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Abstract
Hepatitis C virus (HCV) infection often causes chronic 
hepatitis, liver cirrhosis, and hepatocellular carcinoma. 
The development of a HCV cell culture system enabled 
us to investigate its whole HCV life cycle and develop a 
better understanding of the pathogenesis of this virus. 
Post-translational modification plays a crucial role in 
HCV replication and in the maturation of viral particles. 
There is growing evidence also suggesting that the 
ubiquitin-proteasome pathway and the ubiquitin-inde-
pendent proteasome pathway are involved in the sta-
bility control of HCV proteins. Many viruses are known 
to manipulate the proteasome pathways to modulate 
the cell cycle, inhibit apoptosis, evade the immune sys-
tem, and activate cell signaling, thereby contributing to 
persistent infection and viral carcinogenesis. The iden-
tification of functional interactions between HCV and 
the proteasome pathways will therefore shed new light 
on the life cycle and pathogenesis of HCV. This review 
summarizes the current knowledge on the involvement 
of the ubiquitin-dependent and -independent protea-
some pathways in HCV infection and discusses the roles 
of these two distinct mechanisms in HCV pathogenesis.

© 2012 Baishideng. All rights reserved.

Key words: Hepatitis C virus; Ubiquitin; Proteasome; 
Degradation; Hepatitis

Peer reviewer: Gualtiero Alvisi, PhD, Department of Infectious 
Diseases, Heidelberg University, INF345, Heidelberg, 69121, 
Germany

Shoji I. Roles of the two distinct proteasome pathways in hepa-
titis C virus infection. World J Virol 2012; 1(2): 44-50  Avail-
able from: URL: http://www.wjgnet.com/2220-3249/full/v1/i2/
44.htm  DOI: http://dx.doi.org/10.5501/wjv.v1.i2.44

INTRODUCTION
Hepatitis C virus (HCV) is a single-stranded, positive-
sense RNA virus from the family Flaviviridae and is the 
main cause of  chronic hepatitis, liver cirrhosis, and he-
patocellular carcinoma[1-5]. More than 170 million people 
worldwide are chronically infected with HCV[6]. The 
9.6-kb HCV genome encodes a unique open reading 
frame encoding a large precursor polyprotein, which is 
cleaved co-translationally into at least 10 proteins by two 
viral proteases and two cellular signalases[4,5,7-10].

The previous establishment of  a HCV cell culture sys-
tem has facilitated studies of  the whole viral life cycle[11-13]. 
The HCV life cycle is tightly regulated by both viral and 
cellular proteins[5] and evidence is accumulating to show 
that the stability of  HCV proteins is regulated through 
both the ubiquitin-dependent and ubiquitin-independent 
proteasome pathways[14-18]. Moreover, HCV infection 
has been shown to trigger the degradation of  host fac-
tors[19]. It is well known that many viruses manipulate the 
ubiquitin-proteasome pathway to promote their propaga-
tion by redirecting the cellular ubiquitin machinery to en-
able replication, egress and evasion of  the host immune 
system[20]. Although the majority of  the protein turnover 
mediated by the proteasome occurs through the canoni-
cal ubiquitin-dependent 26S proteasome pathway, a 
number of  viral proteins and host proteins are degraded 
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through the 20S proteasome without prior polyubiquity-
lation[21,22]. The functional differences between these two 
proteasome pathways are poorly understood, although 
a number of  proto-oncogenes and tumor suppressors 
are degraded through both mechanisms, indicative of  a 
system that tightly regulates the turnover of  key cellular 
proteins[23-28]. 

