salk 019323), and G6PDH 3 (Gabi 86405A). T-DNA inserts were confirmed by designing primers for the genomic region and T-DNA insertion using the T-DNA

Primer Design Tool (Salk Institute Genomic Analysis Laboratory, http://signal.salk.edu/tdnaprimers.2.html). The primers LP-TGCCATTCATTTTTAAGCTGG, RP- AGATGCAA GGTAATGTGCACC and LB-ATATTGACCATCATACTCATTGC were used to genotype plants. The PCR reactions produced diagnostic banding patterns for homozygous, heterozygous, and wild-type individuals. Three homozygous knockout lines with differing T-DNA insertions were compared for fitness differences among clipped and unclipped plants. Columbia (an overcompensating plant that shares identical genetic background to the knockout plants except for the knocked-out gene) served as a control on the effects of the gene knockout. Plants were grown individually under 12 hr of light and dark (\sim 70 μ E/m²/sec) in 3.5-inch pots with LI Sunshine mix in an environmental chamber on the campus of the University of Illinois. The temperature within the growth chamber was set at 22° C. Seeds/seedlings were kept moist during germination and plants were watered daily to maintain soil moisture without saturating the soil. Plants were not fertilized. A total of 40 plants per line were grown from seed, and half (20 per line) were randomly chosen and clipped to ~ 1 cm above ground level (removing apical dominance) at 6 cm of inflorescence growth to simulate mammalian herbivory; the remaining 20 served as undamaged controls. Fitness comparisons were made in terms of the numbers of siliques produced. The data were square-root-transformed and analyzed using an analysis of variance (SAS v. 9.2; SAS, Cary, NC) followed by linear contrasts comparing clipped to unclipped plants within each treatment group so that we could assess whether knockout treatments altered the compensatory outcome from that of overcompensation observed in the Columbia wild type.

Complementation of G6PDH1

To further assess the effects of G6PDH1 on fitness compensation, we used a gene complementation approach wherein we replaced G6PDH1 in a T-DNA knockout line (G6PDH 3; Gabi 86405A). To amplify 6032 bp of G6PDH1 using Kod polymerase, we used the following forward and reverse primers: For1—CACCCGTGTCGACCTCCACTATTGCCTCAA GTTGATGTTGAGTTCCG and Rev1 -CCAATCTTCATCTTCG TCTTCATGGTACCTAACG. The region included \sim 2.0 kb of the upstream promoter, exons, and introns and ~ 1.1 kb of the downstream region. The PCR product was subcloned into a pENTR/d-TOPO vector as per the manufacturer's recommendation and later cloned to pMDC 123 (Curtis and Grossniklaus 2003) using the gateway LR reaction (Left and Right recombination sites). As both entry clone and binary vector had the same selection marker (kanamycin), the entry clone was linearized using the restriction enzyme MluI. This enzyme linearizes without affecting the gene or the gateway-site-specific recombination sites. The gateway-site-specific recombination yielded the binary vector (pMHS 207), which was transformed to Agrobacterium tumefaciens strain GV3101:pMP90 by the freeze-thaw method (Holsters et al. 1978). Plant

Figure 1 Percentage change in number of siliques per line between clipped and unclipped plants for Columbia (right arrow) and Landsberg erecta (left arrow) parental lines and 93 recombinant inbred lines from a cross between Columbia and Landsberg erecta over 2 years; 14 lines had only 1 year of data. Solid area indicates overcompensating lines; shaded area indicates undercompensating lines.

transformation was done using Clough and Bent's (1998) floral dip protocol. Primary transformants were selected by spraying glufosinate at 250 mM concentration. Transgenic seed was carried through to the T_2 generation for subsequent fitness analyses. Given that the transgenic line was grown in a separate experiment, under conditions identical to those used in comparing Columbia, Landsberg *erecta*, and three T-DNA knockout mutants to one another, a *t*-test was used to compare clipped to unclipped transgenic plants to see if restoring gene function led to a pattern of overcompensation as one would predict if *G6PDH1* played a significant role in overcompensation.

Results

Fitness variation among RILs

The RILs used from a cross between Columbia and Landsberg erecta showed variation in compensatory responses ranging from undercompensation to overcompensation within both seasons/years (Spring 2007: treatment \times line interaction, *F* = 1.65, d.f. = 92, 654, *P* < 0.0001; Fall 2008: treatment \times line interaction, F = 3.26, d.f. = 83, 640, P <0.0001) (Figure 1). Although there was a significant treatment \times line \times year effect (F = 1.28, d.f. = 86, 1294, P = 0.045), the majority (68%) of lines had similar compensatory responses across years (48 lines equally compensated in both years, 4 overcompensated, and 2 undercompensated). Of the remaining lines for which we had 2 years of data, 19 shifted from overcompensation to equal compensation, 5 shifted from equal compensation to undercompensation, and only 1 shifted from overcompensation to undercompensation (P < 0.05 for those that changed category). There were 14 lines for which we had only one year's data, of which 13 equally compensated and 1 overcompensated.

Table 1 Estimates of QTL positions, effects, and interactions

Chromosome	Marker	Position (cM)	LOD	Additive effect ^a	R ² b	
1	10	49	2.76	21.7	11.4	
4	22	101	3.05	21.7	10.1	
5	23	69	3.41	63.6	26.7	

Significant QTL determined at LOD > 2.5.

^a All alleles increasing compensatory response originate from the Columbia ecotype. ^b R_{par}^2 : partial R² provides an estimate of the amount of phenotypic variance explained by each QTL.

QTL/microarray analyses

A total of three main QTL for compensation was found on chromosomes 1, 4, and 5 explaining 11.4, 10.1, and 26.7% of the variation in compensation, respectively (Table 1). The three QTL showed additive effects varying between 21.7 and 63.6 siliques and no evidence for epistatic interactions. All alleles increasing fitness were contributed by the Columbia ecotype (Table 1), although the compensatory response distribution suggests contributions from Landsberg *erecta* (*i.e.*, evidence for transgressive segregation; see Figure 1).

From the microarray analysis a total of 109 genes were found to be differentially expressed between clipped and unclipped plants of Columbia (see Supporting Information, File S1 and File S2 for gene list). A total of 30, 19, 17, 16, and 27 differentially expressed genes were located on chromosomes 1–5, respectively, between clipped and unclipped plants. Based on the gene ontology analysis, these genes can be generally classified into stress response genes, metabolic genes, and growth/reproductive genes (Table 2). When mapped with the QTL data, only a single gene colocalizes within one of the QTL markers (QTL 3 located on chromosome 5 at 69 cM; Table 1), a *G6PDH1* (EC 1.1.1.49).

T-DNA knockout fitness analyses and gene expression patterns

T-DNA knockout experiments verified the role of G6PDH1 in the compensatory response (Figure 2). Overall, results show a marginally significant clipping treatment \times line interaction for silique production (F = 2.21, d.f. = 4, 114, P =0.073). Results indicate that Landsberg erecta equally compensated with a nonsignificant trend toward undercompensation (P = 0.094; see Figure 2) while all three knockouts of G6PDH1 showed patterns of equal compensation [P =0.471, P = 0.419, and P = 0.265 for knockouts 1 (Sail 1252), 2 (Salk 019323), and 3 (Gabi 86405A); see Figure 2], respectively, with a trend toward undercompensation, whereas Columbia overcompensated following clipping (P = 0.019). G6PDH1 expression data through time comparing Landsberg erecta, an undercompensating ecotype, and Columbia, an overcompensating ecotype, showed higher levels of expression (1.4- to 2.2-fold) in Columbia following the removal of apical dominance at all time points following clipping (overall expression differences between ecotypes: Columbia 0.907 \pm 0.064 and Landsberg erecta $0.684 \pm 0.064, F = 5.99, d.f. = 1, 20, P = 0.024$; ecotype × time, F = 3.83, d.f. = 4, 20, P = 0.018) (Figure 3).

Table 2 Gene ontology analysis o	109 overexpressed genes in	Columbia wild type after	clipping
----------------------------------	----------------------------	--------------------------	----------

Biological process	No. of genes		Selected genes							
Response to stress	19	ATP1 ^{a,b,c}	CGL1 ^d	FNR1 ^a	GOLS2 ^e	PDE345 ^e	TCH4 ^{b,d}	WR3 ^c		
Reproduction	9	AGL8 ^{a,f}	GRH1 ^g	GSH1 ^e	MPK6 ^{h,i}	RP1 ^{<i>j</i>}				
Carbohydrate metabolic process	9	CGL1 ^d	CINV1 ^{b,g}	G6PD1 ^{a,g}	GALAK ^{a,d,h}	GOLS2 ^e	IAR4 ^e			
Transport	9	ATP1 ^{a,b,c}	GDI2 ^k	WR3 ^c						
Response to biotic stimulus	6	CYP38 ^e	FNR1 ^a	GSH1 ^e	MPK6 ^{h,i}	WIN1 ^d				
Generation of precursor metabolites and energy	5	FNR1 ^a	IAR4 ^e	ORF291 ^c	PDE345 ^e					
Flower development	4	AGL8 ^{a,f}	GRH1 ^g	GSH1 ^e	MPK6 ^{h,i}					
Secondary metabolic process	2	GSH1 ^e	MPK6 ^{h,i}							
Photosynthesis	1	FNR1 ^a								
Cell differentiation	1	AGL8 ^{a,f}								
Growth	1	GRH1 ^g								

Shown are a subset of biological processes and a selection of important genes. Superscripts indicate molecular function. See File S1 and File S2 for full gene ontology analysis. ^a Nucleotide/DNA/RNA binding.

^b Hydrolase activity.

^c Transporter activity.

^d Transferase activity.

^e Catalytic activity.

^f Sequence-specific DNA-binding transcription factor activity.

^g Protein binding.

^h Kinase activity.

ⁱ Signal transducer activity.

^j Structural molecule activity.

^k Enzyme regulator activity.

Complementation of G6PDH1

The results of our complementation studies support the role of *G6PDH1* in the compensatory response. This transgenic line showed patterns more similar to the overcompensating Columbia line than either Landsberg *erecta* or the three knockout lines (see Figure 2). Clipped plants of the transgenic line complemented with *G6PDH1* tended (P = 0.064) to produce more siliques/plant than unclipped plants (127.7 ± 5.0 fruits per plant) whereas unclipped plants produced 113.3 ± 5.3 fruits per plant (t = 1.975, d.f. = 1, 18, P = 0.064).

Discussion

Although there is evidence that genetic variation for fitness compensation exists, little is known about the genetic underpinnings leading to enhanced growth and reproduction in species exhibiting growth compensation following herbivory. Using a QTL analysis, we uncovered three QTL on chromosomes 1, 4, and 5, explaining 11.4, 10.1, and 26.7% of the variation in compensation, respectively. These three QTL showed additive effects increasing silique production by 21.7–63.6 siliques upon clipping. The increase in fitness is attributable to alleles contributed by the Columbia ecotype (Table 1) as opposed to alleles from Landsberg *erecta*, although, as noted above, the compensatory response distribution suggests contributions from Landsberg *erecta* (*i.e.*, evidence for transgressive segregation) (Figure 1).

Furthermore, combining QTL and microarray analyses we have uncovered one gene that appears to play a significant role in the phenomenon of overcompensation in *Arabidopsis*, *G6PDH1* (At5g35790.1). For a relatively important gene, residing in the middle of the QTL with the greatest effect size, the LOD score was relatively low (3.41, Table 1). This might be explained by not having markers very close to the estimated position of the QTL, having some missing data from the QTL analysis, or that the QTL might be involved in an important epistatic interaction within the area that may suppress the expected QTL effect (Darrah *et al.* 2006). Nonetheless, T-DNA knockouts, expression assays, and complementation studies confirm the importance of *G6PDH1* in fitness compensation (see below).

G6PDH1 is the key regulatory enzyme in the oxidative pentose phosphate pathway (OPPP) that plays a central role in plant metabolism by converting glucose to ribose-5-phosphate. The OPPP is a primary source of the reductant NADPH for biosynthetic processes such as the assimilation of nitrogen into amino acids, fatty-acid synthesis, and resistance to oxidative damage. Intermediates, such as ribose-5-phosphate, are also withdrawn from the OPP pathway for phenylpropanoid production via the shikimate pathway (Figure 4) (Kruger and Von Schaewen 2003; Scharte *et al.* 2009).

Knockout studies of three T-DNA insertion lines of *G6PDH1* (sharing the same genetic background as Columbia) showed patterns of equal compensation, with a trend toward undercompensation, rather than overcompensation, as observed in the Columbia wild type (Figure 2). Two of the three T-DNA knockout mutants (*G6PDH1*-1, Sail 1252, and *G6PDH1*-2, Salk 019323) (Figure 2) showed overall lower levels of fitness (*i.e.*, both clipped and unclipped plants), while the third, *G6PDH1*-3, Gabi_86405A, showed higher overall levels of fitness that were within the range of the wild types, suggesting potential positional effects of T-DNA insertion resulting in partial knockdown of *G6PDH1*-3. Specifically, the insertion of *G6PDH1*-3 is positioned within

Figure 2 Silique production for clipped and unclipped T-DNA knockout lines of G6PDH1_1–3 of Columbia, the two ecotypes, Landsberg *erecta* (Ler.), and Columbia (Col.) and a transgenic line complemented with G6PDH1 (G6PDH1_3; Gabi_86405A). Note that the gene complementation was conducted in a separate experiment and thus analyzed separately. Shown are means \pm 1 SE. Asterisks indicate significance at ***P* < 0.05 and **P* = 0.064.

the ORF, rather than the UTRs of *G6PDH1*-1 and -2 (see Figure 5 for sites of insertion). Nonetheless, *G6PDH1*-3 plants also equally compensated with a trend toward undercompensation as in the other two knockout mutants.

