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Abstract
Renal insults are considered a public health problem 
and are linked to increased rates of morbidity and mor-
tality worldwide. The heme oxygenase (HO) system 
consists of evolutionary specialized machinery that 
degrades free heme and produces carbon monoxide, 
biliverdin and free iron. In this sense, the inducible 
isoform HO-1 seems to develop an important role and 
is widely studied. The reaction involved with the HO-1 
molecule provides protection to injured tissue, directly 
by reducing the toxic heme molecule and indirectly 
by the release of its byproducts. The up regulation of 
HO-1 enzyme has largely been described as provid-
ing antioxidant, antiapoptotic, anti-inflammatory and 
immunomodulatory properties. Several works have 
explored the importance of HO-1 in renal diseases and 
they have provided consistent evidence that its over-
expression has beneficial effects in such injuries. So, in 
this review we will focus on the role of HO-1 in kidney 
insults, exploring the protective effects of its up regula-
tion and the enhanced deleterious effects of its inhibi-
tion or gene deletion.
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INTRODUCTION
Renal injuries can occur as a consequence of  a number 
of  factors, like hypoxia, nephrotoxicity, diabetes, renin-
angiotensin system activation, among others. Most of  
these lesions are characterized by an increased amount 
of  oxidative stress, inflammatory milieu and pro fibrotic 
stimuli. These factors lead to a breakdown of  renal ho-
meostasis and promote cell damage, with increased cell 
death and/or transdifferentiation. The ability of  reducing 
this cellular damage could be crucial to a better outcome 
of  the disease and, in this manner, the enzyme heme 
oxygenase (HO) could provide an important protective 
effect against renal insult[1]. 

Heme molecule (iron protoporphyrin IX) represents 
the prosthetic group of  various proteins and enzymes, 
including hemoglobin, nitric oxide synthase, cytochrome 
P-450, cyclooxygenase, and catalase, among others. It is 
involved in critical functions, such as oxygen supply, mi-
tochondrial respiratory burst and signal transduction[2,3]. 
In this sense, HO is the rate limiting enzyme responsible 
for heme degradation. HO cleaves to the heme ring in a 
reaction requiring oxygen and nicotinamide adenine dinu-
cleotide phosphate and, as a result, biliverdin is produced, 
releasing iron and carbon monoxide (CO) in equimolar 
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quantities. Later, biliverdin is converted to bilirubin by 
the enzyme bilirubin reductase[4,5].

HO was previously described by Tenhunen et al[6] 
in 1968 and interest in it has increased every year. This 
information is based on the fact that, since its discovery, 
more than 10 000 publications have been reported, and in 
2010 alone, almost 1000 papers were published with this 
theme.

The HO system consists of  two distinct isoforms, 
HO-1 (inducible) and HO-2 (constitutive), which are 
products of  different genes. HO-1 is localized in mi-
crosomes and is ubiquitously present in mammalian 
tissue. Moreover, in physiological conditions, its expres-
sion is relatively low. The only exception comes from 
the spleen, where HO-1 is important for recycling iron 
from senescent erythrocytes. Recent studies showed that 
HO-1 deficiency affects stress erythropoiesis and leads to 
reduced function and viability of  erythrophagocytosing 
macrophages, resulting in tissue damage and iron redistri-
bution[7,8].

On the other hand, HO-2 seems to work as a physi-
ological regulator of  cell function. It is present in mi-
tochondria and generally expressed in brain, testis, 
endothelium, nephron distal segments, liver and the 
gastrointestinal tract[9]. It seems to share 40% of  amino 
acid homology with HO-1. Finally, formerly known as an 
isoform, HO-3 now is recognized as a pseudogene[10].

PROTECTIVE EFFECTS OF HO-1
Of  these two isoforms, HO-1 is the most studied and 
seems to provide higher cytoprotection; so, hereafter, we 
will mostly discuss this isoform. The protection beyond 
HO-1 is observed in a variety of  processes and these will 
be discussed in more detail in the next paragraphs.

HO-1 acts as an antioxidant in a direct and indirect 
manner. Directly, the enzyme contributes withdrawal of  
excessive heme molecule, which is a pro oxidant agent[11]. 
Indirectly, the free iron released from the reaction stimu-
lates the expression of  ferritin, an intracellular iron res-
ervoir, diminishing the generation of  hydroxyl radicals[12]. 
Furthermore, the biliverdin and, consequently, bilirubin 
formation displays an important antioxidant effect, as 
both molecules are peroxyl radicals scavengers[13].