Ubiquitin is a 76 amino acid polypeptide that is highly 
conserved among eukaryotic organisms. The ubiquitin/
26S proteasome pathway is composed of  an enzymatic 
cascade that ubiquitylates proteins to target them for 
proteasomal degradation. The E1 ubiquitin-activating 
enzyme binds ubiquitin through a thioester linkage in 
an ATP-dependent manner[29,30]. The activated ubiquitin 
is then transferred to the E2 ubiquitin-conjugating en-
zyme which works in conjunction with the E3 ubiquitin 
ligase, which is responsible for conferring substrate 
specificity[31]. E3 mediates the transfer of  ubiquitin to 
the target protein which is then rapidly degraded by the 
26S proteasome[32,33]. A number of  studies have revealed 
the existence of  a proteasome-dependent but ubiquitin-
independent pathway for protein degradation. Several key 
molecules, such as p53, p73, c-fos, p21, SRC-3, and the 
hepatitis B virus X protein are targeted by two distinct 
degradation pathways that function in a ubiquitin-de-
pendent and ubiquitin-independent manner, respective-
ly[21-28,34,35]. Although the pathophysiological significance 
of  the proteasomal degradation of  the HCV proteins 
and HCV-induced proteasomal degradation of  host pro-
teins remains to be elucidated, evidence is accumulating 
that the proteasome plays an essential role in propagation 
of  HCV[14,15]. The roles of  the proteasome pathways in 
HCV life cycle as well as in viral pathogenesis are further 
discussed below. 

UBIQUITIN-DEPENDENT DEGRADATION 
OF HCV PROTEINS BY THE 
PROTEASOME
HCV core protein
The HCV core protein is a major component of  the viral 
nucleocapsid and is a multifunctional factor involved in 
both the pathogenesis and hepatocarcinogenesis of  HCV 
and is degraded through the ubiquitin-proteasome path-
way[5,16,36]. The cellular ubiquitin ligase E6AP was identi-
fied as a HCV core-binding protein in our laboratory and 
shown to mediate the polyubiquitylation of  the core pro-
tein and thereby target it for proteasomal degradation[14]. 
E6AP was first identified as the cellular factor that medi-
ates the ubiquitin-dependent degradation of  the tumor 
suppressor p53 in conjunction with the E6 protein of  
the cancer-associated human papillomavirus types 16 and 
18[37,38]. The region between amino acids 58 and 71 of  the 
HCV core protein is responsible for the interaction with 
E6AP. These 14 amino acids are highly conserved, with 
the first nine amino acids (PRGRRQPIP) present in the 
core proteins of  all HCV genotypes. This suggests that 

the E6AP-dependent degradation of  HCV core protein 
is also conserved. Indeed, a knockdown of  endogenous 
E6AP by siRNA increases the production of  infectious 
HCV particles, further suggesting that E6AP negatively 
regulates HCV propagation[14]. 

E2 protein
The HCV envelope proteins comprise two glycoproteins, 
E1 and E2. HCV infection requires the interaction be-
tween these proteins and the host cell membrane. HCV 
attachment and entry into host cells is a multistep pro-
cess, involving several cell surface molecules, including 
CD81[39], the LDL receptor[40], scavenger receptor BI[41], 
claudin-1[42-44], and occludin[43,45]. Several E2 domains also 
play crucial roles in virus entry[46]. In addition, HCV E2 
has been implicated in conferring resistance to inter-
feron (IFN)-α. E2 contains a region homologous to the 
double stranded RNA-activated protein kinase (PKR) 
and its substrate, subunit α of  the translation initiation 
factor eIF2α[27]. The unglycosylated form of  the E2 pro-
tein (E2-p38) is retained in the cytosol and is degraded 
through the ubiquitin-proteasome pathway[47]. E2-p38, 
but not the glycosylated form of  E2, interacts with PKR 
and is stabilized by treatment with IFN-α, suggesting that 
it contributes to the resistance of  HCV to IFN-α. The 
ubiquitin ligase that targets E2-p38 remains to be identi-
fied.

NS5A protein
NS5A protein is a major component of  the HCV replica-
tion complexes and can be found in basally phosphory-
lated (56 kDa) and hyperphosphorylated (58 kDa) forms. 
NS5A harbors an amphipathic α-helix at its amino termi-
nus that promotes membrane association. In addition to 
this helix region, NS5A contains three domains (Ⅰ-Ⅲ). 
The N-terminal domain (domain Ⅰ) coordinates a single 
zinc atom per protein molecule[48]. Zinc mesoporphyrin 
(ZnMP) is a non-heme metalloporphyrin and a synthetic 
heme analog of  the central zinc in the mesoporphyrin 
macrocycle. ZnMP enhances the polyubiquitylation and 
proteasomal degradation of  NS5A and suppresses HCV 
RNA replication[49]. The physiological role of  the ubiqui-
tin-dependent proteasomal degradation of  NS5A protein 
is still unclear and the ubiquitin ligase that targets NS5A 
also remains to be identified.