In addition, G6PDH1 expression data through time comparing Landsberg *erecta*, an undercompensating ecotype, and Columbia, an overcompensating ecotype, showed higher levels of expression (1.4- to 2.2-fold) in Columbia following the removal of apical dominance; these data are consistent with our knockout experiments wherein lowering or knocking out G6PDH1 resulted in equal-to-undercompensation instead of overcompensation (Figure 3). There is considerable sequence variation in G6PDH1, with three nonsynonymous substitutions, each causing a change in an amino acid, between Columbia and Landsberg erecta that may explain the differential patterns of expression in G6PDH1 following apical damage and regrowth and perhaps the differences in compensation (Max Planck Institute for Developmental Biology, POLYMORPH Project, http:// polymorph-clark20.weigelworld.org/cgi-bin/retrieve cds snp. cgi). In addition, our transgenic line complemented with G6PDH1 restored the compensatory response from equal compensation, with a trend toward undercompensation, in the knockout line (G6PDH1_3; Gabi_86405A) to overcompensation (at P = 0.064). We suspect that positional effects of the transgene or unmeasured environmental influences may have constrained the magnitude of the compensatory response typically observed in Columbia. Collectively, these results indicate the importance of G6PDH1 in regulating the compensatory response following the removal of apical dominance.

We propose that plants with the capability of overcompensating (increasing both biomass and fitness when compared to undamaged controls) reprogram their tran-

Figure 3 G6PDH1 gene expression through time before and after the removal (clipping) of the plants' apical meristem, simulating mammalian herbivory, for Columbia wild type (Col.) and Landsberg *erecta* (Ler.). The *G6PDH1* expression data were analyzed using the approach of Pfaffl (2001), where the ratio of a target gene (*G6PDH1* in Columbia or Landsberg *erecta*) is expressed in a sample *vs.* a reference gene (ubiquitin). Shown are means \pm 1 SE. Asterisks indicate significance at ***P* < 0.05 and **P* < 0.06.

scriptional activity in at least three important ways: through a suite of defensive mechanisms, through an increase in expression of genes involved in energy metabolism, and through an increase in DNA content (via endoreduplication; see Scholes and Paige 2011), with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression. Initially, following apical damage, the G6PDH1 gene elicits a suite of defensive reactions that are likely associated with cellular damage from herbivory. These may include reactive oxygen species to ward off infection and induced chemical defenses, such as glucosinolates, via the shikimate pathway (Scharte et al. 2009). When analyzing genes that were significantly differentially expressed (from our microarray data), several of the genes affected were found to be enzymes (e.g., a suite of invertase genes, G6PDH1, and galactinol synthase) involved in carbohydrate metabolism, and these genes were significantly up-regulated and likely play a significant role in overcoming tissue loss. Of particular note, cytosolic invertase 1 is adjacent to a QTL located on chromosome 1. In addition, up-regulation of G6PDH1 ultimately leads to the biosynthesis of nucleic acids (see Figure 4), consistent with the significant increase in DNA content (through endoreduplication) observed in overcompensating ecotypes of A. thaliana when compared to undercompensating ecotypes (Scholes and Paige 2011). Interestingly, removal of apical dominance reduces the level of auxin leading to axillary bud break and stem regeneration, and low levels of auxin trigger an exit from mitotic cycles into the endocycle (Ishida et al. 2010). Thus, there is a direct link between endoreduplication and the removal of apical dominance.

Figure 4 Schematic representation of the cytosolic oxidative pentose-phosphate pathway, adapted from Hauschild and Von Schaewen (2003). G6P (glucose-6-phosphate) is oxidized by G6PDH to yield 6-phospho-gluconate (6PG) and in the process reduces NADP to NADPH and functions in reducing oxidative damage, eventually leading to the production of ribulose-5-phosphate (R5P) and erythrose-4-phosphate (E4P), which are used for nucleotide synthesis (essential in the synthesis of aromatic amino acids) and defensive chemistry (such as glucosinolates) via the shikimate pathway, respectively.

Weinig et al. (2003) previously mapped QTL for resistance and tolerance (compensation) to apical meristem damage by rabbits under natural conditions of the field over two seasons in RILs from a Columbia \times Landsberg erecta cross (Lister and Dean 1993) of Arabidopsis. Although QTL for resistance were found within each seasonal cohort, no QTL for tolerance were detected. This is in contrast to our study here, wherein we uncovered three QTL. We surmise that the differences in our findings can be attributed to the differences in natural herbivory under field conditions vs. artificial herbivory in a greenhouse. Natural herbivory resulted in wide variance in regrowth and fitness within any given line whereas our clipping experiments in the greenhouse resulted in far less variance, resulting in higher repeatability in fitness compensation, making it easier to uncover QTL. Whereas Weinig et al. (2003) interpreted this to mean that there were many genes of small effect involved in tolerance (compensation), our results indicate fewer genes of larger effect; *i.e.*, in our study we uncovered a single gene of major effect, G6PDH1 (when knocked-out plants equally compensated with a trend toward undercompensation following apical damage, contributing significantly to the phenomenon of overcompensation). In both studies, there were also significant environmental effects (genotype \times environment interactions) detected, with 25 of 79 lines for which we had two seasons of data responding differently in fitness compensation from one season to the next (all shifting to lower fitness levels). The remaining 54 lines all maintained the same level of fitness compensation.

Results here support the utility of using a combinatorial approach of QTL mapping and microarray data in uncovering potential candidate genes. As Wayne and McIntyre (2002, pp. 14,903) pointed out, "The use of microarray technology ... allows an efficient, objective, quantitative evaluation of genes in the QTL and has the potential to reduce the overall effort needed in identifying genes causally associated with quantitative traits of interest." Using these combined approaches, we uncovered a single differentially expressed gene colocated within one of three QTL regions in the recombinant inbred Lister-Dean lines created from a cross between Landsberg erecta and Columbia. Knockout and complementation studies of this candidate strongly suggest an important role of this gene and the pathway in which it resides in the compensatory response of Arabidopsis. Of course we want to be clear that this is likely not the only important gene involved in the compensatory response, given the additional QTL and the pathway in which G6PDH1 resides.

Gaining an understanding of the genetic basis of overcompensation (increased seed yield after damage), in particular,

Figure 5 Schematic representation of G6PDH1 showing the position of each of the three T-DNA insertions. Exons (solid), introns (shaded), and start and stop codons are shown. The T-DNA inserts are represented by inverted triangles. See text for a discussion of potential positional effects.

following apical damage should be of great interest to agriculturists who, through recent advances in genetic technology and selective breeding, might incorporate these traits into crop plants such as oilseed rape (Brassica napus), a close relative of Arabidopsis. The isoform of G6PDH1 could also be engineered in crops such as sugarcane or rice where ratoon cropping is conducted (ratoon cropping resembles simulated herbivory where the apical meristem is removed leading to increased plant yields through regrowth). Thus, our findings should be of great value in that the results of this study set the stage for genetically engineering or selecting plants that not only tolerate apical damage, but also actually increase seed yield from such damage. Furthermore, from an evolutionary perspective, the genetic basis of overcompensation uncovered here in the model system A. thaliana may be readily applied to natural systems, improving our understanding of plant regrowth following herbivory and the complexities of plant-animal interactions. With the results of this study, we are beginning to gain significant insights as to the underpinning genetic basis that contributes to the phenomenon of overcompensation.

Acknowledgments

We thank Sindhu Krishnankutty and Lauren Clayton for help in collecting fitness data; Osman Radwan, Steve Clough, and Bernarda Calla for help with RNA extractions and cDNA synthesis; and Jenny Drnevich for analyzing microarray data. Research was funded by National Science Foundation grants DEB-0522409, DEB-1010868, and DEB-1146085 to K.N.P.

Literature Cited

- Agrawal, A. A., 1998 Induced responses to herbivory and increased plant performance. Science 279: 1201–1202.
- Barow, M., 2006 Endopolyploidy in seed plants. Bioessays 28: 271–281.
- Berenbaum, M. R., A. R. Zangerl, and J. K. Nitao, 1986 Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40: 1215–1228.
- Clough, S. J., and A. F. Bent, 1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. Plant J. 16: 735–743.
- Curtis, M. D., and U. Grossniklaus, 2003 A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133: 462–469.
- Darrah, C., B. L. Taylor, K. D. Edwards, P. E. Brown, A. Hall *et al.*, 2006 Analysis of phase of *LUCIFERASE* expression reveals novel circadian quantitative trait loci in *Arabidopsis*. Plant Physiol. 140: 1464–1474.
- Hauschild, R., and A. von Schaewen, 2003 Differential regulation of glucose-6- phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol. 133: 47–62.
- Holsters, M., D. de Waele, A. Depicker, E. Messens, M. van Montagu *et al.*, 1978 Transfection and transformation of Agrobacterium tumefaciens. Molec. gen. Genet. 163: 181–187.
- Imai, K. K., Y. Ohashi, T. Tsuge, T. Yoshizumi, M. Matsui *et al.*, 2006 The A-type cyclin CYCA2;3 is a key regulator of ploidy

levels in Arabidopsis endoreduplication. Plant Cell 18: 382-396.

- Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis *et al.*, 2003 Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.
- Ishida, T., S. Adachi, M. Yoshimura, K. Shimizu, M. Umeda *et al.*, 2010 Auxin modulates the transition from the mitotic cycle to the endocycle in *Arabidopsis*. Development 137: 63–71.
- Jansen, R. C., 1993 Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211.
- Jansen, R. C., and P. Stam, 1994 High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455.
- Juenger, T., and J. Bergelson, 2000 Factors limiting rosette recruitment in scarlet gilia, *Ipomopsis aggregata*: seed and disturbance limitation. Oecologia 123: 358–363.
- Kruger, J. N., and A. von Schaewen, 2003 The oxidative pentose phosphate pathway: Structure and organization. Curr. Opin. Plant Biol. 6: 236–246.
- Lennartsson, T., J. Tuomi, and P. Nilsson, 1997 Evidence for an evolutionary history of overcompensation in the grassland biennial *Gentianella campestris* (Gentianaceae). Am. Nat. 149: 1147–1155.
- Lister, C., and C. Dean, 1993 Recombinant inbred lines for mapping RFLP and phenotypic markers in *Arabidopsis thaliana*. Plant J. 4: 745–750.
- Maschinski, J., and T. G. Whitham, 1989 The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am. Nat. 134: 1–19.
- Mauricio, R., M. D. Rausher, and D. S. Burdick, 1997 Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78: 1301–1311.
- Nilsson, P., J. Tuomi, and M. A. Strom, 1996 Bud dormancy as a bet hedging strategy. Am. Nat. 147: 269–281.
- Paige, K. N., 1992 Overcompensation in response to mammalian herbivory: from mutualistic to antagonistic interactions. Ecology 73: 2076–2085.
- Paige, K. N., 1994 Herbivory and *Ipomopsis aggregata*: differences in response, differences in experimental protocol: a reply to Bergelson and Crawley. Am. Nat. 143: 739–749.
- Paige, K. N., 1999 Regrowth following ungulate herbivory in *Ipomopsis aggregata*: geographic evidence for overcompensation. Oecologia 118: 316–323.
- Paige, K. N., and T. G. Whitham, 1987 Flexible life history traits: shifts by scarlet gilia in response to pollinator abundance. Ecology 68: 1691–1695.
- Peters, J. L., H. Constandt, P. Neyt, G. Cnops, J. Zethof *et al.*, 2001 A physical amplified fragment-length polymorphism map of *Arabidopsis*. Plant Physiol. 127: 1579–1589.
- Pfaffl, M. W., 2001 A new mathematical model for relative quantification in real- time RT-PCR. Nucleic Acids Res. 29: 2002– 2007.
- Rautio, P., A.-P. Huhta, S. Piippo, J. Tuomi, T. Juenger et al., 2005 Overcompensation and adaptive plasticity of apical dominance in *Erysimum strictum* (Brassicaceae) in response to simulated browsing and resource availability. Oikos 111: 179–191.
- Scharte, J., H. Schön, Z. Tjaden, E. Weis, and A. von Schaewen, 2009 Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. Proc. Natl. Acad. Sci. USA 106: 8061–8066.
- Scholes, D. R., and K. N. Paige, 2011 Chromosomal plasticity: mitigating the impacts of herbivory. Ecology 92: 1691–1698.
- Stowe, K. A., R. J. Marquis, C. G. Hochwender, and E. L. Simms, 2000 The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31: 565–595.

- Tiffin, P., and M. D. Rausher, 1999 Genetic constraints and selection acting on tolerance to herbivory in the common morning glory *Ipomoea purpurea*. Am. Nat. 154: 700–716.
- Vlieghe, K., V. Boudolf, G. T. S. Beemster, S. Maes, Z. Magyar *et al.*, 2005 The DP-E2F-like gene DEL1 controls the endocycle in *Arabidopsis thaliana*. Curr. Biol. 15: 59–63.
- Wang, S., C. J. Basten, and Z.-B. Zeng, 2010 Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, North Carolina.
- Wayne, M. L., and L. M. McIntyre, 2002 Combining mapping and arraying: an approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99: 14903–14906.
- Weinig, C., J. R. Stinchcombe, and J. Schmitt, 2003 QTL architecture of resistance and tolerance traits in *Arabidopsis thaliana* in natural environments. Mol. Ecol. 12: 1153–1163.
- Yoshizumi, T., Y. Tsumoto, T. Takiguchi, N. Nagata, Y. Y. Yamamoto *et al.*, 2006 Increased level of polyploidy1, a conserved repressor of *CYCLINA2* transcription, controls endoreduplication in *Arabidopsis*. Plant Cell Online 18: 2452–2468.
- Zeng, Z.-B., 1994 Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

Communicating editor: J. A. Birchler

GENETICS

Supporting Information http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.154351/-/DC1

Overcompensation in Response to Herbivory in Arabidopsis thaliana: The Role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway

Madhura H. Siddappaji, Daniel R. Scholes, Martin Bohn, and Ken N. Paige

Copyright © 2013 by the Genetics Society of America DOI: 10.1534/genetics.113.154351

File S1: Supporting Data

I. QTL Analysis

Result of MIM analysis for Model 1 of Trait 1 71450316 -filetype MImapqtl.out

> QTL Cartographer v. 1.15c, May 2001 This output file (mimrltM.txt) was created by MIMapQTL...

