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Abstract
Cardiovascular disease is the leading cause of death 
among patients with chronic kidney disease (CKD). 
Vascular calcification (VC) is one of the independent 
risk factors associated with cardiovascular disease and 
cardiovascular mortality in both the general population 
and CKD patients. Earlier evidence revealed substan-
tially higher prevalence of VC in young adults on chron-
ic hemodialysis compared to the general population in 
the same age range, indicating the influence of CKD-
related risk factors on the development of VC. Patho-
genesis of VC involves an active, highly organized cel-
lular transformation of vascular smooth muscle cells to 
bone forming cells evidenced by the presence of bone 
matrix proteins in the calcified arterial wall. VC occurs 
in both the intima and the media of arterial wall with 
medial calcification being more prevalent in CKD. In 
addition to traditional cardiovascular risks, risk factors 
specific to CKD such as phosphate retention, excess 
of calcium, history of dialysis, active vitamin D therapy 
in high doses and deficiency of calcification inhibitors 
play important roles in promoting the development of 
VC. Non-contrast multi-slice computed tomography 
has often been used to detect coronary artery calcifi-

cation. Simple plain radiographs of the lateral lumbar 
spine and pelvis can also detect VC in the abdominal 
aorta and femoral and iliac arteries. Currently, there is 
no specific therapy to reverse VC. Reduction of calcium 
load, lowering phosphate retention using non-calcium 
containing phosphate binders, and moderate doses of 
active vitamin D may attenuate progression. Parenteral 
sodium thiosulfate has also been shown to delay VC 
progression.
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INTRODUCTION
Cardiovascular disease is the leading cause of  death 
among patients with chronic kidney disease (CKD)[1]. 
Vascular calcification (VC) in one of  the independent 
risk factors associated with cardiovascular disease and 
mortality[2-4]. Earlier evidence revealed substantially higher 
prevalence of  VC in young adults on chronic hemodialy-
sis compared to the general population in the same age 
range, indicating the influence of  CKD-related risk fac-
tors on the development of  VC[5]. The following review 
will cover the pathology, pathogenesis, clinical signifi-
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cance, diagnosis modalities, role of  screening and avail-
able therapies of  VC. 

PATHOLOGY OF VASCULAR 
CALCIFICATION
Rudolf  Ludwig Karl Virchow, the father of  cellular pa-
thology, first noted the presence of  active ossification and 
de novo bone formation in atheroma in 1863[6]. VC occurs 
in 2 layers of  arterial wall: tunica intima and tunica media. 
Tunica intima is a layer of  endothelial cells supported by 
internal elastic lamina. Tunica media comprises a smooth 
muscle layer and elastic tissue. In atherosclerosis, endo-
thelial injury results in an adhesion of  blood leukocytes 
and in maturation of  monocytes into macrophages with 
lipid uptake. Smooth muscle cells migrate from the me-
dia to intima and proliferate. Fatty streaks and fibrous 
plaques enlarge and bulge into the arterial wall in which 
calcification causes narrowing of  the lumen[7]. Intimal or 
atherosclerotic calcification is more prevalent in large ar-
teries such as aorta, and occurs more frequently in elderly, 
hypertensive, dyslipidemic and diabetic patients. 

Medial calcification or Mönckeberg’s arteriosclerosis 
was first described in 1903, by the German pathologist, 
as a sheet-like calcification in the smooth muscle layer 
of  arterial wall without lipid or cholesterol deposit and, 
therefore, without lumen narrowing[8]. However, the 
increase in arterial stiffness can result in poor arterial 
compliance. Medial calcification is particularly common 
in patients with CKD and frequently found in peripheral 
arteries, such as epigastric, femoral, and radial arteries[9-11]. 
Another type of  calcification described almost exclusively 
in CKD patients is calcific uremic arteriolopathy (CUA), 
previously referred to as calciphylaxis. The occurrence of  
CUA in non-CKD patients has also been reported[12]. Cal-
ciphylaxis was originally described by Hans Seyle et al[13] in 
1961. Histologically, the calcification occurs in small ar-
teries and arterioles within the dermal layers of  the skin. 
Abnormalities include intimal hyperplasia, inflammation, 
obliterative endovascular fibrosis, arteriolar medial calcifi-
cation, and thrombotic cutaneous ischemia. The result is 
dermal, subdermal and adipose tissue necrosis with sub-
sequent skin ulceration[14]. Female gender, hyperphospha-
temia, high alkaline phosphatase, and low serum albumin 
are risk factors of  CUA[15].