The antiproliferative effects are based mainly on vas-
cular smooth muscle cells experiments. A recent study 
showed that rapamycin could induce HO-1 expression 
and this up regulation led to protection in a model of  
pulmonary disease. The same work showed that smooth 
muscle cells derived from deficient animals for HO-1 
were not responsive to the antiproliferative or cell cycle 
inhibition actions of  rapamycin[14]. Moreover, studies 
have shown that a possible mechanism related to inhibi-
tion of  cell growth by HO-1 could be up regulation of  
inhibitory protein p21cip. Interestingly, this pathway also 
contributes to an anti-apoptotic property of  HO-1[15,16].

HO-1 can also act as an immunomodulatory enzyme, 
especially in T lymphocytes mediated diseases[17]. Burt  

et al[18] proposed that HO-1 contributes to T cells homeo-
stasis, maintaining these lymphocytes in a nonactivated 
state, and the pharmacological inhibition of  HO-1 leads 
to T cell activation and proliferation. The importance of  
HO-1 in Treg cells were described by a couple of  works 
which stated that CD4+CD25+ Treg cells constitutively 
expressed HO-1 and that this enzyme could be induced 
after FoxP3 expression in CD4+CD25- cells, conferring a 
regulatory phenotype to these[19,20]. Another study showed 
that, in a murine model of  colitis, treatment with hemin, 
a HO-1 inducer, resulted in expansion of  Treg cells and 
decreased the levels of  Th17 related molecules. On the 
other hand, inhibition of  HO-1 led to opposite effects 
and aggravated the disease[21]. Still, the immunomodulato-
ry effect of  HO-1 also influences the priming of  T cells. 
Cheng et al[22] showed that deletion of  HO-1 gene or use 
of  small interfering RNA silence in dendritic cells pro-
moted up regulation of  major histocompatibility complex 
class Ⅱ, enhancing the alloantigen presentation to CD4+ 
T lymphocytes.

Finally, the anti-inflammatory property of  HO-1 
could be due to the enzymatic degradation of  the pro-
inflammatory heme molecule, as well as the production of  
its byproducts, which have the capacity to suppress the in-
flammatory process. In the first case, free heme is a highly 
toxic compound and may cause oxidative stress. Further-
more, its presence led to increased influx of  leukocytes 
into organs during an experimental inflammation[23]. In ad-
dition, heme is part of  many pro-inflammatory enzymes, 
like cytochrome p450 mono-oxygenases, inducible nitric 
oxide synthase and cyclooxygenase[24]. So, once HO-1 
removes excessive free heme, it will impair the optimal 
activity of  those enzymes, attenuating the inflammation[25]. 
On the other hand, some studies have shown that the up 
regulation of  HO-1 can directly inhibit the inflamma-
tory process. A recent work indicated that when HO-1 is 
induced, there is a negative modulation of  inflammation, 
with decreased gene expression and protein production 
of  tumor necrosis factor α, interleukin (IL)-6 and IL-1β, 
with concomitant increased protein levels of  the immu-
nomodulatory cytokine IL-10[26]. One of  the pathways 
involved in this suppression may be related to p38 mito-
gen activated protein kinase. Lee et al[27] have shown that 
when there is an inhibition of  this kinase, HO-1 induction 
is diminished and, consequently, the protection on human 
proximal tubular epithelial cells is abrogated.

HO EXPRESSION IN THE KIDNEY
The first paper describing the role of  HO in kidney was 
published by Pimstone et al[28] in 1971 and it provided 
evidence that HO induction could contribute to renal 
cytoprotection. As stated earlier, HO-2 is a constitutive 
enzyme, so its expression is important for maintenance 
of  kidney functions. In this sense, a study published by 
Da Silva and colleagues documented that this isoform is 
present in vascular and tubular compartments[29]. More 
specifically, HO-2 was observed in the medullar thick 

5 February 6, 2012|Volume 1|Issue 1|WJN|www.wjgnet.com



ascending limb, distal convoluted tubule, connecting tu-
bule segments, principal cells of  the collecting duct, renal 
interlobar arteries and preglomerular arterioles in the kid-
ney[29]. On the other hand, HO-1 is weakly expressed in 
the kidney under normal conditions. But, confirming its 
role as a stress induced enzyme, after an acute or chronic 
renal insult, it is rapidly expressed[30,31]. Immunolocaliza-
tion of  HO-1 in rat kidneys showed that this enzyme 
was identified on proximal and distal tubules, as well as in 
medullar collecting tubules and loops of  Henle[29]. Still, in 
a model of  streptozotocin-induced diabetic nephropathy, 
HO-1 was also expressed in glomeruli[9]. Moreover, ac-
cording to Jarmi and Agarwal’s work, HO-1 expression is 
also observed in human renal diseases, especially in proxi-
mal tubules[32]. Localization of  HO-1 expression sites in 
different diseases could be important for development of  
specific therapeutic drugs.