It is 22:58:16 on Tuesday, 05 March 2013

-trait -maxqtl -maxepis	 Analyzed trait [trait] Maximum number of allowed QTL in the model Maximum number of epistatic terms allowed
-xic	1 Code for the IC criterion
-walk	1.0 Walking speed for position refinement and QTL search, in cM
-LRthresh	0.0 Likelihood ratio threshold for adding/deleting a QTL
-workcode	sMPrtseC Code indicating what to do
-modelfile	qtlcarti.mqt
-Aqtl 5	Number of QTL with additive effects
-Dqtl 0	Number of QTL with dominance effects
-AAqtl 0	Number of QTL with additive by additive effects
-ADqtl 0	Number of QTL with additive by dominance effects
-DAqtl 0	Number of QTL with dominance by additive effects

-DDqtl 0 Number of QTL with dominance by dominance effects

-Total 5 Number of parameters in this model

-Maximum 19 Number of parameters allowed in this model (2sqrt(n))

Here is a summary of the QTL

Note: c1 <c2> - Recombinant frequency between QTL and adjacence marker of left <right>

		Position (M	ain	effec		Epistatic effect Position					
QT	L	Effect Value	С	М	 c1	c2		(QTL) (C)	(M)	(c1)	(c2)
-S											
1	А	49.1234	1	10	0.056	62800 0.0	0329000				
2	А	-46.0581	3	8	0.0010	00000 0.04	4531300				
3	А	56.5110	4	22	0.047	67200 0.0	0754200				
4	А	-77.2541	5	18	0.019	60600 0.0	1224700				
5	А	88.2851	5	19	0.001	00000 0.02	2561900				
-e											

A	IU	I I ARAMETER Termement,							
-trait		1 Analyzed trait [trait]							
-maxqtl		18 Maximum number of allowed QTL in the model							
-maxepis		36 Maximum number of epistatic terms allowed							
-xic		1 Code for the IC criterion							
-walk		1.0 Walking speed for position refinement and QTL search, in cM							
-LRthresh	1	0.0 Likelihood ratio threshold for adding/deleting a QTL							
-workcod	e	sMPrtseC Code indicating what to do							
-modelfile	e	qtlcarti.mqt							
-Aqtl	5	Number of QTL with additive effects							
-Dqtl	0	Number of QTL with dominance effects							
-AAqtl	0	Number of QTL with additive by additive effects							
-ADqtl	0	Number of QTL with additive by dominance effects							
-DAqtl	0	Number of QTL with dominance by additive effects							
-DDqtl	0	Number of QTL with dominance by dominance effects							
-Total	5	Number of parameters in this model							
-Maximu	m	19 Number of parameters allowed in this model (2sqrt(n))							

Here is a summary of the QTL

Note: c1 <c2> - Recombinant frequency between QTL and adjacence marker of left <right>

		Position (1	Mair	n eff	Epistatic effect Position		
QTL	Effe	ct Value	С	М	c1	c2	(QTL)(C)(M)(c1)(c2)
-S							
1	Α	21.6663	1	10	0.0566	52800 0.003	329000
2	Α	-18.1787	3	8	0.001	00000 0.045	531300
3	А	21.6842	4	22	0.047	67200 0.007	754200
4	Α	-58.2673	5	18	0.0196	0600 0.0122	24700
5	А	63.6223	5	19	0.0010	00000 0.025	561900

-e

-trait	1	Analyzed trait [trait]
-maxqtl	18	Maximum number of allowed QTL in the model
-maxepis	36	Maximum number of epistatic terms allowed
-xic	1	Code for the IC criterion
-walk	1.0	Walking speed for position refinement and QTL search, in
-LRthresh	0.0	Likelihood ratio threshold for adding/deleting a QTL
-workcode	sN	IPrtseC Code indicating what to do
-modelfile	qtle	carti.mqt

cM

-Aqtl 5 Number of QTL with additive effects
-Dqtl 0 Number of QTL with dominance effects
-AAqtl 0 Number of QTL with additive by additive effects
-ADqtl 0 Number of QTL with additive by dominance effects
-DAqtl 0 Number of QTL with dominance by additive effects
-DDqtl 0 Number of QTL with dominance by dominance effects

-Total 5 Number of parameters in this model

-Maximum 19 Number of parameters allowed in this model (2sqrt(n))

Here is a summary of the QTL

Note: c1 <c2> - Recombinant frequency between QTL and adjacence marker of left <right>

	P	osition (Mai		Epistatic effect Position							
QTL	 Effect	Value	С	M	 c1	c2		(QTL) (C)	(M)	(c1)	(c2)
-S											
1	А	21.6663	1	10	0.0566	2800	0.00329000)			
2	А	-18.1787	3	8	0.0010	0000 (0.04531300)			
3	А	21.6842	4	22	0.0476	7200	0.00754200)			
4	А	-58.2673	5	18	0.0196	0600 (0.01224700)			
5	А	63.6223	5	19	0.0010	0000	0.02561900)			
-е											

Phenotypic Variance: Genetic Variance: Residual Variance:			e: 490 366 123	01 54 36							
QT	L(s)	Туре	1	2	3	4	5				
1	Α	469	9.3	-98.48	2	8.36	8.37	23	7.1		
2	Α			330.1	-7.18	86 2	228.1	-388	.3		
3	Α			4	469.1	147	7.6 -1	114.6			
4	Α					3378	-49	30			
5	А						3906				
Sı	um		557	197.2	2 4	 496.2	1105	5	1309		
Tot	tal	30	664								
	ł	Here are	the	R2 value	es es					 	

Genetic: 0.7477

Residual: 0.2523

QT	L(s) Ty	pe	1	2	3	4	5			
1	А	0.09	58	-0.0201	().0058	0.0	017	0.04	484
2	А		0.	0674	-0.00)15	0.046	6	-0.0792	,
3	А			0.	0957	0.0	301	-0.0)234	
4	А					0.689	3 -1	.005	9	
5	А						0.79	71		
Su	ım	0.1	137	0.040	2	0.1013	3 0	.2255	5 0.2	 2670
Tot	al	0.7	477							

Estimates of QTL positions, effects and interactions

QTL(pair)	Туре	Chrom.	Marl	ker Position	LOD	Effect	Effect (%)
1	А	1	10	48.9199	2.76	21.6663	11.4
2	А	3	8	28.5101	2.25	-18.1787	4.0
3	А	4	22	100.9100	3.05	21.6842	10.1
4	А	5	18	67.1601	1.96	-58.2673	22.6
5	А	5	19	68.5001	3.41	63.6223	26.7

These are the breeding values of the individuals.

Individual	Equation	14 Equation 15
1	-108.1162	-45.9587
2	56.0318	15.9832
3	74.7818	14.8005
4	65.3369	66.2320
5	42.5712	12.2108
6	35.3581	39.6197
7	117.5375	0.0564
8	20.8846	67.0736
9	11.4620	16.1371
10	30.2853	17.6694
11	38.5752	40.2654
12	54.7789	85.9728
13	183.0493	109.9992
14	75.1014	0.7822
15	39.3201	-3.7158

16	67.7519	67.7758
17	58.9501	80.2842
18	169.3721	23.1663
19	-31.4108	-69.1495
20	67.6778	107.5116
21	-21.3201	28.4675
22	57.2362	45.9443
23	47.1255	-23.9477
24	62 2847	99 6097
25	3.2780	39.5434
26	48 8415	43 6531
27	-28 9091	-72 0085
28	-14.0556	24.1166
29	6.6778	6.5722
30	36.4544	17.7909
31	55.7960	57.7139
32	-14.9711	-31.6804
33	63.3501	35.1051
34	30.1880	55.3054
35	24.5452	69.4538
36	0.0227	2.5632
37	7.2866	11.1554
38	-74.0114	-16.4867
39	88.5096	52.8547
40	29.6563	41.5370
41	95.8859	83.7961
42	1.8184	14.0665
43	43.5952	30.4732
44	80.0895	81.8627
45	-96.0828	-11.6944
46	93.1192	94.1341
47	46.2224	59.5988
48	6.3933	12.9213
49	90.9432	47.1804
50	16.0498	21.0818
51	16.0642	23.4472
52	17.2377	33.5381
53	30.5482	62.7538
54	13.9164	18.8401
55	-14.3917	-14.0593
56	32.4041	-14.4069
57	30.9462	25.8180
58	-81.4133	-26.4686
59	62.4313	33.6639
60	28.1634	-34.8551
61	54.5752	5.8643

62	-17.0297	-20.7719
63	1.9633	5.2396
64	27.5334	33.0489
65	58.7193	61.0769
66	-115.0340	-32.4583
67	79.0594	94.0740
68	60.2534	23.1922
69	42.0166	37.6528
70	41.8056	-10.3027
71	46.9872	6.7104
72	63.1472	110.7074
73	8.6213	11.3527
74	36.8359	46.0165
75	51.1000	49.2893
76	74.4380	66.7694
77	26.5311	32.9470
78	9.4383	54.1679
79	35.6732	94.9896
80	50.5226	4.9794
81	22.3130	34.8999
82	48.4159	34.3798
83	13.1523	-23.6851
84	-0.6919	6.3906
85	-70.2524	-6.0560
86	-17.5487	0.1258
87	-145.7010	-53.0890
88	88.7238	39.7092
89	60.3896	56.1905
90	51.6220	37.9031
91	96.4155	90.3001
92	-3.5232	-1.5387
93	-65.9182	10.3026
94	34.2078	28.1844
95	167.0550	83.2006
96	40.8446	49.5807
97	-123.1481	-48.1993
98	65.7914	73.1303

These are the QTL genotype and probability values of the individuals.

Individual GID QTL Genotype Probability

0001	01	11111	0.2414
0001	02	11112	0.0022
0001	03	11121	0.1519
0001	04	11122	0.0014
0001	05	11211	0.0656
0001	06	11221	0.0412
0001	07	12111	0.2346
0001	08	12112	0.0021
0001	09	12121	0.1476
0001	10	12122	0.0013
0001	11	12211	0.0637
0001	12	12221	0.0401
0001	13	21111	0.0021
0001	14	21121	0.0013
0001	15	22111	0.0020
0001	16	22121	0.0013
0002	01	11111	0.0014
0002	02	21111	0.5060
0002	03	21112	0.0202
0002	04	21121	0.3184
0002	05	21122	0.0127
0002	06	21211	0.0833
0002	07	21212	0.0033
0002	08	21221	0.0524
0002	09	21222	0.0021
0003	01	11111	0.1056
0003	02	11112	0.0042
0003	03	11121	0.0665
0003	04	11122	0.0027
0003	05	11211	0.1056
0003	06	11212	0.0042
0003	07	11221	0.0665
0003	08	11222	0.0027
0003	09	12111	0.0024
0003	10	12121	0.0015
0003	11	12211	0.0024
0003	12	12221	0.0015
0003	13	21111	0.1831
0003	14	21112	0.0073
0003	15	21121	0.1152
0003	16	21122	0.0046
0003	17	21211	0.1831
0003	18	21212	0.0073
0003	19	21221	0.1152
0003	20	21222	0.0046

0003	21	22111	0.0042
0003	22	22121	0.0027
0003	23	22211	0.0042
0003	24	22221	0.0027
0004	01	11122	0.0023
0004	02	21112	0.0031
0004	03	21122	0.8347
0004	04	21222	0.1374
0004	05	22122	0.0192
0004	06	22222	0.0032
0005	01	11111	0.0016
0005	02	21111	0.5567
0005	03	21112	0.0223
0005	04	21121	0.3503
0005	05	21122	0.0140
0005	06	21211	0.0330
0005	07	21212	0.0013
0005	08	21221	0.0208
0006	01	12211	0.0024
0006	02	22111	0.0046
0006	03	22211	0.8465
0006	04	22221	0.1465
0007	01	12111	0.1134
0007	02	12112	0.1180
0007	03	12121	0.1175
0007	04	12122	0.1223
0007	05	12211	0.1134
0007	06	12212	0.1180
0007	07	12221	0.1175
0007	08	12222	0.1223
0007	09	22111	0.0069
0007	10	22112	0.0072
0007	11	22121	0.0072
0007	12	22122	0.0075
0007	13	22211	0.0069
0007	14	22212	0.0072
0007	15	22221	0.0072
0007	16	22222	0.0075
0008	01	12112	0.0222
0008	02	12122	0.0352
0008	03	22112	0.3621
0008	04	22122	0.5754
0008	05	22212	0.0020
0008	06	22222	0.0031
0009	01	11112	0.0042
0009	02	11122	0.3113

0009	03	11212	0.0024
0009	04	11222	0.1756
0009	05	12112	0.0043
0009	06	12122	0.3195
0009	07	12212	0.0024
0009	08	12222	0.1802
0010	01	11121	0.0093
0010	02	11122	0.2319
0010	03	11221	0.0093
0010	04	11222	0.2319
0010	05	12121	0.0093
0010	06	12122	0.2319
0010	07	12221	0.0093
0010	08	12222	0.2319
0010	09	21122	0.0088
0010	10	21222	0.0088
0010	11	22122	0.0088
0010	12	22222	0.0088
0011	01	11122	0.0024
0011	02	11212	0.0017
0011	03	11221	0.0179
0011	04	11222	0.4472
0011	05	12122	0.0025
0011	06	12212	0.0017
0011	07	12221	0.0181
0011	08	12222	0.4514
0011	09	21221	0.0011
0011	10	21222	0.0274
0011	11	22221	0.0011
0011	12	22222	0.0276
0012	01	21111	0.0032
0012	02	21112	0.0809
0012	03	21121	0.0051
0012	04	21122	0.1285
0012	05	21211	0.0011
0012	06	21212	0.0273
0012	07	21221	0.0017
0012	08	21222	0.0434
0012	09	22111	0.0079
0012	10	22112	0.1968
0012	11	22121	0.0125
0012	12	22122	0.3128
0012	13	22211	0.0027
0012	14	22212	0.0664
0012	15	22221	0.0042
0012	16	22222	0.1055