NS5B protein
The HCV NS5B protein functions as an RNA-dependent 
RNA polymerase. NS5B binds to a ubiquitin-like protein, 
hPLIC1[50], which contains 589 amino acids and belongs 
to a family of  type 2 ubiquitin-like (ubl) proteins. hPLIC1 
harbors a non-cleavable ubiquitin-like (ubl) domain in its 
amino terminus and a ubiquitin-associated (uba) domain 
in its carboxyl terminus[51] and physically associates with 
the proteasome and at least two ubiquitin ligases (E6AP 
and βTRCP). NS5B binds to the uba domain of  hPLIC1, 
an interaction which enhances the polyubiquitylation 
and proteasomal degradation of  NS5B, suggesting that 
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hPLIC1 regulates HCV RNA replication by affecting 
NS5B turnover[50]. The responsible E3 ligase for NS5B 
ubiquitylation again remains to be identified.

UBIQUITIN-INDEPENDENT 
DEGRADATION OF HCV PROTEINS VIA 
THE PROTEASOME
Core protein
The HCV core protein specifically interacts with a pro-
teasome activator PA28γ/REGγ in the nucleus and is 
degraded through a PA28γ-dependent proteasome path-
way[18]. In vivo experiments in a mouse model have sug-
gested that PA28γ plays a critical role in HCV-associated 
insulin-resistance, steatogenesis, and hepatocarcinogen-
esis[52,53]. The proteasomal turnover of  the HCV core pro-
tein is regulated by two distinct mechanisms, the E6AP-
mediated ubiquitin-dependent pathway and the PA28γ-
mediated ubiquitin-independent pathway[14,17] (Figure 1). 
E6AP enhances the ubiquitylation and degradation of  
the wild-type HCV core protein, but not a lysine-less 
mutant counterpart, whereas PA28γ enhances the deg-
radation of  both the wild type and lysine-less HCV core 
protein. A knockdown of  either E6AP or PA28γ results 
in the stabilization of  the wild-type core protein. How-

ever, the knockdown of  PA28γ but not E6AP stabilizes 
the lysine-less mutant core protein, strongly suggesting 
that PA28γ enhances the ubiquitin-independent path-
way. Knockdown of  PA28γ in cells at pre-infection or 
post-infection with the HCV JFH1 strain impaired viral 
particle production but exhibited no effect on viral RNA 
replication[15]. The knockdown of  PA28γ enhances the 
polyubiquitylation of  the core protein and impairs HCV 
production, whereas a knockdown of  E6AP reduces 
polyubiquitylation of  core protein and enhances virus 
production. These findings suggest that HCV production 
is positively regulated by PA28γ and negatively regulated 
by E6AP through the degradation of  the core protein.

F protein
The HCV F protein is encoded by the +1/-2 reading 
frame encompassed in the 5’ end of  the polyprotein cod-
ing sequence[54]. The F protein is also known as ARFP 
(alternative reading frame protein) or as core+1 (which 
indicates the position of  the new ORF)[55]. Translation 
of  the F protein is mediated by a ribosomal frameshift 
at core protein codons 9-11 (HCV-1a strain). The bio-
logical role of  the F protein remains to be clarified. The 
F protein is also highly unstable. It has been suggested 
that the F protein may bind to the α3 subunit of  the 20S 
proteasome[56]. The α3 subunit facilitates the degrada-
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Figure 1  Two distinct proteasome pathways target hepatitis C virus proteins for degradation. The 20S catalytic core is composed of α and β subunits that 
form a barrel-like structure. The 19S regulator (PA700) can associate with either or both ends of the 20S catalytic core. The combination of one 20S catalytic core and 
one or two 19S regulator generates the 26S proteasome that is responsible for ubiquitin-dependent ATP-dependent degradation of specific target substrates. E6AP 
mediates the polyubiquitylation of the hepatitis C virus (HCV) core protein and thereby targets it for ubiquitin-dependent degradation. E2-p38, NS5A, and NS5B are 
degraded through this ubiquitin-dependent and ATP-dependent proteasome pathway. The proteasome activator, PA28γ, forms a homoheptamer and is implicated in 
the ubiquitin-independent turnover of the HCV core protein. The F and NS2 proteins are also degraded through the ubiquitin-independent pathway.
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tion of  the F protein in a dose-dependent manner and a 
knockdown of  the α3 subunit results in the stabilization 
of  the F protein, even in the presence of  a replicating 
HCV genome. The α3-binding domain within the F pro-
tein was mapped to the region between amino acids 40 
and 60. There are currently three lines of  evidence sug-
gesting that the degradation of  the F protein is ubiquitin-
independent. First, an F protein mutant lacking lysine 
residues, which therefore cannot be ubiquitylated, is no 
more stable than the wild-type F protein. Second, F pro-
tein expressed in ts85 cells, which harbor a temperature-
sensitive E1 ubiquitin-activating enzyme, is not stabilized 
when the cells are incubated at the non-permissive tem-
perature. Third, the F protein can be degraded by the 20S 
proteasome in vitro in the absence of  any ubiquitylation 
machinery.