CELLULAR PATHOGENESIS OF 
VASCULAR CALCIFICATION
VC is a highly controlled, active cell-mediated process 
which involves a phenotypic change of  vascular smooth 
muscle cells (VSMCs) into bone forming cells (Figure 1). 
Production of  extracellular matrix proteins and release 
of  matrix vesicles and apoptotic bodies result in matrix 
mineralization with hydroxyapatite crystals. Since both 
smooth muscle cells and osteoblasts are derived from 
mesenchymal stem cells, phenotypic transformation be-

tween the two types of  cells under appropriate stimuli is 
conceivable[16]. Explanted VSMCs from calcified arteries 
exhibit osteoblastic properties with an ability to mineral-
ize in vitro[17,18]. Several factors relevant to CKD have been 
shown promote VSMC transformation. For example, a 
high phosphate environment enhances the expression of  
osteoblastic markers: runx-2, alkaline phosphatase and 
osteocalcin, and stimulates mineralization of  VSMCs[19]. 
Increasing extracellular calcium while keeping constant 
phosphate concentration heightens mineral deposition on 
VSMCs[20]. Moreover, calcitriol, advance glycation product 
and homocysteine have been shown to induce calcifica-
tion of  VSMCs in vitro[21-24]. BMP-2, a potent osteogenic 
differentiation factor, also plays role in the development 
of  VC in CKD. VSMCs cultured in the presence of  ure-
mic serum show an increase in runx-2 expression, which 
is independent of  serum phosphate[25]. Addition of  Nog-
gin, an inhibitor of  BMP binding to its receptor, amelio-
rates the upregulation of  runx-2. Measurement of  BMP-2 
level in the uremic serum reveals a significant elevation 
compared to normal serum, suggesting a role of  accumu-
lated BMP-2 in the development of  VC[26]. In fact, BMP-2 
mRNA is present in the section of  calcified artery[17]. 
In addition to BMP-2, other osteoblastic genes such as 
runx-2, alkaline phosphatase, osteopontin, bone sialopro-
tein and osteocalcin have been detected in calcified arterial 
wall, confirming the process of  active ossification[10,18].

After the phenotypic change of  VSMCs toward os-
teoblasts and the production of  bone matrix protein, 
mineral crystals are deposited by another organized 
process, biomineralization. Matrix vesicles are required 
to concentrate calcium and phosphate in preparation 
for mineralization. The release of  these matrix vesicles 
enables nucleation of  mineral crystals by the matrix 
proteins[27]. In VC, in addition to matrix vesicles, apop-
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Uremic factors
   Pi (+)
   Ca (+)
   Active D (-/+)
   AGE (+)
   BMP-2 (+)
   Homocysteine (+)

Modifying factors
   CRP (+)
   Albumin (-)
   FGF-23 (+)
   25-OH-D (-)
   PTH (+/-)
   MMP (+)
   Bone remodeling (-)

Inhibiting factors
   Fetuin A (-)
   MGP (-)
   OPG (-)
   PPi (-)
   Mg (-)
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Figure 1  Factors associated with the development of vascular calcifica-
tion in chronic kidney disease. VSMCs: Vascular smooth muscle cells; PPi: 
Pyrophosphate; MGP: Matrix-gla protein; OPG: Osteoprotegerin; MMP: Matrix 
matalloproteases.
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totic bodies derived from dying VSMCs have also been 
detected[28,29]. Evidence of  apoptosis was observed in 
post-confluent VSMCs cultures prior to the onset of  
calcification. These apoptotic bodies were able to con-
centrate calcium in the same fashion as matrix vesicles[28]. 
Vesicles released by VSMCs are calcified extensively after 
a prolonged exposure to calcium and phosphate[29]. From 
electron microscopy analysis, calcification appears to oc-
cur within and on the surface of  the vesicles confirming 
the process of  vesicle-mediated mineralization. Using 
synchrotron radiation analysis, many of  the calcifications 
show a hydroxyapatite and whitlockite (magnesium-sub-
stituted crystal) crystalline structure and a mineral phase 
resembling that in mineralized bone[30].