0013	01	12212	0.0222
0013	02	12222	0.0352
0013	03	22112	0.0020
0013	04	22122	0.0031
0013	05	22212	0.3621
0013	06	22222	0.5754
0014	01	12111	0.0999
0014	02	12112	0.1181
0014	03	12121	0.1160
0014	04	12122	0.1372
0014	05	12211	0.0999
0014	06	12212	0.1181
0014	07	12221	0.1160
0014	08	12222	0.1372
0014	09	22111	0.0061
0014	10	22112	0.0072
0014	11	22121	0.0071
0014	12	22122	0.0084
0014	13	22211	0.0061
0014	14	22212	0.0072
0014	15	22221	0.0071
0014	16	22222	0.0084
0015	01	11211	0.0086
0015	02	11221	0.0054
0015	03	12111	0.0015
0015	04	12211	0.2833
0015	05	12212	0.0113
0015	06	12221	0.1782
0015	07	12222	0.0071
0015	08	21211	0.0087
0015	09	21221	0.0055
0015	10	22111	0.0016
0015	11	22211	0.2884
0015	12	22212	0.0115
0015	13	22221	0.1815
0015	14	22222	0.0073
0016	01	12222	0.0028
0016	02	22122	0.0054
0016	03	22212	0.0037
0016	04	22222	0.9882
0017	01	21211	0.0947
0017	02	21212	0.1210
0017	03	21221	0.1248
0017	04	21222	0.1595
0017	05	22211	0.0947
0017	06	22212	0.1210

0017	07	22221	0.1248
0017	08	22222	0.1595
0018	01	11112	0.0032
0018	02	11122	0.2352
0018	03	11222	0.0226
0018	04	12112	0.0035
0018	05	12122	0.2576
0018	06	12222	0.0247
0018	07	21112	0.0026
0018	08	21122	0.1950
0018	09	21222	0.0187
0018	10	22112	0.0029
0018	11	22122	0.2135
0018	12	22222	0.0205
0019	01	12111	0.5798
0019	02	12112	0.0232
0019	03	12121	0.3649
0019	04	12122	0.0146
0019	05	12211	0.0032
0019	06	12221	0.0020
0019	07	22111	0.0076
0019	08	22121	0.0048
0020	01	12212	0.0010
0020	02	12222	0.0016
0020	03	22112	0.0020
0020	04	22122	0.0032
0020	05	22211	0.0147
0020	06	22212	0.3684
0020	07	22221	0.0234
0020	08	22222	0.5855
0021	01	11222	0.0012
0021	02	12111	0.0019
0021	03	12112	0.0028
0021	04	12121	0.0061
0021	05	12122	0.0090
0021	06	12211	0.0033
0021	07	12212	0.0048
0021	08	12221	0.0103
0021	09	12222	0.0152
0021	10	21111	0.0026
0021	11	21112	0.0038
0021	12	21121	0.0081
0021	13	21122	0.0119
0021	14	21211	0.0043
0021	15	21212	0.0064
0021	16	21221	0.0137

0021	17	21222	0.0202
0021	18	22111	0.0316
0021	19	22112	0.0465
0021	20	22121	0.0997
0021	21	22122	0.1469
0021	22	22211	0.0534
0021	23	22212	0.0787
0021	24	22221	0.1688
0021	25	22222	0.2487
0022	01	11111	0.0052
0022	02	11112	0.0522
0022	03	11121	0.0339
0022	04	11122	0.3394
0022	05	11211	0.0062
0022	06	11212	0.0625
0022	07	11221	0.0406
0022	08	11222	0.4064
0022	09	12112	0.0012
0022	10	12122	0.0078
0022	11	12212	0.0014
0022	12	12222	0.0094
0022	13	21112	0.0019
0022	14	21121	0.0012
0022	15	21122	0.0122
0022	16	21212	0.0022
0022	17	21221	0.0015
0022	18	21222	0.0146
0023	01	11111	0.4110
0023	02	11121	0.2586
0023	03	11211	0.0022
0023	04	11221	0.0014
0023	05	21111	0.1999
0023	06	21121	0.1258
0023	07	21211	0.0011
0024	01	11112	0.0545
0024	02	11122	0.0866
0024	03	11212	0.3311
0024	04	11222	0.5262
0024	05	21222	0.0015
0025	01	11111	0.0074
0025	02	11112	0.1847
0025	03	11121	0.0117
0025	04	11122	0.2935
0025	05	11212	0.0010
0025	06	11222	0.0016
0025	07	12111	0.0074

0025	08	12112	0.1847
0025	09	12121	0.0117
0025	10	12122	0.2935
0025	11	12212	0.0010
0025	12	12222	0.0016
0026	01	11111	0.1406
0026	02	11211	0.8539
0026	03	11221	0.0032
0026	04	21211	0.0024
0027	01	12111	0.5754
0027	02	12121	0.3621
0027	03	12211	0.0031
0027	04	12221	0.0020
0027	05	22111	0.0352
0027	06	22121	0.0222
0028	01	11111	0.0251
0028	02	11112	0.0193
0028	03	11121	0.0501
0028	04	11122	0.0387
0028	05	11211	0.1522
0028	06	11212	0.1175
0028	07	11221	0.3045
0028	08	11222	0.2350
0028	09	21111	0.0015
0028	10	21112	0.0012
0028	11	21121	0.0031
0028	12	21122	0.0024
0028	13	21211	0.0093
0028	14	21212	0.0072
0028	15	21221	0.0186
0028	16	21222	0.0144
0029	01	11111	0.9882
0029	02	11121	0.0037
0029	03	11211	0.0054
0029	04	21111	0.0028
0030	01	11111	0.0397
0030	02	11121	0.0250
0030	03	11211	0.2411
0030	04	11221	0.1517
0030	05	12111	0.0034
0030	06	12121	0.0022
0030	07	12211	0.0208
0030	08	12221	0.0131
0030	09	21111	0.0402
0030	10	21121	0.0253
0030	11	21211	0.2441

0030	12	21221	0.1536
0030	13	22111	0.0035
0030	14	22121	0.0022
0030	15	22211	0.0210
0030	16	22221	0.0132
0031	01	12222	0.0014
0031	02	22111	0.0262
0031	03	22112	0.0380
0031	04	22121	0.0365
0031	05	22122	0.0529
0031	06	22211	0.1443
0031	07	22212	0.2089
0031	08	22221	0.2009
0031	09	22222	0.2909
0032	01	11111	0.0224
0032	02	11121	0.0141
0032	03	11211	0.0041
0032	04	11221	0.0026
0032	05	12111	0.1610
0032	06	12112	0.0064
0032	07	12121	0.1013
0032	08	12122	0.0041
0032	09	12211	0.0293
0032	10	12212	0.0012
0032	11	12221	0.0184
0032	12	21111	0.0388
0032	13	21112	0.0016
0032	14	21121	0.0244
0032	15	21211	0.0071
0032	16	21221	0.0044
0032	17	22111	0.2791
0032	18	22112	0.0112
0032	19	22121	0.1756
0032	20	22122	0.0070
0032	21	22211	0.0508
0032	22	22212	0.0020
0032	23	22221	0.0319
0032	24	22222	0.0013
0033	01	12221	0.0010
0033	02	21211	0.0042
0033	03	21212	0.0033
0033	04	21221	0 0084
0033	05	21222	0.0065
0033	06	22121	0.0020
0033	07	22122	0.0015
0033	08	22211	0.1830
			-

0033	09	22212	0.1412
0033	10	22221	0.3661
0033	11	22222	0.2826
0034	01	12211	0.0023
0034	02	22111	0.1352
0034	03	22112	0.0054
0034	04	22211	0.8212
0034	05	22212	0.0328
0034	06	22221	0.0031
0035	01	12112	0.0011
0035	02	12122	0.0017
0035	03	22112	0.3831
0035	04	22122	0.6088
0035	05	22212	0.0021
0035	06	22222	0.0033
0036	01	12112	0.0058
0036	02	12121	0.0063
0036	03	12122	0.4861
0036	04	12212	0.0058
0036	05	12221	0.0063
0036	06	12222	0.4870
0036	07	22122	0.0014
0036	08	22222	0.0014
0037	01	11111	0.6103
0037	02	11112	0.0244
0037	03	11121	0.0798
0037	04	11122	0.0032
0037	05	11211	0.1005
0037	06	11212	0.0040
0037	07	11221	0.0131
0037	08	21111	0.1214
0037	09	21112	0.0049
0037	10	21121	0.0159
0037	11	21211	0.0200
0037	12	21221	0.0026
0038	01	11111	0.3597
0038	02	11112	0.0144
0038	03	11121	0.2263
0038	04	11122	0.0091
0038	05	11211	0.2299
0038	06	11212	0.0092
0038	07	11221	0.1447
0038	08	11222	0.0058
0038	09	21111	0.0010
0039	01	11211	0.0016
0039	02	11221	0.0010

0039	03	21111	0.0032
0039	04	21121	0.0020
0039	05	21211	0.5855
0039	06	21212	0.0234
0039	07	21221	0.3684
0039	08	21222	0.0147
0040	01	11111	0.0059
0040	02	11112	0.0028
0040	03	11121	0.0023
0040	04	11122	0.0011
0040	05	11211	0.2244
0040	06	11212	0.1065
0040	07	11221	0.0874
0040	08	11222	0.0415
0040	09	12111	0.0059
0040	10	12112	0.0028
0040	11	12121	0.0023
0040	12	12122	0.0011
0040	13	12211	0.2244
0040	14	12212	0.1065
0040	15	12221	0.0874
0040	16	12222	0.0415
0040	17	21211	0.0137
0040	18	21212	0.0065
0040	19	21221	0.0054
0040	20	21222	0.0025
0040	21	22211	0.0137
0040	22	22212	0.0065
0040	23	22221	0.0054
0040	24	22222	0.0025
0041	01	11122	0.0024
0041	02	11212	0.0016
0041	03	11222	0.4391
0041	04	12222	0.0101
0041	05	21122	0.0029
0041	06	21212	0.0020
0041	07	21222	0.5297
0041	08	22222	0.0122
0042	01	11111	0.1598
0042	02	11112	0.0340
0042	03	11121	0.0348
0042	04	11122	0.0074
0042	05	11211	0.1598
0042	06	11212	0.0340
0042	07	11221	0.0348
0042	08	11222	0.0074

0042	09	12111	0.1598
0042	10	12112	0.0340
0042	11	12121	0.0348
0042	12	12122	0.0074
0042	13	12211	0.1598
0042	14	12212	0.0340
0042	15	12221	0.0348
0042	16	12222	0.0074
0042	17	21111	0.0098
0042	18	21112	0.0021
0042	19	21121	0.0021
0042	20	21211	0.0098
0042	21	21212	0.0021
0042	22	21221	0.0021
0042	23	22111	0.0098
0042	24	22112	0.0021
0042	25	22121	0.0021
0042	26	22211	0.0098
0042	27	22212	0.0021
0042	28	22221	0.0021
0043	01	11122	0.0019
0043	02	11222	0.0118
0043	03	12121	0.0034
0043	04	12122	0.0841
0043	05	12212	0.0019
0043	06	12221	0.0204
0043	07	12222	0.5106
0043	08	21122	0.0011
0043	09	21222	0.0068
0043	10	22121	0.0019
0043	11	22122	0.0485
0043	12	22212	0.0011
0043	13	22221	0.0118
0043	14	22222	0.2946
0044	01	11122	0.0014
0044	02	11222	0.0014
0044	03	21112	0.0018
0044	04	21122	0.4856
0044	05	21212	0.0018
0044	06	21222	0.4856
0044	07	22122	0.0112
0044	08	22222	0.0112
0045	01	11111	0.2822
0045	02	11112	0.0059
0045	03	11121	0.1776
0045	04	11122	0.0037

0045	05	11211	0.2838
0045	06	11212	0.0059
0045	07	11221	0.1786
0045	08	11222	0.0037
0045	09	12111	0.0010
0045	10	12211	0.0010
0045	11	21111	0.0173
0045	12	21121	0.0109
0045	13	21211	0.0174
0045	14	21221	0.0109
0046	01	11111	0.0017
0046	02	11211	0.0334
0046	03	11212	0.0013
0046	04	21111	0.0454
0046	05	21112	0.0018
0046	06	21211	0.8779
0046	07	21212	0.0351
0046	08	21221	0.0033
0047	01	11111	0.0016
0047	02	11211	0.2886
0047	03	11212	0.0115
0047	04	11221	0.0067
0047	05	12211	0.1831
0047	06	12212	0.0073
0047	07	12221	0.0042
0047	08	21111	0.0016
0047	09	21211	0.2851
0047	10	21212	0.0114
0047	11	21221	0.0066
0047	12	22211	0.1809
0047	13	22212	0.0072
0047	14	22221	0.0042
0048	01	11111	0.8792
0048	02	11112	0.0352
0048	03	11121	0.0033
0048	04	11211	0.0048
0048	05	12111	0.0203
0048	06	21111	0.0539
0048	07	21112	0.0022
0048	08	22111	0.0012
0049	01	11211	0.0017
0049	02	11221	0.0011
0049	03	21111	0.0032
0049	04	21121	0.0020
0049	05	21211	0.5951
0049	06	21221	0.3745

0049	07	22211	0.0137
0049	08	22221	0.0086
0050	01	11211	0.0203
0050	02	12111	0.0048
0050	03	12211	0.8792
0050	04	12212	0.0352
0050	05	12221	0.0033
0050	06	21211	0.0012
0050	07	22211	0.0539
0050	08	22212	0.0022
0051	01	12121	0.0019
0051	02	12122	0.0475
0051	03	12222	0.0078
0051	04	22112	0.0029
0051	05	22121	0.0310
0051	06	22122	0.7760
0051	07	22221	0.0051
0051	08	22222	0.1277
0052	01	11111	0.1488
0052	02	11211	0.0301
0052	03	12111	0.0733
0052	04	12211	0.0148
0052	05	21111	0.4076
0052	06	21121	0.0015
0052	07	21211	0.0825
0052	08	22111	0.2008
0052	09	22211	0.0406
0053	01	11111	0.1565
0053	02	11112	0.0063
0053	03	11211	0.2784
0053	04	11212	0.0111
0053	05	11221	0.0010
0053	06	21111	0.1887
0053	07	21112	0.0075
0053	08	21211	0.3358
0053	09	21212	0.0134
0053	10	21221	0.0012
0054	01	12111	0.0026
0054	02	21111	0.0215
0054	03	22111	0.9302
0054	04	22112	0.0372
0054	05	22121	0.0035
0054	06	22211	0.0051
0055	01	11122	0.0175
0055	02	11222	0.0029
0055	03	12112	0.0028