Also, one of  the main chemoattractant proteins is 
MCP-1, which can recruit leucocytes to the site of  in-
jury[5]. A recent study has shown that renal epithelial 
cells that constitutively overexpressed HO-1 presented 
decreased production of  MCP-1 after stimulation with 
albumin[33]. Moreover, in HO-1 deficient mice, the basal 
levels of  MCP-1 are significantly increased when com-
pared to wild type animals and it becomes even higher af-
ter a stress condition[34]. Finally, as HO-1 is classified as a 
stress responsiveness enzyme, a recent work showed that 
urinary HO-1 could be useful and a sensitive biomarker 
for tubule interstitial inflammatory damage in renal dis-
eases[35]. 

HO-1 AND RENAL INSULTS
In the following section, we will be discussing more 

about the protective effects of  HO-1 in some renal dis-
eases. For a better didactic comprehension, we divided 
it into four topics: acute kidney injury (AKI), diabetic 
nephropathy, renal transplantation and chronic kidney 
disease. Also, Figure 1 shows a summary of  the role of  
HO-1 in these renal diseases.

AKI
AKI, previously called acute renal failure, is defined by 
a rapid decrease of  renal function, resulting in retention 
of  urea and creatinine levels in serum as well as changes 
in cellular volumes and electrolyte imbalance. AKI is 
associated with high mortality rates and ischemia and 
reperfusion injury (IRI)[36] is one of  its causes. 

IRI starts with the break of  ionic homeostasis due 
to ATP depletion in proximal tubular cells, which lose 
polarity and undergo the cell death process. All this is 
accompanied by intense vasoconstriction, increase of  
adhesion molecules, reactive oxygen species, pro-inflam-
matory cytokines and chemokines[37]. This inflammatory 
process also comprises of  cells from innate (macrophages, 
dendritic cells and neutrophils) and adaptive immune 
response (B cells, CD4+ and CD8+ T cells)[36]. As HO-1 
was seen to modulate immune cells to a regulatory pro-
file[38] and to favor anti-inflammatory response, it obvi-
ously questioned the role of  HO-1 in AKI.

Shimizu et al[39] used an HO-1 inhibitor, tin mesopor-
phyrin, in the unilateral renal ischemia and reperfusion 
model and observed an increase in microsomal heme, 
which is toxic to the cell. Different from non-treated 
animals, levels of  heme were sustained in tin treated rats 
and renal injury was exacerbated in this group. In the op-
posite way, tin chloride treatment, a HO-1 inducer, pro-
tected animals from IRI[39,40]. These results demonstrated 
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↓Injured tubules
↓Apoptosis
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↓Glomerulosclerosis
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Figure 1  Overview of heme oxygenase-1 in renal diseases. Heme oxygenase (HO)-1 induction prevents renal damage in diverse renal diseases, such as acute 
kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (Diabetes) and renal Transplant. Arrows followed by text indicate increase (↑) or decrease (↓). 
1Requires further study. TGF: Transforming growth factor; SMA: Smooth muscle actin; CTGF: Connective tissue growth factor; CAN: Chronic allograft nephropathy.
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that HO-1 is associated with IRI protection. In the same 
direction, other HO-1 inducers led to protection in this 
model: hemin treatment improved microcirculation in an 
isogenic kidney transplantation model and also reduced 
IRI[41], and the use of  Cobalt protoporphyrin (CoPPIX) in 
rapamycin-induced renal dysfunction after IRI increased 
HO-1 levels and eased renal injury[42]. Administration of  
cobalt chloride also protected rats from IRI, with an in-
crease of  hypoxia inducible factor (HIF)-1α, HO-1, eryth-
ropoietin, glucose transporter 1 and vascular endothelial 
growth factor, and diminished macrophage infiltration 
into the kidney[43]. More recently, Wu et al[44] showed that 
the induction of  bardoxolone methyl increased HO-1 and 
nuclear factor erythroid 2-related factor 2 (Nrf2) expres-
sion, and protected mice from unilateral IRI. Ferenbach 
et al[45] produced macrophages that overexpressed HO-1, 
which presented an anti-inflammatory phenotype. Intra-
venous injection of  these cells 20 min after IRI improved 
renal function outcome, suggesting a new tool to control 
injury in this model. The byproduct of  HO-1, CO, was 
able by itself  to protect animals from IRI with less injured 
tubules with the pre-administration of  Tricarbonylchlor
o(glycinato) ruthenium(II) ([Ru(CO)3Cl-(glycinate)], the 
CORM-3[46], indicating that HO-1 and its byproducts were 
able to protect kidney from ischemic AKI. 