Role of elastin
Elastin, a key constituent of  the extracellular matrix of  
elastic arteries which is secreted by VSMCs, contributes 
to the tensile strength of  blood vessels. Elastin also has 
calcium binding properties that may facilitate the devel-
opment of  arterial medial calcification[31]. Evidence sug-
gests an association between elastin degradation and the 
development of  VC. In a uremic mouse model of  CKD, 
elastin degradation and vascular smooth muscle cell 
phenotype change precede cell loss and arterial medial 
calcification[32]. Elastin degradation is mediated by matrix 
matalloproteases (MMP). Tissue inhibitors of  MMP, in 
turn, regulate MMP activity in order to prevent excessive 
degradation of  elastin[33]. In the arteries of  patients on 
hemodialysis and peritoneal dialysis, MMP-2 is upregu-
lated in association with medial elastic fiber fragmenta-
tion. The increase in MMP-2 activity correlates with an 
increase in arterial stiffness and the severity of  medial 
calcium deposition[34]. Circulating MMP-2 is also elevated 
in advance stages of  CKD[35]. Administration of  MMP 
inhibitors to calcified rat aortic ring in culture results in 
a reduction in calcification confirming that blockade of  
MMP activity can inhibit arterial calcification[36].

Role of magnesium
Decreased intracellular and extracellular magnesium aug-
ments oxidative stress, promotes inflammation, impairs 
endothelial function, increases vasospasm and accelerates 
atherogenesis[37]. In hemodialysis and peritoneal dialysis 
patients, low serum magnesium is associated with an in-
creased VC burden[38,39]. Magnesium supplementation may 
improve carotid intima-media thickness in hemodialysis 
patients[40]. In a small observational study, administration 
of  magnesium carbonate as a phosphate binder to hemo-
dialysis patients ameliorated the progression of  coronary 
calcification (CAC) after 18 mo[41]. Higher magnesium 
levels also prevented VSMCs calcification in vitro through 
a negative regulation of  osteogenic differentiation and an 
increased expression of  anti-calcification proteins, includ-
ing osteopontin, BMP-7 and matrix Gla protein[42,43].

CALCIFICATION INHIBITORS
Calcium and phosphate ions are kept soluble in the extra-

cellular fluid by ionic strength, pH and body temperature. 
The concentration of  calcium and phosphate in circu-
lation exceeds the solubility product for spontaneous 
precipitation, suggesting the presence of  endogenous 
mineralization inhibitors that prevent the development 
of  calcification[44,45]. In CKD, reduced concentrations or 
abnormal metabolism of  such inhibitors have been re-
ported. 

Fetuin A (α2-Heremans Schmid glycoprotein) is a 
negative acute phase reactant protein produced by the 
liver. Its level decreases in systemic inflammation and 
correlates negatively with c-reactive protein. Fetuin-A is a 
powerful inhibitor of  hydroxyapatite formation. Fetuin- 
A limits matrix vesicle formation and enhances phagocy-
tosis of  matrix vesicles by VSMCs[46]. Fetuin-A-/- mice are 
phenotypically normal, but develop severe calcification of  
various organs. This phenotype was not associated with 
apparent changes in calcium and phosphate homeostasis, 
but with a decreased inhibitory activity of  the fetuin-A 
deficient extracellular fluid on mineral formation[47]. In 
hemodialysis patients, a significant decrease in fetuin-A 
level was observed in association with an increase in IC50 
for Ca × PO4 precipitation inhibition. Patients belong-
ing to the lowest tertile of  fetuin A also experienced the 
highest all-cause and cardiovascular mortality[48]. 