0055	04	12121	0.0304
0055	05	12122	0.7593
0055	06	12221	0.0050
0055	07	12222	0.1250
0055	08	21122	0.0011
0055	09	22121	0.0019
0055	10	22122	0.0465
0055	11	22222	0.0077
0056	01	11111	0.0417
0056	02	11112	0.0017
0056	03	11121	0.0262
0056	04	11122	0.0010
0056	05	11211	0.2534
0056	06	11212	0.0101
0056	07	11221	0.1594
0056	08	11222	0.0064
0056	09	12111	0.0417
0056	10	12112	0.0017
0056	11	12121	0.0262
0056	12	12122	0.0010
0056	13	12211	0.2534
0056	14	12212	0.0101
0056	15	12221	0.1594
0056	16	12222	0.0064
0057	01	12122	0.0023
0057	02	22112	0.0031
0057	03	22121	0.0328
0057	04	22122	0.8212
0057	05	22221	0.0054
0057	06	22222	0.1352
0058	01	11111	0.0216
0058	02	11121	0.0136
0058	03	11211	0.1503
0058	04	11221	0.0945
0058	05	12111	0.0552
0058	06	12121	0.0348
0058	07	12211	0.3849
0058	08	12221	0.2422
0058	09	22211	0.0018
0058	10	22221	0.0012
0059	01	12111	0.0277
0059	02	12211	0.0282
0059	03	21111	0.0137
0059	04	21211	0.0139
0059	05	22111	0.4529
0059	06	22121	0.0017

0059	07	22211	0.4601
0059	08	22221	0.0017
0060	01	11111	0.1534
0060	02	11121	0.0966
0060	03	11211	0.1534
0060	04	11221	0.0966
0060	05	12111	0.1534
0060	06	12121	0.0966
0060	07	12211	0.1534
0060	08	12221	0.0966
0061	01	12211	0.0015
0061	02	22111	0.0866
0061	03	22121	0.0545
0061	04	22211	0.5262
0061	05	22221	0.3311
0062	01	12112	0.0033
0062	02	12121	0.0359
0062	03	12122	0.8986
0062	04	12222	0.0049
0062	05	22121	0.0022
0062	06	22122	0.0550
0063	01	11112	0.0020
0063	02	11121	0.0016
0063	03	11122	0.0082
0063	04	11212	0.0015
0063	05	11221	0.0012
0063	06	11222	0.0062
0063	07	12111	0.0165
0063	08	12112	0.0864
0063	09	12121	0.0678
0063	10	12122	0.3554
0063	11	12211	0.0125
0063	12	12212	0.0653
0063	13	12221	0.0512
0063	14	12222	0.2686
0063	15	22111	0.0010
0063	16	22112	0.0053
0063	17	22121	0.0042
0063	18	22122	0.0218
0063	19	22212	0.0040
0063	20	22221	0.0031
0063	21	22222	0.0165
0064	01	11112	0.0023
0064	02	11122	0.6143
0064	03	11222	0.0033
0064	04	12122	0.0142

0064	05	21112	0.0013
0064	06	21122	0.3545
0064	07	21222	0.0019
0064	08	22122	0.0082
0065	01	12211	0.0027
0065	02	22111	0.0052
0065	03	22211	0.9506
0065	04	22212	0.0380
0065	05	22221	0.0035
0066	01	12111	0.0833
0066	02	12112	0.0033
0066	03	12121	0.0524
0066	04	12122	0.0021
0066	05	12211	0.5060
0066	06	12212	0.0202
0066	07	12221	0.3184
0066	08	12222	0.0127
0066	09	22211	0.0014
0067	01	11211	0.0534
0067	02	11212	0.0021
0067	03	12211	0.0016
0067	04	21111	0.0048
0067	05	21211	0.8724
0067	06	21212	0.0349
0067	07	21221	0.0032
0067	08	22211	0.0264
0067	09	22212	0.0011
0068	01	11111	0.0361
0068	02	11121	0.0227
0068	03	11211	0.2194
0068	04	11221	0.1381
0068	05	12211	0.0051
0068	06	12221	0.0032
0068	07	21111	0.0489
0068	08	21121	0.0307
0068	09	21211	0.2968
0068	10	21221	0.1867
0068	11	22111	0.0011
0068	12	22211	0.0068
0068	13	22221	0.0043
0069	01	12112	0.0043
0069	02	12121	0.0048
0069	03	12122	0.0214
0069	04	12212	0.0036
0069	05	12221	0.0040
0069	06	12222	0.0179

0069	07	22111	0.0159
0069	08	22112	0.0702
0069	09	22121	0.0791
0069	10	22122	0.3493
0069	11	22211	0.0133
0069	12	22212	0.0586
0069	13	22221	0.0660
0069	14	22222	0.2917
0070	01	11111	0.0114
0070	02	12111	0.4964
0070	03	12112	0.0206
0070	04	12121	0.0283
0070	05	12122	0.0012
0070	06	12211	0.0257
0070	07	12212	0.0011
0070	08	12221	0.0015
0070	09	21111	0.0081
0070	10	22111	0.3519
0070	11	22112	0.0146
0070	12	22121	0.0200
0070	13	22211	0.0182
0070	14	22221	0.0010
0071	01	11111	0.1070
0071	02	11112	0.0043
0071	03	11121	0.0674
0071	04	11122	0.0027
0071	05	11211	0.0176
0071	06	11221	0.0111
0071	07	21111	0.4003
0071	08	21112	0.0160
0071	09	21121	0.2519
0071	10	21122	0.0101
0071	11	21211	0.0659
0071	12	21212	0.0026
0071	13	21221	0.0415
0071	14	21222	0.0017
0072	01	11112	0.0195
0072	02	11122	0.0310
0072	03	11212	0.1183
0072	04	11222	0.1881
0072	05	12112	0.0079
0072	06	12122	0.0126
0072	07	12212	0.0480
0072	08	12222	0.0763
0072	09	21112	0.0194
0072	10	21122	0.0308

0072	11	21212	0.1176
0072	12	21222	0.1869
0072	13	22112	0.0079
0072	14	22122	0.0125
0072	15	22212	0.0477
0072	16	22222	0.0758
0073	01	11111	0.9492
0073	02	11112	0.0380
0073	03	11121	0.0035
0073	04	11211	0.0052
0073	05	12111	0.0015
0073	06	21111	0.0027
0074	01	11111	0.0094
0074	02	11112	0.0111
0074	03	11121	0.0114
0074	04	11122	0.0135
0074	05	11211	0.0279
0074	06	11212	0.0330
0074	07	11221	0.0338
0074	08	11222	0.0400
0074	09	12111	0.0143
0074	10	12112	0.0169
0074	11	12121	0.0173
0074	12	12122	0.0205
0074	13	12211	0.0423
0074	14	12212	0.0501
0074	15	12221	0.0512
0074	16	12222	0.0607
0074	17	21111	0.0113
0074	18	21112	0.0134
0074	19	21121	0.0137
0074	20	21122	0.0163
0074	21	21211	0.0336
0074	22	21212	0.0398
0074	23	21221	0.0407
0074	24	21222	0.0482
0074	25	22111	0.0172
0074	26	22112	0.0204
0074	27	22121	0.0208
0074	28	22122	0.0247
0074	29	22211	0.0510
0074	30	22212	0.0604
0074	31	22221	0.0618
0074	32	22222	0.0732
0075	01	11111	0.0052
0075	02	11211	0.9529

0075	03	11221	0.0035
0075	04	12211	0.0220
0075	05	21211	0.0164
0076	01	11122	0.0023
0076	02	21112	0.0031
0076	03	21122	0.8226
0076	04	21222	0.1496
0076	05	22122	0.0190
0076	06	22222	0.0035
0077	01	12122	0.0024
0077	02	22111	0.0044
0077	03	22112	0.1104
0077	04	22121	0.0338
0077	05	22122	0.8445
0077	06	22222	0.0046
0078	01	11111	0.0294
0078	02	11112	0.0966
0078	03	11121	0.0535
0078	04	11122	0.1755
0078	05	11211	0.0490
0078	06	11212	0.1610
0078	07	11221	0.0891
0078	08	11222	0.2926
0078	09	12111	0.0017
0078	10	12112	0.0054
0078	11	12121	0.0030
0078	12	12122	0.0099
0078	13	12211	0.0028
0078	14	12212	0.0091
0078	15	12221	0.0050
0078	16	12222	0.0165
0079	01	11112	0.0116
0079	02	11122	0.0184
0079	03	11212	0.0019
0079	04	11222	0.0030
0079	05	12112	0.0075
0079	06	12122	0.0120
0079	07	12212	0.0012
0079	08	12222	0.0020
0079	09	21112	0.1893
0079	10	21122	0.3008
0079	11	21212	0.0312
0079	12	21222	0.0495
0079	13	22112	0.1232
0079	14	22122	0.1958
0079	15	22212	0.0203
0079	16	22222	0.0322
------	----	-------	--------
0080	01	11111	0.0033
0080	02	11121	0.0021
0080	03	11211	0.6076
0080	04	11221	0.3823
0080	05	21211	0.0029
0080	06	21221	0.0018
0081	01	11111	0.0030
0081	02	12111	0.0035
0081	03	21111	0.4409
0081	04	21112	0.0176
0081	05	21121	0.0016
0081	06	21211	0.0024
0081	07	22111	0.5061
0081	08	22112	0.0202
0081	09	22121	0.0019
0081	10	22211	0.0028
0082	01	11111	0.0015
0082	02	11211	0.0093
0082	03	12111	0.0664
0082	04	12112	0.0027
0082	05	12211	0.4035
0082	06	12212	0.0161
0082	07	12221	0.0015
0082	08	21111	0.0015
0082	09	21211	0.0093
0082	10	22111	0.0662
0082	11	22112	0.0026
0082	12	22211	0.4018
0082	13	22212	0.0161
0082	14	22221	0.0015
0083	01	11211	0.0125
0083	02	11221	0.0079
0083	03	12111	0.0030
0083	04	12121	0.0019
0083	05	12211	0.5426
0083	06	12212	0.0217
0083	07	12221	0.3414
0083	08	12222	0.0137
0083	09	22211	0.0332
0083	10	22212	0.0013
0083	11	22221	0.0209
0084	01	11111	0.5389
0084	02	11112	0.0018
0084	03	11121	0.0097
0084	04	11211	0.1836

0084	05	11221	0.0033
0084	06	12111	0.1913
0084	07	12121	0.0034
0084	08	12211	0.0652
0084	09	12221	0.0012
0084	10	21111	0.0015
0085	01	11111	0.2579
0085	02	11112	0.0103
0085	03	11121	0.1623
0085	04	11122	0.0065
0085	05	11211	0.0425
0085	06	11212	0.0017
0085	07	11221	0.0267
0085	08	11222	0.0011
0085	09	21111	0.2489
0085	10	21112	0.0100
0085	11	21121	0.1566
0085	12	21122	0.0063
0085	13	21211	0.0410
0085	14	21212	0.0016
0085	15	21221	0.0258
0085	16	21222	0.0010
0086	01	11111	0.4281
0086	02	11112	0.0171
0086	03	11121	0.0016
0086	04	11211	0.0705
0086	05	11212	0.0028
0086	06	12111	0.3903
0086	07	12112	0.0156
0086	08	12121	0.0015
0086	09	12211	0.0643
0086	10	12212	0.0026
0086	11	21111	0.0029
0086	12	22111	0.0027
0087	01	11111	0.0084
0087	02	11121	0.0053
0087	03	12111	0.3645
0087	04	12112	0.0146
0087	05	12121	0.2294
0087	06	12122	0.0092
0087	07	12211	0.0020
0087	08	12221	0.0012
0087	09	21111	0.0049
0087	10	21121	0.0031
0087	11	22111	0.2103
0087	12	22112	0.0084

0087	13	22121	0.1323
0087	14	22122	0.0053
0087	15	22211	0.0011
0088	01	11111	0.0050
0088	02	11121	0.0032
0088	03	11211	0.0304
0088	04	11221	0.0191
0088	05	21111	0.0818
0088	06	21121	0.0514
0088	07	21211	0.4966
0088	08	21221	0.3125
0089	01	11122	0.0052
0089	02	11212	0.0035
0089	03	11221	0.0380
0089	04	11222	0.9506
0089	05	21222	0.0027
0090	01	11111	0.0561
0090	02	11112	0.0022
0090	03	11211	0.3411
0090	04	11212	0.0136
0090	05	11221	0.0013
0090	06	12111	0.0556
0090	07	12112	0.0022
0090	08	12211	0.3379
0090	09	12212	0.0135
0090	10	12221	0.0013
0090	11	21111	0.0120
0090	12	21211	0.0730
0090	13	21212	0.0029
0090	14	22111	0.0119
0090	15	22211	0.0724
0090	16	22212	0.0029
0091	01	11122	0.0077
0091	02	11221	0.0019
0091	03	11222	0.0465
0091	04	12222	0.0011
0091	05	21121	0.0050
0091	06	21122	0.1250
0091	07	21212	0.0028
0091	08	21221	0.0304
0091	09	21222	0.7593
0091	10	22122	0.0029
0091	11	22222	0.0175
0092	01	11111	0.0150
0092	02	11121	0.0095
0092	03	11211	0.0298

0092	04	11221	0.0187
0092	05	12111	0.0336
0092	06	12121	0.0211
0092	07	12211	0.0665
0092	08	12221	0.0418
0092	09	21111	0.0486
0092	10	21121	0.0306
0092	11	21211	0.0964
0092	12	21221	0.0607
0092	13	22111	0.1086
0092	14	22121	0.0683
0092	15	22211	0.2152
0092	16	22221	0.1354
0093	01	11122	0.0024
0093	02	12111	0.0177
0093	03	12112	0.0662
0093	04	12121	0.0628
0093	05	12122	0.2349
0093	06	12211	0.0032
0093	07	12212	0.0120
0093	08	12221	0.0114
0093	09	12222	0.0427
0093	10	21122	0.0029
0093	11	22111	0.0213
0093	12	22112	0.0798
0093	13	22121	0.0757
0093	14	22122	0.2833
0093	15	22211	0.0039
0093	16	22212	0.0145
0093	17	22221	0.0138
0093	18	22222	0.0515
0094	01	11111	0.4808
0094	02	11121	0.0018
0094	03	11211	0.0026
0094	04	12111	0.0049
0094	05	21111	0.5002
0094	06	21121	0.0019
0094	07	21211	0.0027
0094	08	22111	0.0051
0095	01	11122	0.0011
0095	02	11212	0.0043
0095	03	11222	0.0068
0095	04	12112	0.0232
0095	05	12121	0.0015
0095	06	12122	0.0368
0095	07	12211	0.0056