NS2 protein
HCV NS2 protein is a transmembrane protein, composed 
of  a highly hydrophobic N-terminal membrane binding 
domain and a C-terminal globular and cytosolic protease 
subdomain. NS2 protease cleaves off  the N-terminus of  
NS3 protein and is involved in the assembly of  HCV par-
ticles[57,58]. NS2 protein is also a short-lived protein that is 
rapidly degraded by the proteasome in a phosphorylation-
dependent manner through the activity of  casein kinase 
2 (CK2). NS2 is phosphorylated by CK2 on a serine resi-
due at position 168, which is a part of  a consensus CK2 
phosphorylation sequence motif  (S/TXXE)[59]. This CK2 
phosphoacceptor motif  is highly conserved among NS2 
proteins from all HCV genotypes. No ubiquitin conjuga-
tion of  NS2 has been detected[59] and lysine mutagenesis 
has been reported to have no effect on NS2 levels[60]. 
These results suggest that the degradation of  the HCV 
NS2 protein is ubiquitin-independent but proteasome-
dependent.

HCV INFECTION-INDUCED UBIQUITIN-
DEPENDENT DEGRADATION OF 
CELLULAR PROTEINS VIA THE 
PROTEASOME
Retinoblastoma tumor-suppressor protein
The abundance of  the retinoblastoma tumor-suppressor 
protein (pRb) is negatively regulated in HCV RNA repli-
con cells[61] and HCVcc-infected cells[19]. The HCV RNA-
dependent RNA polymerase NS5B protein forms a com-
plex with pRb, targeting it for degradation, resulting in a 
reduction of  pRb, the activation of  the E2F-responsive 
promoter, and the promotion of  cell proliferation[61]. 
NS5B contains a Leu-x-Cys/Asn-x-Asp motif  that is 
homologous to the Rb-binding domains in the oncop-
roteins of  DNA viruses and interacts with pRb through 
this motif. The ectopic expression of  NS5B induces the 
polyubiquitylation of  pRb, the abundance of  which is 
restored by the siRNA knockdown of  E6AP or by the 
overexpression of  a dominant-negative E6AP mutant in 

HCV RNA replicon cells. This suggests the involvement 
of  E6AP in pRb degradation, induced by HCV. However, 
it has been reported previously in an in vitro assay that the 
ubiquitylation of  pRb is not promoted by E6AP, either in 
the presence or absence of  NS5B[19]. The precise mecha-
nism by which NS5B-dependent pRb ubiquitylation oc-
curs thus remains to be clarified.