Matrix-gla protein (MGP) is a small molecular weight 
protein expressed in chondrocytes and VSMCs in the 
arterial media[18,49]. It is a member of  the N-terminal 
γ-carboxylated (Gla) protein family that requires vitamin 
K-dependent γ-carboxylation prior to becoming biologi-
cally active. MGP-/- mice were found to develop to term, 
but died within 2 mo as a result of  medial arterial cal-
cification and arterial rupture. Other evidence supports 
the role of  MGP as an inhibitor of  calcification[50]. MGP 
mRNA is expressed abundantly in the area of  calcified ar-
terial wall[51]. While systemic administration of  MGP fails 
to prevent VC, restoration of  its expression in the arterial 
wall rescues arterial mineralization, suggesting that MGP 
acts locally to prevent calcification[52]. Warfarin, an antago-
nist to vitamin K, has been shown to promote calcifica-
tion of  elastic lamellae in the media of  major arteries and 
in aortic heart valves in a similar fashion to what is seen in 
MGP-/- mice[53]. In patients on long-term warfarin therapy, 
aortic valve and CAC is significantly increased compared 
with patients without anticoagulation treatment[54]. In 
CKD, the circulating level of  an inactive form of  MGP 
is augmented progressively with advancing CKD stages 
in association with an increase in the severity of  aortic 
calcification[55]. Daily supplementation with vitamin K2 
for 6 wk lowers the level of  inactive MGP. Likewise, low 
circulating level of  carboxylated MGP (active form) is as-
sociated with a higher calcification score and increases the 
risk for all-cause and cardiovascular mortality[56].

Osteoprotegerin (OPG), a product of  osteoblasts, 
acts as a decoy receptor preventing RANKL binding to its 
receptor on osteoclasts. OPG is essential in a bone remod-
eling process as it prohibits excessive osteoclast differentia-
tion and bone resorption. OPG-/- mice develop osteoporosis 
and medial calcification of  aorta and renal arteries suggest-
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ing the role of  OPG as an inhibitor of  calcification[57,58]. 
OPG transcript is detected in calcified arterial wall and 
increased OPG levels are associated with inflammation and 
atherosclerosis[51,59,60]. However, systemic administration of  
OPG protein fails to reverse arterial calcification in OPG-/- 
mice[59]. In CKD, OPG accumulates as a result of  impaired 
excretion and augmented release in response to inflamma-
tion, atherosclerosis and VC[61,62]. Serum OPG correlates 
with the extent of  aortic calcification, CAC and arterial 
stiffness. Increased OPG level also has the ability to predict 
cardiovascular and all-cause mortality in hemodialysis pa-
tients[63-67].

Inorganic pyrophosphate (PPi) is a naturally occurring 
inhibitor of  hydroxyapatite formation by arterial smooth 
muscle cells. Addition of  PPi can prevent calcification of  
rat aorta in culture[68]. PPi production is dependent on a 
rate limiting enzyme, nucleotide pyrophosphatasephos-
phodiesterase (Enpp1). In a child with Enpp1 mutation, 
arterial calcification was present early in life (idiopathic 
infantile arterial calcification) and the child died at a 
very young age[69]. Since PPi is hydrolyzed by alkaline 
phosphatase,heightened alkaline phosphatase expression 
found in the calcified arterial wall could, therefore, cause 
worsening of  VC[68]. Systemic administration of  sodium 
PPi to uremic rats with VC significantly reduces both the 
incidence and the amount of  calcification without affect-
ing bone formation and mineralization[70]. In CKD, the 
baseline calcification score and the change in calcification 
score at 1 year was found to decrease with increasing 
quartiles of  plasma PPi[71]. ESRD patients with heterozy-
gous ENPP1 mutation also have higher CAC scores and 
increased aortic stiffness[72].