0095	08	12212	0.1408
0095	09	12221	0.0090
0095	10	12222	0.2237
0095	11	21122	0.0013
0095	12	21212	0.0051
0095	13	21222	0.0082
0095	14	22111	0.0011
0095	15	22112	0.0280
0095	16	22121	0.0018
0095	17	22122	0.0444
0095	18	22211	0.0068
0095	19	22212	0.1698
0095	20	22221	0.0108
0095	21	22222	0.2699
0096	01	11111	0.0281
0096	02	11112	0.0345
0096	03	11121	0.0341
0096	04	11122	0.0419
0096	05	11211	0.1705
0096	06	11212	0.2097
0096	07	11221	0.2070
0096	08	11222	0.2547
0096	09	12211	0.0039
0096	10	12212	0.0048
0096	11	12221	0.0048
0096	12	12222	0.0059
0097	01	12111	0.2664
0097	02	12121	0.1676
0097	03	12211	0.0256
0097	04	12221	0.0161
0097	05	22111	0.2937
0097	06	22121	0.1848
0097	07	22211	0.0282
0097	08	22221	0.0177
0098	01	12212	0.0066
0098	02	12222	0.0776
0098	03	21222	0.0068
0098	04	22122	0.0045
0098	05	22212	0.0709
0098	06	22222	0.8336

M. H. Siddappaji et al.

II. *Phenotypic Fitness Data for QTL Mapping and for assessing compensatory responses*

Year 1 Data

ANOVA

SOURCE	SS	DF	MS	F	Ρ
TRT\$	1368	1	1368	0.166	0.684
LINE	8150.17	92	88589	10.755	0.000
TRT\$*LINE	1250.508	92	13.592	1.650	0.000
ERROR	5387.187	654	8.237		

Normality Plot

Clipping Treatment	Line	Siliques
uc	1	558
uc	1	498
uc	1	233
uc	1	
uc	1	
uc	2	295
uc	2	34
uc	2	398
uc	2	321
uc	2	442
uc	3	358
uc	3	321
uc	3	479
uc	3	354
uc	3	355
uc	4	386
uc	4	196
uc	4	241
uc	4	157
uc	4	283
uc	5	224
uc	5	402
uc	5	267
uc	5	432
uc	5	223
uc	6	382
uc	6	415
uc	6	308
uc	6	
uc	6	
uc	1	496
uc	1	540
uc	/	546
uc	7	824
uc	1	309
uc	8	567
uc	8	515
UC	8	501
uc	8	334
uc	8	305
uc	9	443
uc	9	045 694
uc	9	570
uc	9	5/3
uc	9	
uc	10	223
	10	222 120
uu	10	-100

uc	10	176
uc	10	
uc	11	423
uc	11	509
uc	11	380
uc	11	370
uc	11	471
uc	12	632
uc	12	718
uc	12	518
uc	12	502
uc	12	594
UC	13	450
UC	13	77
UC	13	545
	13	477
	13	400
	14	361
	14	228
	14	428
	14	420
	14	470
	15	354
	15	413
	15	377
	15	201
	15	375
	16	167
	16	244
	10	260
	10	300
	10	•
	10	272
	17	31Z 100
	17	100
uc	17	430
uc	17	329
uc	17	
uc	18	503
uc	18	499
uc	18	•
uc	18	
uc	19	660
uc	19	641
uc	19	904
uc	19	266
uc	19	540
uc	20	443
uc	20	489
uc	20	367
uc	20	273

uc	20	319
uc	21	380
uc	21	362
uc	21	
UC	21	
	21	-
	22	56
	22	370
	22	333
	22	767
	22	101
	22	257
	20	207
uc	23	370
uc	23	331
uc	23	242
uc	23	239
uc	24	613
uc	24	501
uc	24	5/1
uc	24	600
uc	24	794
uc	25	196
uc	25	187
uc	25	95
uc	25	213
uc	25	198
uc	27	392
uc	27	273
uc	27	376
uc	27	463
uc	27	413
uc	28	695
uc	28	408
uc	28	640
uc	28	438
uc	28	456
uc	30	
uc	31	255
uc	31	483
uc	31	420
UC	31	
UC	32	401
uC	32	741

_	~~	FO7
uc	32	527
uc	32	472
uc	32	679
uc	33	412
uc	33	304
uc	33	333
uc	33	341
uc	33	315
uc	34	321
uc	34	385
uc	34	654
uc	35	252
uc	35	259
uc	35	226
uc	35	
uc	35	
uc	36	624
uc	36	489
uc	36	519
uc	36	
uc	36	
uc	36	
uc	37	402
uc	37	560
uc	37	258
uc	37	280
uc	37	500
uc	39	
UC	39	
	39	
	39	•
	40	496
	40	435
	40	543
	40	424
	40	727
	40	546
	41	102
uc	41	490
	41	233
	41	•
	41	100
uc	42	190
uc	42	405
uc	42	390
uc	42	•
uc	42	
uc	43	267
uc	43	295
uc	43	383
uc	43	240

uc	43	
uc	44	360
uc	44	420
uc	44	361
uc	44	425
uc	44	296
uc	45	235
uc	45	190
uc	45	209
uc	45	137
uc	46	451
uc	46	123
uc	46	481
uc	46	
uc	47	609
uc	47	726
uc	47	712
uc	47	844
uc	47	716
uc	48	134
uc	48	136
uc	48	135
uc	48	
uc	48	
uc	49	259
uc	49	145
uc	49	231
uc	50	420
uc	50	399
uc	50	467
uc	50	356
uc	50	
uc	51	306
uc	51	329
uc	51	444
uc	51	203
uc	51	143
uc	52	474
uc	52	574
uc	52	880
uc	52	620
uc	52	656
uc	53	361
UC	53	402
uc	53	469
UC	53	435
UC	53	329
UC	55	441
uc	55	383
uc	55	458

uc	55	512
uc	55	614
uc	56	352
uc	56	270
uc	56	232
uc	56	277
uc	56	263
UC	57	218
UC	57	343
uc	57	382
	57	
	57	-
	58	406
	58	505
	58	546
	58	103
	58	388
	50	806
	50	486
uc	59	400
	59	094
	59	000
	59	
uc	60	862
uc	60	659
uc	60	/4/
uc	60	•
uc	60	
uc	61	243
uc	61	102
uc	61	63
uc	61	104
uc	61	235
uc	62	497
uc	62	559
uc	62	525
uc	62	712
uc	62	885
uc	63	395
uc	63	247
uc	63	281
uc	63	335
uc	63	
uc	64	326
uc	64	447
uc	64	311
uc	64	380
uc	64	190
uc	65	390
uc	65	452
uc	65	540

uc	65	497
uc	65	614
uc	66	133
uc	66	215
uc	66	146
uc	66	183
uc	66	336
UC	67	272
uc	67	523
uc	67	183
uc	67	570
uc	67	583
	68	510
	68	610
	68	511
	68	464
	68	476
	69	
	69	•
	69	·
	69	•
	69	·
	70	131
	70	296
	70	346
	70	040
	70	•
	71	587
	71	751
	71	/51
	71	356
	71	331
	72	172
	72	172
	72	235
	72	200
	72	·
	72	300
	73	305
	73	303 402
	73	300
	73	507
	73	257
	74	207
	74	271
	74	201
	74	324
	75	207
	75	291 102
	75	380
uu	15	505

uc	75	
uc	75	
uc	76	447
uc	76	481
UC	76	569
	76	480
	76	515
	70	113
	77	300
	77	300
uc	77	•
uc	77	·
uc	70	
uc	78	207
uc	78	227
uc	78	336
uc	78	220
uc	78	349
uc	79	433
uc	79	190
uc	79	449
uc	79	450
uc	79	
uc	80	551
uc	80	338
uc	80	426
uc	80	433
uc	80	
uc	81	326
uc	81	155
uc	81	88
uc	81	462
uc	81	91
uc	82	572
uc	82	243
uc	82	651
uc	82	201
uc	82	522
uc	83	1182
uc	83	1166
	83	649
	83	787
	83	653
	84	406
	0 4 04	-00 517
uc	04	017 050
	04 01	200
	04 04	•
	04 05	
uc	85 05	531
uC	85	525
uC	85	618

uc	85	750
uc	85	795
uc	86	535
uc	86	333
uc	86	374
uc	86	435
uc	86	433
uc	87	697
uc	87	269
uc	87	484
uc	87	619
uc	87	673
UC	88	384
	88	154
	88	570
	88	607
	88	001
	89	434
	89	538
	89	584
	89	363
	89	000
	90	447
	90 QA	120
	90	429
	90	410
	90	383
	90 01	302
uc	91	JZZ 420
	91	439
	91	404
uc	91	389
uc	91	321
uc	92	244
uc	92	335
uc	92	296
uc	92	212
uc	92	
uc	93	343
uc	93	508
uc	93	459
uc	93	435
uc	93	520
uc	94	696
uc	94	688
uc	94	754
uc	94	594
uc	94	704
uc	95	463
uc	95	511
uc	95	771

uc	95	924
uc	95	630
uc	96	223
uc	96	378
uc	96	395
uc	96	
uc	96	
uc	97	284
uc	97	361
uc	97	486
uc	97	166
uc	97	
uc	98	469
uc	98	335
uc	98	522
uc	98	487
uc	98	627
uc	98	
uc	98	
uc	99	488
uc	99	417
uc	99	619
uc	99	
uc	99	
uc	686	325
uc	686	449
uc	686	377
uc	686	371
uc	686	301
С	1	350
c	1	235
c	1	345
c	1	333
c	1	234
c	2	417
c	2	362
c	2	337
c	2	365
c	2	365
c c	-3	500
c c	3	530
c	3	341
c c	3	527
- C	3	441
c C	4	262
c C	4	385
- C	4	317
- C	4	365
- C	4	312
c	5	175
	-	

С	5	326
C	5	459
C	5	199
c.	5	476
c c	6	428
C C	6	374
C C	6	323
C C	6	208
C C	6	200 402
C C	7	513
C C	7	653
	7	575
	7	664
	7	004
	0	502
	0	00Z
	0	202
C	8	031
	0	300
C	8	410
C	9	097
C	9	/18
C	9	864
С	9	668
С	9	389
С	10	534
С	10	333
С	10	242
С	10	398
С	10	356
С	11	394
С	11	450
С	11	454
С	11	481
С	11	528
С	12	859
С	12	656
С	12	822
с	12	707
С	12	668
С	13	615
С	13	623
С	13	1092
С	13	763
С	13	610
С	14	477
С	14	501
С	14	440
С	14	535
с	14	528
С	15	527

с	15	350
с	15	456
с	15	457
с	15	390
с	16	496
с	16	498
с	16	484
с	16	484
с	16	
с	17	472
с	17	414
с	17	409
с	17	439
с	17	297
с	18	446
С	18	1268
С	18	559
с	18	674
с	19	434
с	19	781
с	19	478
с	19	458
с	19	398
с	20	462
с	20	540
с	20	721
с	20	392
с	20	481
с	21	312
с	21	255
с	21	282
с	21	331
с	21	373
с	22	622
с	22	233
с	22	628
с	22	314
с	22	
с	23	516
с	23	408
с	23	519
С	23	517
С	23	432
с	24	611
с	24	642
с	24	693
с	24	801
С	24	911
С	25	142
С	25	148

	_	
С	25	148
С	25	248
С	25	200
С	27	635
С	27	395
С	27	451
С	27	493
с	27	555
с	28	413
с	28	468
с	28	476
с	28	366
С	28	298
С	30	
с	31	554
с	31	278
с	31	222
с	31	264
с	31	215
с	31	332
с	31	425
C	32	599
C	32	708
с	32	743
C	32	479
C	32	743
C	33	410
c	33	444
c	33	374
c	33	384
c	33	
C C	34	423
c c	34	550
c c	34	310
c c	35	392
C C	35	264
C C	35	204 412
C C	35	211
C C	35	242
с с	36	502
	36	582
0	36	702
	36	201
	36	304 402
	36	490 650
	30 27	200 470
U U	31	4/Z

с	37	499
с	37	537
с	37	546
С	37	134
С	39	
с	40	570
с	40	360
с	40	366
C	40	264
c c	40	248
c c	41	425
с С	<u>4</u> 1	420
C C		505
C C		705
	41	705 508
	41	290
	42	224
	42	303
C	42	417
C	42	488
С	42	507
С	43	429
С	43	934
С	43	419
С	43	538
С	43	379
С	44	360
С	44	279
с	44	301
с	44	402
С	44	486
С	45	324
С	45	333
с	45	189
с	45	158
с	46	506
с	46	448
с	46	475
C	46	533
C	47	404
c	47	801
c c	47	609
C S	47	730
с С	47	407
с С	-+, 18	100
0	70 19	100
	40	420
	40 ⊿0	404
υ.	40	401

С	48	
с	49	236
с	49	262
с	49	233
C	50	437
c	50	358
C C	50	330
C C	50	272
c c	50	482
о С	51	452
C C	51	301
с с	51	337
	51	377
	51	227
	51	JJ1 710
C	52	712
C	52	526
С	52	569
С	52	815
С	52	761
С	53	342
С	53	401
С	53	236
С	53	407
С	53	258
С	55	515
С	55	423
С	55	419
С	55	454
С	55	483
С	56	349
С	56	223
С	56	283
С	56	299
С	56	239
С	57	287
С	57	356
с	57	326
с	57	91
с	57	327
с	58	654
С	58	581
С	58	581
C	58	557
C	58	408
C	59	812
C C	59	548
с С	59	919
с С	59	515
с С	59	•
с С	60	465
-		