Suppressor of cytokine signaling 3
Suppressor of  cytokine signaling 3 (SOCS3) is one of  the 
negative regulators of  cytokine signaling that function via 
the JAK-STAT pathway[62,63]. The SOCS3 protein levels 
have been found to be decreased in OR6 cells harboring 
a HCV genotype 1b replicon and also in Huh 7.5.1 cells 
infected with the HCV genotype 2a strain JFH1[64]. Treat-
ment with the proteasome inhibitor MG132 blocked the 
inhibitory effects of  HCV on the SOCS3 protein levels 
in both the replicon-harboring OR6 cells and JFH1-
infected cells. JFH1 infection increased the ubiquitylation 
of  SOCS3 compared with the mock infected cells. These 
results have suggested that HCV infection promotes the 
degradation of  SOCS3 through the ubiquitin-dependent 
proteasome pathway. The underlying mechanism remains 
to be elucidated.

HCV INFECTION AFFECTS THE 
IMMUNOPROTEASOME
Proteasomal epitope processing
The induction of  CD8+ T cells is dependent on the 
generation of  MHC class Ⅰ ligands by the proteasome. 
Whereas the amino-terminus of  each epitope can be fur-
ther defined by post-proteasomal aminoexopeptidases, 
the carboxyl terminus needs to be defined precisely by 
the first cleavage. Through the study of  a single source 
outbreak of  HCV, Seifert et al[65] have previously identi-
fied a mutation at a conserved tyrosine on the HCV NS3 
protein, which was a tyrosine to phenylalanine substi-
tution. This mutation was found to impair the correct 
carboxyl-terminal cleavage of  an immune-dominant, 
HLA-A2 restrictive HCV NS31073-1081 epitope from its mu-
tated polypeptide precursor, not only by the constitutive 
proteasomes, but also by the immunoproteasome. These 
mutations impair the induction of  HCV-specific CD8+ 
T cells by affecting the proteasomal antigen-processing 
machinery. 

MHC class Ⅰ-restricted HCV antigen presentation and 
the effects of ethanol on this process
In Huh-7 cells co-expressing the HCV core protein and 
CYP2E1, the core protein slightly enhances 20S protea-
some activity through a direct interaction and via the in-
duction of  low CYP2E1-dependent oxidative stress[66,67]. 
This proteasome activation event is, however, reversed 
after ethanol exposure which considerably reduces pro-
teasome function due to the induction of  high oxidative 
stress[66]. Ethanol-elicited suppression of  the proteasome 
in the liver ultimately results in a reduced generation of  
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antigenic peptides and reduced MHC class Ⅰ-restricted 
antigen presentation on hepatocytes[68].

Low-molecular-mass protein 7
The HCV NS3 protein interacts with low-molecular-mass 
protein 7 (LMP7), a component of  the immunoprotea-
some[69]. The minimal binding domain required for this 
interaction is located between the pro-sequence region 
of  LMP7 (aa 1-40) and the protease domain of  NS3. 
LMP7 has no effects on NS3 protease activity in vitro. The 
peptidase activities of  LMP7 immunoproteasome, how-
ever, are markedly reduced in a HCV RNA subgenomic 
replicon. These findings suggest that the downregulation 
of  proteasome peptidase activities could interfere with 
the processing of  viral antigens for presentation by MHC 
class Ⅰ molecules, thereby contributing to persistent infec-
tion by HCV.

CONCLUSION
In the present review, the current knowledge on the in-
volvement of  the ubiquitin-proteasome pathway and ubiq-
uitin-independent proteasome pathway on HCV infection 
is summarized (Figure 1 and Table 1). As is the case with 
many other virus types, HCV may manipulate the ubiqui-
tin system and the proteasome system to favor its propa-
gation and contribute to viral pathogenesis. The body of  
knowledge regarding the ubiquitin-system and the protea-
some system has markedly grown in recent years[21,22] and 
it has now been demonstrated that canonical Lys 48-linked 
polyubiquitin chains are not the only signals that initiate 
proteasome-mediated degradation. Monoubiquitylation[70], 
Lys 63-linked chains[71], Lys 11-linked chains[72], and linear 
chains[73-75] have been reported to have various functions, 
including the activation of  signaling pathways and cell-
cycle progression. Nothing is known however about the 
involvement of  de-ubiquitylating enzymes in the HCV life 
cycle. The future identification of  key molecules in the 
ubiquitin and proteasome systems will likely provide new 
insights and a better understanding of  the life cycle and 
pathogenesis of  HCV, knowledge which will be essential 
for the design of  novel anti-HCV therapeutics.
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