Other AKI models were also protected after HO-1 
induction. Rhabdomyolysis is characterized by heme and 
myoglobin release from damaged muscle, which allows 
the excessive exposure of  the kidney to these proteins 
and leads to AKI. Glycerol-induced rhabdomyolysis pre-
sented renal injury protection with hemoglobin injection, 
while exacerbated renal damage was observed when tin 
protoporphyrin, a HO-1 inhibitor, was administered[47]. 
HO-1 induction by granulocyte colony-stimulating fac-
tor also protected animals from rhabdomyolysis kidney 
injury accompanied by increased survival and diminished 
apoptosis[48]. The same model of  AKI presented worse 
renal function and higher mortality when using HO-1 
knockout mice[49], which reinforces the importance of  
HO-1 to diminish the toxic heme accumulation.

Nephrotoxic-induced AKI occurs mostly as a side-
effect of  chemotherapy and other treatment drugs. In 
the cyclosporine-renal injury model, the treatment with 
CoPPIX led to a kidney morphological pattern similar to 
control[50]. Similar results were observed in animals that re-
ceived cisplatin, a chemotherapy drug, with the concomi-
tant treatment of  CORM-3, presenting renal injury protec-
tion[51]. These results demonstrated that HO-1 has a role 
in nephrotoxic-induced AKI and highlight the importance 
of  CO, HO-1 byproduct, in kidney injury protection. 

All these works show that HO-1 induction can im-
prove the outcome in AKI and, although this subject 
needs further investigation, suggests that the HO-1 ma-
nipulation could be an interesting tool to diminish AKI 
related mortality.

Diabetic nephropathy
Diabetic nephropathy is the most common cause of  end-

stage renal failure in developed countries[52]. Although the 
beginning of  the disease in type Ⅰ and type Ⅱ diabetes is 
distinct, the changes observed in renal physiology caused 
by excessive glucose are quite similar and usually lead to 
alterations in kidney architecture accompanied by renal 
failure[53]. The role of  HO-1 system in diabetes has been 
widely reported and its upregulation has been proved to 
mediate insulin release by pancreatic cells, conferring a 
protective effect[54-57].

Specifically talking about renal involvement of  high 
glucose levels, some studies have shown that treatment 
with HO-1 inducers provides a better renal function 
outcome. Ohtomo et al[58] used a model of  obese, hy-
pertensive and diabetes type Ⅱ rats (SHR/NDmcr-cp). 
These animals presented with severe proteinuria and renal 
histological changes. The up regulation of  HO-1 with 
CoPPIX in such rats improved proteinuria levels and sig-
nificantly decreased histological abnormalities. Moreover, 
the treatment also reduced the gene expression of  pro-
fibrotic molecules transforming growth factor (TGF)-β 
and CTGF. 

Podocytes are important cells present in the glomeru-
lar compartment, being specialized in the good mainte-
nance of  the renal filtration[59]. A recent study showed 
that HO-1 inhibition promoted increased albuminuria and 
reduced podocyte numbers in diabetic rats. In vitro experi-
ments showed that podocytes exposed to high glucose 
and to the HO-1 inhibitor ZnPP presented increased 
apoptosis. Induction of  HO-1 protected these cells from 
pro apoptotic stimuli under diabetic conditions[60].