С	60	763
С	60	429
С	60	859
С	60	
С	61	360
С	61	384
с	61	285
С	61	386
С	61	352
С	62	485
С	62	495
с	62	948
С	62	764
С	62	753
С	63	297
С	63	416
с	63	316
с	63	237
с	63	
с	64	471
с	64	119
с	64	345
с	64	395
с	64	421
с	65	506
с	65	586
с	65	547
с	65	237
C	65	399
C	66	386
C	66	239
C	66	260
C	66	161
C	66	188
C	67	563
C	67	490
c	67	518
c	67	645
c	67	467
c	68	197
C C	68	210
c	68	481
c	68	441
C C	68	417
c	69	
c	69	•
C	70	247
-	- -	_ • •

<u>^</u>	70	330
	70	201
С	70	201
С	70	324
С	70	302
С	71	753
С	71	565
С	71	562
С	71	549
С	71	559
с	72	278
с	72	241
C	72	
C C	72	•
0	72	•
C C	72	536
	73	205
	73	300
C	73	420
С	73	/18
С	73	360
С	74	412
С	74	376
С	74	403
С	74	352
С	74	438
С	75	392
С	75	364
С	75	519
с	75	496
с	75	419
C	76	484
c	76	585
C C	76	671
° C	76	532
C C	76	374
C	70	384
	77	156
	77	400
	77	274
C	77	•
С	//	
С	78	468
С	78	450
С	78	323
С	78	520
С	78	382
С	79	519
С	79	394
С	79	462
С	79	530
С	79	443
С	80	370

80	376
80	413
80	437
80	386
81	205
81	294
81	248
01	165
01	105
01	207
82	572
82	274
82	427
82	921
82	
83	1130
83	549
83	993
83	877
83	949
84	392
84	480
84	450
84	-50 552
04	502
04	506
85	595
85	459
85	903
85	784
85	
86	312
86	374
86	500
86	371
86	435
87	319
87	388
87	463
87	438
87	308
07	614
00	266
88	200
88	164
88	468
88	•
89	401
89	172
89	221
89	202
89	408
90	531
	80 80 80 81 81 81 81 81 82 82 82 82 82 82 82 82 83 83 83 83 83 83 83 83 83 83

с	90	527
с	90	502
с	90	610
с	90	397
с	91	385
с	91	297
с	91	409
с	91	373
C	91	357
C	92	492
c	92	380
c c	92	376
C S	92	430
с С	02	265
C C	02	601
	03	452
	90	455
	93	407 610
	93	450
C	93	450
C	94	800
С	94	748
С	94	464
С	94	/6/
С	94	502
С	95	563
С	95	540
С	95	569
С	95	511
С	95	547
С	96	305
С	96	398
С	96	•
С	96	
С	96	
с	97	558
С	97	808
С	97	340
С	97	612
с	97	417
с	98	373
с	98	353
с	98	538
с	98	541
с	98	563
С	98	
с	98	
с	99	409
с	99	420
C	99	427
C	99	347

С	99	
С	686	377
С	686	430
С	686	433
С	686	439
С	686	381

Year 2 Data

ANOVA

SOURCE	SS	DF		MS	F	Ρ
TRT\$	0.189		1	0.189	0.056	0.813
LINE	18,243.861		83	219.806	65.354	0.000
TRT\$*LINE	911.029		83	10.976	3.264	0.000
ERROR	2,152.515		640	3.363		

Normality Plot

* Data approximate normality with a sqrt transformation with homogeneity of variances (Levene's Test 0.147, p=0.702)

Clipping		
Treatment	Line	Siliques
uc	1	265
uc	1	221
uc	1	273
uc	1	197
uc	1	219
uc	2	295
uc	2	34
uc	2	398
uc	2	321
uc	2	442
uc	3	358
uc	3	321
uc	3	479
uc	3	354
uc	3	355
uc	4	386
uc	4	196
uc	4	241
uc	4	157
uc	4	283
uc	5	224
uc	5	402
uc	5	267
uc	5	432
uc	5	223
uc	6	172
uc	6	295
uc	6	275
uc	6	273
uc	6	
uc	7	142
uc	7	138
uc	7	147
uc	7	148
uc	7	162
uc	8	27
uc	8	35
uc	8	32
uc	8	21
uc	8	27
uc	9	21
uc	9	25
uc	9	19
uc	9	27
uc	9	26
uc	10	19

uc	10	21
uc	10	23
uc	10	16
uc	10	17
uc	11	15
uc	11	17
uc	11	9
uc	11	8
uc	11	21
uc	12	52
uc	12	49
uc	12	61
uc	12	49
UC	12	68
UC	13	162
UC	13	178
uc	13	252
	13	282
	13	297
	14	193
	14	100
	14	157
	14	178
	14	170
	15	. 57
	15	38
	15	30
uc	15	39
uc	15	12
uc		
uc	10	1/5
uc	10	39
uc	16	37
uc	16	78
uc	16	79
uc	17	93
uc	17	143
uc	17	151
uc	17	171
uc	17	93
uc	18	
uc	19	31
uc	19	9
uc	19	27
uc	19	21
uc	19	9
uc	20	65
uc	20	73

uc	20	85
uc	20	92
uc	20	78
uc	21	3
uc	21	4
uc	21	7
uc	21	4
uc	21	8
uc	22	73
uc	22	85
uc	22	97
uc	22	143
uc	22	127
uc	23	173
uc	23	184
uc	23	197
uc	23	187
uc	23	168
uc	24	142
	24	139
	24	129
	24	132
	24	133
	25	65
	25	52
	25	38
	25	109
	25	151
	23	143
	27	152
	27	161
	27	163
	27	1/18
	21	7/
	20	20
	20	05
	20	120
	20	139
	20	142
	20	41
uc	30	05
uc	30	95
uc	30	91 57
uc	30	57
uc	31	100
uC	31	19
uC	31	23
UC	31	33
uc	31	157
UC	31	•
uC	31	

uc	32	198
uc	32	237
uc	32	327
uc	32	198
uc	32	195
uc	33	65
uc	33	52
uc	33	38
uc	33	109
uc	33	151
uc	34	
uc	34	
UC	34	
UC	35	
	35	•
	35	•
	35	•
	35	•
	36	236
	36	212
	36	171
	36	619
	36	010
	36	•
	37	312
	37	107
	37	175
	37	100
uc	27	102
	20	190
	39	00 04
uc	39	94 47
uc	39	17
uc	39	68
uc	40	32
uc	40	28
uc	40	37
uc	40	43
uc	40	31
uc	41	11
uc	41	8
uc	41	23
uc	41	27
uc	41	22
uc	42	27
uc	42	23
uc	42	11
uc	42	20
uc	42	
uc	43	17
uc	43	11

uc	43	19
uc	43	21
uc	43	20
uc	44	123
uc	44	138
uc	44	142
uc	44	172
uc	44	158
uc	45	
uc	46	181
uc	46	98
uc	46	143
uc	46	
uc	47	
uc	48	82
uc	48	79
uc	48	83
uc	48	78
uc	48	
uc	49	
uc	49	
uc	49	
uc	50	82
uc	50	79
uc	50	83
uc	50	78
uc	50	
uc	51	
uc	52	112
uc	52	143
uc	52	153
uc	52	262
UC	52	253
uC	53	184
uC	53	192
uC	53	165
uC	53	164
uc	53	212
uc	55	29

uc	55	38
uc	55	42
uc	55	57
uc	55	
uc	56	
uc	57	125
uc	57	100
uc	57	145
uc	57	137
uc	57	112
uc	58	139
uc	58	145
uc	58	178
uc	58	179
uc	58	128
uc	59	112
uc	59	120
uc	59	138
uc	59	115
uc	59	125
uc	60	110
uc	60	110
uc	60	95
uc	60	85
uc	60	90
uc	61	
uc	62	138
uc	62	127
uc	62	243
uc	62	190
uc	62	
uc	63	65
uc	63	195
uc	63	204
uc	63	85
UC	63	95
uc	64	192
UC	64	305
uc	64	319
UC	64	303
UC	64	140
UC	65	164

uc	65	138
uc	65	184
uc	65	192
uc	65	187
uc	66	21
uc	66	198
uc	66	252
uc	66	141
uc	66	142
uc	67	
uc	68	321
uc	68	298
uc	68	282
uc	68	341
uc	68	328
uc	69	98
uc	69	185
uc	69	98
uc	69	137
uc	69	115
uc	70	192
uc	70	245
uc	70	102
uc	70	182
uc	70	29
uc	71	182
uc	71	195
uc	71	193
uc	71	215
uc	71	
uc	72	43
uc	72	39
uc	72	51
uc	72	63
uc	72	
uc	73	93
uc	73	182
uc	73	172
uc	73	161
uc	73	159
uc	74	215
uc	74	178
uc	74	
uc	74	
uc	74	
uc	75	215

uC	75	162
uc	75	172
uc	75	153
uc	75	142
uc	76	
	77	142
	77	153
	77	162
	77	172
	77	182
	78	185
	78	103
uc	70	192
	70	100
uc	70	165
uc	70	100
	79	212
	79	213
	79	313
uc	79	3/1
uc	79	324
uc	80	92
uc	80	185
uc	80	295
uc	80	254
uc	80	261
uc	81	78
uc	81	87
uc	81	93
uc	81	85
uc	81	79
uc	82	224
uc	82	294
uc	82	187
uc	82	195
uc	82	270
uc	83	632
uc	83	694
uc	83	687
uc	83	609
uc	83	603
uc	84	390
uc	84	398
uc	84	331
uc	84	410
uc	84	321
uc	85	670

uc	85	598
uc	85	611
uc	85	610
uc	85	611
uc	86	110
uc	86	65
uc	86	79
uc	86	84
uc	86	95
uc	87	45
uc	87	53
uc	87	42
UC	87	40
	87	55
	88	85
	88	93
	88	170
	88	150
	88	160
	80	621
	80	385
	80	520
	80	529 650
	80	780
uc	09	700
	90	
uc	90	
uc	90	
	90	•
uc	90	
uc	91	85
uc	91	93
uc	91	89
uc	91	115
uc	91	
uc	92	139
uc	92	142
uc	92	134
uc	92	137
uc	92	142
uc	93	380
uc	93	342
uc	93	451
uc	93	371
uc	93	383
uc	94	210
uc	94	212
uc	94	195
uc	94	183
uc	94	
uc	95	198

uc	95	183
uc	95	
uc	95	
uc	95	
uc	96	195
uc	96	38
uc	96	55
uc	96	55
uc	96	193
uc	97	199
uc	97	238
UC	97	183
	97	209
	97	241
	98	65
	98	115
	98	140
	98	110
UC	98	
	98	•
UC	98	
UC	99	398
uc	99	497
UC	99	512
UC	99	495
uc	99	512
uc	686	249
UC	686	288
UC	686	233
UC	686	259
UC	686	291
c	1	127
c c	1	132
c	1	129
c.	1	163
c c	1	159
c c	2	417
c c	2	362
c c	2	337
c c	2	365
c C	2	365
c c	3	500
c c	3	530
c c	3	341
c c	3	527
c c	3	441
c C	4	262
c C	4	385
c C	4	317
C	4	365
	-	
		040
--------	--------	-----
С	4	312
С	5	175
с	5	326
С	5	459
С	5	199
с	5	476
с	6	173
с	6	295
с	6	298
с	6	275
с	6	296
C	7	195
c c	7	205
C C	7	195
C C	7	100
C C	7	210
C C	י 8	210
	0	20
	0	29
	0	20
C	0	10
C	8	29
С	9	21
С	9	12
С	9	9
С	9	8
С	9	7
С	10	17
С	10	21
С	10	19
С	10	19
С	10	21
С	11	21
с	11	19
с	11	22
с	11	17
с	11	12
с	12	59
с	12	38
с	12	35
с	12	27
с	12	21
C	13	198
C	13	297
C C	13	312
C C	13	275
C C	13	283
C C	14	108
c c	1/	190
с С	1/	107
0	14	200
0	14	209

с	14	207
с	15	75
с	15	67
с	15	39
с	15	74
с	15	83
с	16	93
с	16	87
с	16	137
C	16	83
C	16	
C	17	87
c	17	193
c	17	129
c	17	152
c	17	72
c	18	. –
c	18	
c	18	
c	18	
c	19	15
c	19	8
c	19	12
c	19	
c	19	23
c	20	92
c	20	78
c c	20	73
c C	20	72
c C	20	65
c C	21	21
c C	21	9
c C	21	23
c	21	21
c	21	17
c c	22	239
c C	22	198
c C	22	157
c C	22	193
c C	22	183
c C	23	195
c c	23	139
c C	23	294
C C	23	233
C C	23	200
C C	20	172
C C	27 24	178
c c	2-7 24	175
c c	27 24	162
c c	24	173
-	<u> </u>	

С	25	49
С	25	114
С	25	66
С	25	225
С	25	55
С	27	183
С	27	147
С	27	185
с	27	176
с	27	221
с	28	135
C C	28	143
° C	28	257
C C	28	133
с С	20	1/2
	20	61
	30	01
C	30	69
С	30	66
С	30	51
С	30	50
С	31	30
С	31	193
С	31	21
С	31	45
С	31	109
С	31	
С	31	
С	32	198
С	32	207
С	32	172
с	32	185
с	32	205
C	33	49
c	33	114
c c	33	66
C C	33	225
C C	33	55
C C	34	00
с С	24	•
	24	•
	34 25	•
C	35	•
С	36	172
С	36	138
С	36	0
С	36	310
С	36	

С	36	
с	37	304
с	37	297
с	37	198
с	37	142
с	37	151
с	39	58
с	39	39
с	39	83
с	39	39
с	40	8
с	40	15
с	40	4
с	40	11
с	40	9
с	41	31
C	41	27
C	41	21
с	41	11
с	41	43
C	42	11
C	42	15
C	42	16
c	42	9
c	42	15
c	43	11
c	43	11
c	43	8
c	43	15
c	43	21
c	44	142
c	44	132
c	44	132
c	44	141
c	44	152
c	45	
c	46	38
c	46	217
c	46	198
c C	46	175
C C	47	110
C C	47	•
c c	48	103
c	48	97
		÷ •