PREVALENCE AND CLINICAL IMPACT OF 
VASCULAR CALCIFICATION
In 1979, Ibels et al[73] studied the pathology of  arteries ob-
tained from dialysis patients and discovered an increase 
in arterial calcification compared with a normal popula-
tion of  the same age. A study in young hemodialysis 
and peritoneal dialysis patients aged 20-30 years revealed 
that over 80% had CAC[5]. In CKD, studies reported 
prevalence of  VC ranges from 47%-92%[74-78]. In a large 
cohort of  CKD patients, the magnitude of  CAC is in-
dependently and inversely associated with the estimated 
GFR[79]. VC has been shown to predict cardiovascular 
events and mortality in the entire spectrum of  patients 
with CKD as well as in kidney allograft recipients[2-4]. In 
addition to traditional cardiovascular risk factors includ-
ing aging, smoking, diabetes, dyslipidemia, inflammation, 
hypoalbuminemia and elevated c-reactive protein, CKD 
related risks such as phosphate retention, excessive calci-
um intake, past dialysis experience, decreased calcification 
inhibitors, vitamin D deficiency and increased FGF-23 
are also associated with the severity and progression of  
VC[75,80-83]. The presence of  arterial calcification increases 
arterial stiffness, which can be identified clinically by a 
functional increase in pulse wave velocity or cardiovascu-

lar ankle index[84-86]. Arterial stiffness is more closely relat-
ed to calcified atheromatous plaque than to non-calcified 
atheroma[85,87]. The increase in arterial stiffness leads to 
widening of  pulse pressure, left ventricular hypertrophy, 
impaired coronary perfusion and myocardial ischemia. 
Arterial stiffness is a predictor of  mortality in hemodialy-
sis and peritoneal dialysis patients[83,88]. 

As mentioned earlier, medial calcification is prevalent 
among patients with CKD. The impact of  intimal and 
medial calcification on outcomes has been evaluated in 
dialysis patients. While intimal calcification is largely asso-
ciated with traditional cardiovascular risks, CKD-related 
factors such as duration of  dialysis, increasing serum 
calcium and hyperparathyroidism have been shown to 
correlate with medial calcification. Hemodialysis patients 
with intimal or medial calcification exhibit a decrease in 
all-cause and cardiovascular survival with patients with 
intimal calcification showing the lowest survival rate[83].

VC and osteoporosis
Relationship between the severity of  VC and osteopo-
rosis is well documented in the general population[89]. As 
mentioned earlier, OPG-/- animals develop osteoporosis 
and VC. Therefore, the OPG/RANK/RANKL system 
has been suggested as a common link between the bone 
and arteries[58,59,90]. The relationship between VC and 
low bone formation or adynamic bone disease has also 
been described in CKD[91,92]. Systemic administration of  
BMP-7, an inducer of  bone formation, to uremic athero-
sclerotic animals improves bone formation and amelio-
rates VC[93,94]. It is believed that the uptake of  calcium and 
phosphate by forming bone limits the availability of  these 
minerals for the development and progression of  VC. In 
the diabetic population, polymorphisms in BMP-7 gene 
are associated with the inverse relationship between bone 
mineralization and VC[95]. Similarly, intermittent PTH 
administration, an anabolic therapy for osteoporosis, has 
been shown to protect against VC and bone demineral-
ization in experimental renal failure[96]. It appears that the 
link between bone and arteries exists but the underlying 
mechanism remains to be elucidated.

DIAGNOSIS AND SCREENING OF 
VASCULAR CALCIFICATION
There are several ways to detect VC ranging from simple 
plain radiographs, two-dimensional ultrasound to multi-
slice computed tomography (MSCT). MSCT, a newer 
generation of  electron beam CT, is commonly used for 
diagnosis and follow-up of  VC progression. Its improved 
image quality allow efficient imaging of  and precise de-
termination of  the amount of  VC[97]. The machine is 
equipped with a computer program which can accurately 
quantify the area and density of  calcification by means of  
Agatston and volume score (Figure 2A)[98,99]. Determina-
tion of  the extent of  CAC is particularly useful in clinical 
practice as the result can be used to stratify cardiovascu-
lar risk of  an individual patient. However, MSCT cannot 
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differentiate between intimal and medial calcification. 
Ultrasonography is widely available, inexpensive, and 
therefore offers a convenient alternative for evaluation 
of  VC. Ultrasonography is useful in detection of  VC in 
superficial arteries, such as the carotid and femoral arter-
ies. Moreover, newer generation ultrasound machines 
have the ability to measure pulse wave velocity, which is 
an index of  arterial compliance and stiffness. However, 
the data obtained from ultrasonography is qualitative or 
semiquantitative at best. Similar to MSCT, ultrasonogra-
phy cannot differentiate between intimal and medial cal-
cification[97].