Finally, the most important antioxidant cellular regu-
lator is Nrf2, which promotes expression of  detoxifying 
and antioxidant enzymes that are a downstream Nrf2 
gene, including HO-1[61]. Some recent studies have stud-
ied this pathway and its strict relationship with diabetic 
nephropathy. Li et al[62] showed that when streptozotocin-
induced diabetic mice were treated with a Nrf2 activator, 
HO-1 gene and protein expressions were up regulated, 
with concomitant decreased levels of  albuminuria, pro-
teinuria and glomerulosclerosis index. Another study 
showed that mesangial cells submitted to high glucose 
levels presented increased reactive oxygen species pro-
duction, proliferation and TGF-β production. When 
these cells were transfected with Nrf2-plasmid, HO-1 
was induced and such parameters were ameliorated. On 
the other hand, when mesangial cells were exposed to 
Nrf2 specific siRNA, this protection was abrogated[63]. 
All these works provide support that one of  the most 
important mechanisms of  renal disease of  diabetes, the 
pro-oxidant axis, can be attenuated by HO-1 induction.

Renal transplantation
Organ transplants are required in end state organ failure; 
however, in renal diseases, it might be the best treatment 
considering cost/benefit and quality of  life, which en-
courages the increase of  numbers in renal transplants. 
According to the World Health Organization, renal 
transplant comprises the majority of  organ transplants 
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performed in 98 countries. In 2005, 66 000 kidneys were 
transplanted, while 21 000 livers and 6000 hearts were 
transplanted in the same year[64]. Although it seems easy 
and advisable to do, renal transplant comes with a series 
of  complications. Delayed graft function (DGF) is one 
and frequently occurs after a kidney transplant in almost 
50% of  the cases[65]. Ischemia and reperfusion is associ-
ated with DGF once cadaveric organs undergo an isch-
emic period before transplant and the incidence of  DGF 
is increased in this case. DGF is also involved in acute 
rejection and can leads to chronic allograft nephropathy 
(CAN) development and chronic rejection[65,66], which is 
why the search for new therapies is needed. 

As HO-1 was seen to have a protective role in IRI, to 
induce an anti-inflammatory environment, it was thought 
to have the same role in renal transplants. Formerly 
known as a stress induced enzyme, HO-1 was observed 
when protein expression was analyzed in biopsies. An 
increase of  HO-1 expression in kidney biopsies prior[67] 
and post-reperfusion[68] was associated with DGF. More-
over, Avihingsanon et al[69] demonstrated that nonreject-
ing grafts as well as chronic rejected grafts presented 
no expression of  HO-1, while acute rejected grafts 
presented higher expression of  the enzyme, suggesting 
that the increase of  HO-1 in acute rejection is an attempt 
to maintain graft viability and function and limit tissue 
injury. On the other hand, Lemos et al[70] showed that ca-
daveric donor kidneys presented decreased expression of  
HO-1 and worse renal function compared to living donor 
kidneys, reinforcing the protective role of  this enzyme. 
These inconsistencies might be explained by the different 
population analyzed in each study and the environmental 
conditions of  the transplantation that may influence the 
outcome of  the graft. 

The consequence of  genetic polymorphism has also 
been described in the literature. A polymorphism based 
on dinucleotide repeat (GT)n was identified in HO-1 
gene promoter. The short (S)-allele (< 27) has increased 
transcription of  HO-1 in comparison to the long (L)-
allele (> 27)[71]. Studies about the influence of  this poly-
morphism in renal transplant are controversial: improve-
ment on graft survival was seen in S-allele, as well as less 
CAN[71] and better renal function[71-73], while different 
groups observed no influence of  donors and/or recipient 
S-allele kidneys in graft survival and CAN[73,74]. 

Animal models at least minimize the conflict of  ge-
netic background. A HO-1 inducer, CoPPIX, was admin-
istered in recipient rats and prevented allograft rejection, 
presumably due to less vasculopathy[75]. Administration 
of  CoPPIX in donor rats also reduced DC, T CD4+ and 
T CD8+ in the graft, indicating less immunogenicity[76]. 
Not only the induction of  HO-1, but also the use of  
methylene chloride, a CO donor, was able to improve 
graft function[77], corroborating the idea of  HO-1 as an 
immune modulator in favor of  graft acceptance. Human 
studies require further investigation, but they suggest so 
far that HO-1 works as a biomarker for acute rejection 
and that it also has a role in kidney homeostasis, which 

might help the acceptance and the better outcome of  the 
graft. Animal models contribute to the better understand-
ing of  the HO-1 role in renal transplant, confirming the 
protective and immune regulatory function that culmi-
nates in graft acceptance.