С	48	98
с	48	73
С	48	62
с	49	
с	49	
C	49	
C	50	103
c.	50	97
c c	50	98
c c	50	73
c C	50	62
c c	51	
C C	51	•
c c	52	85
C C	52	250
C C	52	197
C C	52	183
c c	52	284
c c	53	158
C C	53	1/2
C C	53	162
C C	53	230
C C	53	239
	55	20 4 65
	55	64
	55	0 4 54
	55	56
	55	71
	55	/ 1
	50	•
	50	•
	56	•
	50	•
	50	
	57	90 112
	57	120
	57	150
	57	100
	57	120
	50	129
	50	100
	20 50	∠14 100
	00 50	10Z
	00 50	179
	59 50	130
	59 50	145
C C	59	98
C	59	110

с	59	130
с	60	60
с	60	78
с	60	97
с	60	65
с	60	75
с	61	
с	62	225
с	62	220
с	62	212
с	62	240
с	62	
с	63	98
с	63	108
с	63	392
с	63	294
C	63	407
C	64	198
C	64	265
c	64	232
c	64	211
c	64	187
C	65	241
C	65	292
c	65	141
c	65	183
c	65	271
c	66	138
c	66	141
c	66	197
c	66	138
C	66	142
c	67	
c	67	•
c	68	168
c	68	175
c	68	207
c	68	168
c.	68	182
c.	69	147
c c	69	153
c c	69	162
c	69	184
-		

c	69	115
c c	70	102
0	70	215
с С	70	210
	70	275
	70	210
С	70	185
С	/1	198
С	71	152
С	71	172
С	71	168
С	71	212
С	72	197
С	72	271
С	72	362
С	72	209
С	72	198
с	73	182
с	73	197
C	73	154
с С	73	182
° C	73	215
C C	74	185
C C	74	202
	74	292 170
	74	170
C	74	•
C	74	
С	75 	240
С	75	175
С	75	182
С	75	212
С	75	215
С	76	
С	77	304
с	77	98
C	77	158
c	77	142
c c	77	163
° C	78	262
0	78	202
с С	70	292
	70	203
	10 70	190
C	1 Ŏ 70	212
C	79 70	351
С	79	323
С	79	347
С	79	410

С	79	225
С	80	208
С	80	275
с	80	308
с	80	185
с	80	165
С	81	104
с	81	97
C	81	102
C	81	105
c	81	97
C C	82	304
C C	82	297
C C	82	360
C C	82	307
	82	337
	83	621
	83	610
	00	500
	00	590 601
	00 02	620
	00	450
	04	430
C	04 04	441
0	04	495
C	84	391
C	84 05	398
С	85	598
С	85	541
С	85	595
С	85	591
С	85	5/5
С	86	78
С	86	83
С	86	76
С	86	79
С	86	65
С	87	45
С	87	65
С	87	23
С	87	71
С	87	76
С	88	98
С	88	97
С	88	65
С	88	90
С	88	125
с	89	209
с	89	308
С	89	304
С	89	382

С	89	401
С	90	
C	90	
C C	91	205
C C	91	198
C C	Q1	100
C C	Q1	155
C C	01	183
	02	100
	92	100
0	92	102
C	92	192
С	92	173
С	92	152
С	93	408
С	93	491
С	93	507
С	93	492
С	93	498
С	94	195
С	94	183
С	94	183
с	94	215
С	94	216
С	95	98
с	95	195
с	95	
С	95	
с	95	
C	96	158
C	96	175
c	96	130
c	96	195
C C	96	212
C C	97	365
C C	97	327
C C	07	336
	07	355
	07	242
	97	125
	90	100
C	90	195
С	98	185
С	98	193
С	98	192
С	98	98
С	98	95
С	99	308
С	99	316

С	99	372
С	99	298
С	99	345
С	686	355
С	686	337
С	686	336
С	686	355
С	686	342

III. Transcriptomic Data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44781

List of differentially expressed genes

	Microarray	
Number	Element	Gene
1	262038_at	AT1G35580
2	267516_at	AT2G30520
3	251028_at	AT5G02230
4	258448_at	AT3G22290
5	252308_at	<u>AT3G49310</u>
6	264501_at	<u>AT1G09390</u>
7	264977_at	AT1G27090
8	247353_at	AT5G63620
9	245817_at	AT1G26160
10	265953_at	AT2G37480
11	246320_at	AT1G16560
12	247553_at	AT5G60910
13	247694_at	<u>AT5G59750</u>
14	254270_at	<u>AT4G23100</u>
15	255417_at	AT4G03190
16	248551_at	AT5G50200
17	253964_at	AT4G26480
18	250895_at	AT5G03850
19	249694_at	AT5G35790
20	260395_at	AT1G69780
21	257148_at	AT3G27240
22	265227_s_at	<u>ATMG01280</u>
		AT2G07695
23	245790_at	AT1G32200
24	260821_at	AT1G06820
25	262059_at	AT1G80030
26	266465_at	AT2G47750
27	255148_at	<u>AT4G08470</u>
28	265228_at	<u>ATMG01190</u>
		AT2G07698
29	264871_at	AT1G24180
30	246745_at	AT5G27770
31	255797_at	AT2G33630

32	252290_at	<u>AT3G49140</u>
33	250382_at	<u>AT5G11580</u>
34	247433_at	AT5G62540
35	252960 at	AT4G38750
36	253243 at	AT4G34560
37	251666 [°] at	AT3G57050
38	248309 at	AT5G52540
39	251082 at	AT5G11580
40	254306 at	AT4G22330
41	247131 at	AT5G66190
42	263014 at	AT1G23400
43		AT1G79230
44	256502 at	AT1G36730
45	260536 at	AT2G43400
46	266904 at	AT2G34590
47	267609 at	AT2G26780
48		AT5G55220
49	248103 at	AT5G55160
50	260286 at	AT1G80600
51		AT2G38400
52	263973 at	AT2G42740
53	265817 at	AT2G18050
54	267035 at	AT4G38240
55	253886 at	AT4G27710
56	260896 at	AT1G29310
57	249900 at	AT5G22640
58	256193 [_] at	AT1G30200
59	249538 at	AT5G38840
60	259258 at	AT3G07670
61	261408 s at	AT1G07660
		AT1G07820
62	244939 at	ATCG00065
63	251449 [_] at	AT3G59920
64	253779_at	AT4G28490
65	261944_at	AT1G64650
66	257903 at	AT3G28460
67	264353 [_] at	AT1G03260
68	251409 [_] at	AT3G60245
69	263755_at	<u>AT2G21340</u>
70	245269_at	<u>AT4G14500</u>
71	245627_at	<u>AT1G56600</u>
72	253164_at	<u>AT4G35725</u>
73	250318_at	AT5G12200
74	250434_at	AT5G10390
75		AT3G46320
		AT3G45930[AT3G46320
76	262963_at	AT1G54220
77	256729_at	AT3G25680
78	260571_at	<u>AT2G43790</u>
79	261557_at	AT1G63640

80	266638 at	AT2G35490
81	258922_at	AT3G10610
82	245263_at	AT4G17740
83	264262_at	AT1G09200
84	253704_at	<u>AT4G29490</u>
85	247260_at	<u>AT5G64500</u>
86	257431_at	AT2G36360
87	262985_s_at	<u>AT1G70600</u>
		AT1G23290[AT1G70600
88	247140_at	AT5G66250
89	258766_at	<u>AT3G10700</u>
90	245176_at	<u>AT2G47440</u>
91	247925_at	<u>AT5G57560</u>
92	258755_at	<u>AT3G11945</u>
93	261424_at	<u>AT1G18700</u>
94	262174_at	<u>AT1G74910</u>
95	264454_at	<u>AT1G10320</u>
96	266438_at	<u>AT2G43180</u>
97	260510_at	<u>AT1G51580</u>
98	248676_at	<u>AT5G48850</u>
99	255537_at	<u>AT4G01690</u>
100	267517_at	<u>AT2G30520</u>
101	257215_at	<u>AT3G15070</u>
102	248669_at	<u>AT5G48730</u>
103	245284_at	<u>AT4G14210</u>
104	247306_at	<u>AT5G63870</u>
105	252235_at	<u>AT3G49910</u>
106	259193_at	<u>AT3G01480</u>
107	250941_at	<u>AT5G03320</u>
108	265735_at	<u>AT2G01140</u>
109	264421_at	<u>AT1G43170</u>

IV. Knockout mutant data

ANOVA							
Source	SS		DF		MS	F	Р
Trt	1.494	4	1		1.494	0.471	0.494
Line	126.	048	4		31.512	9.928	0.000
Trt * Line	28.0	13	4		7.003	2.206	0.073
Error	361.	824	114		3.174		
Effect	trt	line		trt	line	Р	
trt*line	c	sail12	52	uc	sail1252	0.471	
trt*line	c	salk01	193	uc	salk0193	0.419	
trt*line	c	Gabi8	64	uc	Gabi864	0.265	
trt *line	c	col		uc	col	0.019	
trt*line	c	ler		uc	ler	0.094	

Normality Plot

* Data approximate normality with sqrt transformation with homogeneity of variances (Levene's Test .203, p=0.653).

Treatment	Line	Siliques
С	sail1252	89
С	sail1252	92
С	sail1252	91
С	sail1252	70
С	sail1252	89
С	sail1252	78
С	sail1252	63
С	sail1252	133
С	sail1252	59
С	sail1252	89
С	sail1252	92
С	sail1252	91
С	sail1252	70
С	sail1252	89
С	sail1252	78
С	sail1252	63
С	sail1252	133
С	sail1252	59
uc	sail1252	70
uc	sail1252	79
uc	sail1252	95
uc	sail1252	98
uc	sail1252	112
uc	sail1252	98
uc	sail1252	132
uc	sail1252	89
uc	sail1252	59
uc	sail1252	70
uc	sail1252	79
uc	sail1252	95
uc	sail1252	98
uc	sail1252	112
uc	sail1252	98
uc	sail1252	132
uc	sail1252	89
uc	sail1252	59
С	salk019323	83
С	salk019323	102
С	salk019323	123
С	salk019323	98
С	saik019323	71
С	saik019323	59
С	saik019323	65
C	saik019323	83
C	saik019323	102
С	saiku19323	123

с	salk019323	98
с	salk019323	71
с	salk019323	59
с	salk019323	65
uc	salk019323	125
uc	salk019323	79
uc	salk019323	92
uc	salk019323	88
uc	salk019323	92
uc	salk019323	98
uc	salk019323	89
uc	salk019323	125
uc	salk019323	79
uc	salk019323	92
uc	salk019323	88
uc	salk019323	92
uc	salk019323	98
uc	salk019323	89
с	N173950	200
C	N173950	81
c	N173950	57
c	N173950	57
c	N173950	188
c	N173950	106
c	N173950	200
c	N173950	81
c	N173950	57
c	N173950	57
c	N173950	188
c	N173950	106
uc	N173950	139
UC	N173950	262
UC	N173950	266
	N173950	71
UC	N173950	50
UC	N173950	50
UC	N173950	139
UC	N173950	262
	N173950	266
	N173950	71
	N173950	50
	N173950	50
c	col	193
C C	col	159
C C	col	152
C C	col	187
c	col	149
c	col	165
c	col	186
c	col	115
•	501	110

с	col	171
uc	col	106
uc	col	119
uc	col	116
uc	col	119
uc	col	118
uc	col	128
uc	col	132
uc	col	112
uc	col	119
С	ler	133
с	ler	125
С	ler	115
С	ler	119
С	ler	115
С	ler	142
С	ler	112
С	ler	111
С	ler	89
uc	ler	125
uc	ler	190
uc	ler	147
uc	ler	132
uc	ler	162
uc	ler	197
uc	ler	114
uc	ler	137
uc	ler	140

V. Complementation Data

Analysis of Variance								
Source	Type III SS	df	Mean Squares	F-Ratio	p-Value			
TREATM\$	1,036.80	1	1,036.80	3.901	0.064			
Error	4,784.20	18	265.789					

* Data normally distributed with homogeneity of variances (Levene's Test .119, p=0.734).

Treatment	Siliques
С	138
С	128
С	137
С	118
С	105
С	117

С	119
С	163
С	124
С	128
Uc	128
Uc	108
Uc	118
Uc	128
Uc	110
Uc	121
Uc	113
Uc	89
Uc	135
Uc	83

VI. Expression Data

Analysis of Variance								
Source	Type III SS	df	Mean Squares	F-Ratio	p-Value			
TT\$	0.373	1	0.373	6.001	0.024			
GRP	0.809	4	0.202	3.253	0.033			
TT\$*GRP	0.954	4	0.239	3.837	0.018			
Error	1.244	20	0.062					

Standard Effect	Trt	group	_trt	_group	Estimate	Error	DF	t	Pr
trt*group	Col	1	ler	1	-0.4293	0.2036	20	-2.11	0.0478
trt*group	Col	2	ler	2	0.2133	0.2036	20	1.05	0.3073
trt*group	Col	3	ler	3	0.4053	0.2036	20	1.99	0.0604
trt*group	Col	4	ler	4	0.2867	0.2036	20	1.41	0.1745
trt*group	Col	5	ler	5	0.6393	0.2036	20	3.14	0.0052

Normality Plot

* Data normally distributed with a sqrt transformation with homogeneity of variances (Levene's Test .686, p=0.608).

Expression	Group
0.1	1
0.566	1
0.458	1
0.656	2
0.755	2
0.819	2
1.208	3
1.175	3
1.342	3
1.261	4
0.775	4
0.917	4
1.054	5
0.849	5
1.67	5
0.922	1
	Expression 0.1 0.566 0.458 0.656 0.755 0.819 1.208 1.175 1.342 1.261 0.775 0.917 1.054 0.849 1.67 0.922

ler	0.624	1
ler	0.866	1
ler	0.742	2
ler	0.624	2
ler	0.224	2
ler	0.877	3
ler	1.049	3
ler	0.583	3
ler	0.781	4
ler	0.843	4
ler	0.469	4
ler	0.768	5
ler	0.714	5
ler	0.173	5

File S2 Combined Phenotypic Genotypic data

Available for download as a CSV file at http://www.genetics.org/lookup/suppl/doi: 10.1534/genetics.113.154351 /-/DC1