In the past few years plain radiographs have been 
increasingly used for detection and quantitation of  VC. 
Calcification in large arteries such as the aorta can be 
evaluated using chest or lateral abdominal radiographs. 
Simple measurement methods have been devised to 
quantitate the amount of  calcification. In hemodialysis 
patients, determination of  aortic arch calcification in 
chest radiographs has been validated with that obtained 
by MSCT[100]. Aortic arch calcification score can also 
predict cardiovascular events and mortality[101,102]. Lateral 
abdominal radiography has been utilized in determination 
and quantitation of  abdominal aortic calcification in the 
general population (Figure 2B)[103]. This same technique 
has been validated in hemodialysis patients, showing high 
correlation with CAC scores obtained by EBCT[104]. At-
tempts have been made to differentiate between intimal 
and medial calcification based on patterns of  calcifica-
tion appearing on plain radiograph: Discrete intimal-
like plaques with irregular and patchy distribution were 
identified as intimal calcification and uniform linear rail-
road track-type plaques as medial calcification[83,105]. Since 
medial calcification is common among CKD patients and 
occurs more frequently in peripheral muscular arteries, 
plain radiographs of  pelvis and hands have been used to 
evaluate calcification in iliac, femoral, radial and digital 
arteries (Figure 2C). In hemodialysis patients, simple VC 
scores obtained by these radiographs have been shown to 
predict fatal and non-fatal cardiovascular events[9]. Plain 
radiographs are subjective, semiquantitative and less sen-
sitive than MSCT. As a result, the possibility of  accurate 

assessment of  changes of  calcification burden, especially 
over a short period of  time, may be limited.

At the time of  this review, controversies exist regard-
ing the benefit of  screening for VC. Data on the epide-
miological relationship between VC and poor outcomes 
in CKD patients is strong. Simple image screening with 
lateral abdominal radiograph every 1-2 years to detect 
patients at risk is inexpensive and may alert physicians to 
be more rigorous in modification of  risk factors. Patients 
in lower risk categories will have lower morbidity and re-
quire less expenditure[106]. On the other hand, the lack of  
evidence that routine testing for VC helps identify CKD 
patients in whom subsequent modification of  therapy can 
favorably impact clinical outcomes makes it difficult to 
justify the use of  screening. Moreover, there is no strong 
evidence that modification of  risk factors improves clini-
cal outcomes[107]. The Kidney Disease Improving Global 
Outcome work group graded the evidence for recom-
mendation of  VC screening as 3c (weak and low quality 
of  evidence) with lateral abdominal radiograph as a rea-
sonable alternative to computed tomography[108,109].

TREATMENT
Currently, there is no therapy to reverse arterial calcifica-
tion. Available treatment modalities can at best attenuate 
the progression of  VC. Modification of  risk factors has 
also been attempted.

Non-calcium containing phosphate binders
These drugs bind phosphate in the gastrointestinal tract 
as efficiently as calcium-containing phosphate binders 
but with the benefit of  not increasing calcium load. In a 
model of  atherosclerotic uremic mice, non-calcium con-
taining phosphate binders were able to decrease calcifica-
tion at both intimal and medial aortic sites[110]. Sevelamer 
hydrochloride, a non-absorbed cationic polymer that 
binds phosphate anions through ion exchange, was the 
first drug available in the market. Due to the side effect 
of  metabolic acidosis, the manufacturer later substituted 
this formula with sevelamer carbonate. In hemodialysis 
patients, sevelamer hydrochloride is less likely to cause 
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Figure 2  Imaging techniques for detection of vascular calcification. A: Multi-slice computed tomography demonstrating coronary artery calcification (arrow); B: 
Lateral abdominal radiograph displaying aortic calcification (arrows); C: Pelvic radiograph revealing iliac (black arrow) and femoral (white arrow) arterial calcification.
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progressive CAC than calcium-based phosphate bind-
ers[111,112]. Sevelamer can also lower LDL cholesterol. 
In combination with its phosphate lowering effect and 
metabolic acidosis, sevelamer appears to have a favorable 
impact on VC progression[113]. Randomized controlled 
trials in hemodialysis patients have revealed a trend to-
ward a better survival with sevelamer when compared to 
calcium-based binder, especially in patients older than 65 
years of  age[3,114]. However, according to the systematic 
review of  randomized controlled trials, the beneficial 
effects of  sevelamer on hard outcomes appears to be 
inconsistent and variable[115]. Lanthanum carbonate, the 
second drug available in the market, was introduced as an 
alternative to sevelamer for phosphate lowering in CKD. 
Lanthanum is a naturally occurring rare earth elements. 
In animal studies, long-term use of  lanthanum can cause 
accumulation in various organs, such as bone, liver and 
brain but this appears to have no clinical significance 
in human[116,117]. Hemodialysis patients who received 
lanthanum carbonate for up to 2 years did not develop 
osteomalacia, adynamic bone disease, cognitive decline 
or abnormal liver enzymes[118,119]. In a head to head com-
parison, lanthanum carbonate was superior to sevelamer 
in lowering the amount of  phosphate absorption[120]. A 
small randomized controlled trial in hemodialysis pa-
tients, indicated that lanthanum carbonate may reduce the 
progression of  aortic calcification more than a calcium-
based binder[121]. In a post hoc survival analysis, a survival 
benefit associated with lanthanum carbonate treatment 
for dialysis patients aged > 5 years was also suggested[122].