Chronic kidney disease
Renal fibrosis results from a complex process of  extra-
cellular matrix production that ultimately leads to end 
stage renal disease. In this sense, the fibrotic process in 
the tubule-interstitial compartment has been estimated as 
a value predictor of  irreversible loss of  renal function[78]. 
Some studies have addressed the role of  HO-1 in this 
progressive renal disease and will be further discussed.

An important study, published by Kie and colleagues, 
highlighted the role of  basal HO-1 expression in renal 
fibrosis. The authors performed the experimental model 
of  unilateral ureter obstruction (UUO) in wild-type and 
HO-1 deficient mice. The latter exhibited increased fi-
brosis deposition, macrophage infiltration, extracellular 
matrix synthesis and TGF-β production. In vitro experi-
ments using proximal tubular cells isolated from kidneys 
of  both animals showed that, after TGF-β treatment, the 
HO-1 deficient mice derived cells presented increased ep-
ithelial-to-mesenchymal transition, a process that occurs 
in fibrotic states[79]. Such work confirmed the information 
that HO-1, acting as a stress induced enzyme, is up regu-
lated after a renal insult[80] in an attempt by the injured 
tissue to attenuate the incipient damage.

If  the basal levels of  HO-1 are important for kidney 
homeostasis, its overexpression seems to have impor-
tant cytoprotective effects on progressive renal disease. 
Iwai et al[81] described that rats pre-treated with CoPPIX 
and submitted to obstructive nephropathy had, when 
compared to untreated animals, less expression of  fi-
brosis markers α smooth muscle actin, fibronectin and 
collagen. Furthermore, they presented decreased mRNA 
for TGF-β and lymphocyte infiltration. Interestingly, the 
treated group showed increased macrophage infiltration, 
but co-localization techniques evidenced that these cells 
were also positive for HO-1, which was not seen on un-
treated rats. Probably, such macrophages display an im-
mune suppressor profile.

Another work addressed the role of  HO-1 as an anti-
apoptotic molecule. In this case, animals were treated 
with hemin 48 h prior to chronic renal disease surgi-
cal induction. The group that received HO-1 inducer 
presented less pro-apoptotic proteins Bad and cleaved 
caspase-3. In contrast, the protein expression of  anti-
apoptotic molecule Bcl-2 was enhanced in this group[82]. 
A previous work from our group described that modula-
tion of  the inflammatory process by HO-1 up regulation 
also provides protection on the UUO model. Our experi-
ments support the idea that inflammation is an important 
mediator of  the fibrotic process development. After the 
treatment of  rats with hemin, the inflammatory pattern 
was reduced and, consequently, it promoted a better renal 
function outcome and decreased fibrosis deposition and 
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TGF-β production. A great finding in this work was that 
if  the treatment with hemin was given after the effective 
establishment of  the fibrosis, it could also reverse the 
progressive renal disease development[26].

Most of  the studies that explored the role HO-1 in 
chronic kidney disease were performed using the UUO 
model. But, some work was also done in different ex-
perimental models. Desbuards et al[83] showed that induc-
tion of  HO-1 in the remnant kidney model was able to 
improve systemic blood pressure and proteinuria, when 
compared to untreated animals. They also showed that 
the hemin-treated group had less glomerulosclerosis and 
tubular atrophy, which was accompanied by decreased 
TGF-β expression and increased BMP-7 levels (an anti 
fibrotic protein). Moreover, another work using this ex-
perimental model addressed the fact that induction of  
HO-1 with CoPPIX promotes a beneficial angiogenesis 
in renal tissue, with concomitant decrease of  vimentin 
expression and tubular apoptosis[84]. Finally, Tanaka et al[85] 
demonstrated that HO-1 overexpression activates HIF-
regulated genes and protects the hypoxic tubule intersti-
tium compartment from injury in the nephrectomized 
Thy1 nephritis model.

Taken together, all these works support the idea that 
HO-1 up regulation can prevent and even reverse chronic 
kidney disease. The mechanism underlying this protection 
seems to be mainly by down regulating the inflammatory 
and apoptotic processes. 

FINAL CONSIDERATIONS
In this review, we have explored the role of  HO-1 in a 
variety of  renal diseases. The cytoprotection behind it 
seems to be extremely relevant and provides an interest-
ing feedback for future clinical trials. Nowadays, many 
studies have been performed to improve our knowledge 
upon HO-1 byproducts. The information that such stud-
ies are providing can be relevant for the development of  
specific drugs. We propose here that the HO-1 system 
plays an important role in the maintenance of  renal ho-
meostasis after an insult.
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