Active vitamin D
Active vitamin D formulations including calcitriol, alfa-

calcidol, doxercalciferol, and paricalcitol, are prescribed 
in the treatment of  hyperparathyroidism in CKD. Hemo-
dialysis and peritoneal dialysis patients who receive active 
vitamin D experience better survival than those who do 
not, regardless of  PTH levels[123-125]. The earlier active 
vitamin D drugs, calcitriol, alfacalcidol and doxercalcif-
erol, can effectively lower PTH but have the side effect 
of  heightening gastrointestinal calcium and phosphate 
absorption resulting in an undesirable increase in calcium 
and phosphate load. The newer active vitamin D analog, 
paricalcitol, preferentially targets parathyroid gland while 
sparing the gastrointestinal effect[126]. Studies in uremic 
animals have revealed an association between supraphysi-
ological doses of  active vitamin D, especially calcitriol, 
and the presence of  VC[127-129]. On the other hand, low, 
more clinically relevant doses of  both calcitriol and pari-
calcitol may protect against VC[130]. In a 2-year follow up 
study in dialysis patients, progression of  aortic calcifica-
tion was associated with higher accumulative doses of  al-
facalcidol, a derivative of  calcitriol[131]. In predialysis CKD 
patients, higher 25-OHD and 1, 25-OHD levels were 
associated with less VC[80,132]. The above data suggest that 
physiologic doses of  calcitriol and its derivatives may not 
be detrimental, but may even protect the vascular bed 
and improve survival. However, randomized controlled 
trials are necessary to confirm this observation. 

Bisphosphonates
Bisphosphonates are analogs of  PPi that inhibit osteo-
clast function and bone resorption. Etidronate admin-
istration for 6 mo in hemodialysis patients has been 
found to attenuate CAC progression and aortic calcifica-
tion[76,133]. In uremic animals, pamidronate and etidronate 
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Table 1  Studies on therapies that may influence vascular calcification and mortality

Studies Subjects Study types Interventions Results

Nikolov et al[110] uremic ApoE-deficient mice Experimental Sevalamer or lanthanum vs no drug ↓ VC
Chertow et al[111] HD RCT Sevelamer vs calcium ↓ CAC progression
Quinbi et al[113] HD RCT Sevelamer vs calcium ↔ CAC progression
Kakuta et al[112] HD RCT Sevelamer vs calcium ↓ CAC progression
Block et al[3] Incident HD RCT Sevelamer vs calcium ↓ mortality
Suki et al[114] HD RCT Sevelamer vs calcium ↓ mortality in patients > 65 yr old
Toussaint et al[121] HD RCT Lanthanum vs calcium ↓ CAC progression
Wilson et al[122] HD RCT Lanthanum vs calcium ↓ mortality in patients > 65 yr old
Cardus et al[127] Uremic rats Experimental High dose calcitriol vs paricalcitol ↑ VC
Mizobuchi et al[128] Uremic rats Experimental High dose calcitriol or doxercalciferol vs 

paricalcitol
↑ VC

Becker et al[129] Uremic ApoE-deficient mice Experimental High dose calcitriol vs paricalcitol ↑ VC
Mathew et al[130] Uremic LDLR-/- mice Experimental Low dose calcitriol or paricalcitol vs 

no drug
↓ VC

Teng et al[123] HD Retrospective Calcitriol vs paricalcitol ↑ mortality
Teng et al[124] Incident HD Retrospective All active vitamin D vs no drug ↓ mortality
Tentori et al[125] Incident HD Retrospective All active vitamin D vs no drug ↓ mortality
Lomashvili et al[134] Uremic rats Experimental Etidronate or pamidronate vs no drug ↓ VC
Nitta et al[76] HD Observational Etidronate vs no drug ↓ CAC progression
Hashiba et al[133] HD RCT Etidronate vs no drug ↓ aortic calcification progression
Pasch et al[148] Uremic rats Experimental STS vs no drug ↓ VC
Adirekkiat et al[146] HD Non-RCT STS vs no drug ↓ CAC progression
Mathews et al[149] HD Observational STS ↓ CAC progression

CAC: Calcification; STS: Sodium thiosulfate; VC: Vascular calcification; HD: Hemodialysis; RCT: Randomized controlled trial.
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can directly inhibit VC independent of  bone resorp-
tion[134]. However, in a randomized controlled trial in 
predialysis CKD stage 3-4, alendronate failed to decrease 
progression of  aortic calcification more than placebo[135]. 
Analysis of  the relationship between bisphosphonate use 
and the prevalence of  vascular and valvular calcification 
in 3710 women in the MESA (Multi-Ethnic Study of  
Atherosclerosis) cohort revealed a decrease in prevalence 
of  cardiovascular calcification in older subjects but an 
increased prevalence in the younger ones[136]. The effect 
of  bisphosphonates on VC varies from population to 
population, and the data pertaining patient outcomes are 
still limited.

Sodium thiosulfate
Sodium thiosulfate (STS) is a chelating, reducing and 
antioxidant agent. STS is used as an antidote for cyanide 
poisoning and in prevention of  cisplatin nephrotoxic-
ity[137,138]. It has the ability of  chelate calcium in precipi-
tated minerals giving rise to calcium thiosulfate, which 
is several fold more soluble than calcium phosphate or 
calcium oxalate. As an antioxidant, STS has been shown 
to improve endothelial function[139]. STS has been used 
successfully in conditions with increased calcification 
burden, such as nephrolithiasis, soft tissue calcification 
and especially CUA[140-145]. In hemodialysis and peritoneal 
dialysis patients with CUA, parenteral STS is able to re-
duce skin necrosis and calcium deposit within 3 mo of  
administration. Long-term intravenous infusion of  STS 
in hemodialysis and intraperitoneal administration in peri-
toneal dialysis patients are safe and well tolerated[145-147]. 
In an experimental model of  uremic rats, STS was able 
to prevent VC but with the untoward effect of  decreased 
bone strength[148]. In two preliminary studies in hemo-
dialysis patients, STS was able to delay the progression 
of  CAC after 4-5 mo of  intravenous administration but 
with a decline in bone mineral density of  the hip in one 
study[146,149]. The possible effect of  STS in delaying the 
progression of  CAC will require larger studies and deter-
mination of  the safe therapeutic window is necessary in 
order to avoid bone demineralization.

In conclusion, VC is common among patients with 
CKD. Pathogenesis of  VC involves an active, highly 
organized cellular transformation of  VSMCs into bone 
forming cells. CKD-related factors such as phosphate 
retention, excess of  calcium, history of  dialysis, active vi-
tamin D therapy and deficiency of  calcification inhibitors 
play important roles in promoting the development of  
VC. Non-contrast CT scans as well as simple plain radio-
graphs can also be used to detect VC. Controversies exist 
regarding benefits of  VC screening in CKD populations. 
Currently, there is no specific therapy to reverse VC and 
available treatment modalities can at best attenuate its 
progression.
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