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Abstract: Structural changes in neuroanatomical subregions can be measured using serial magnetic res-
onance imaging scans, and provide powerful biomarkers for detecting and monitoring Alzheimer’s
disease. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) has made a large database of longi-
tudinal scans available, with one of its primary goals being to explore the utility of structural change
measures for assessing treatment effects in clinical trials of putative disease-modifying therapies. Sev-
eral ADNI-funded research laboratories have calculated such measures from the ADNI database and
made their results publicly available. Here, using sample size estimates, we present a comparative
analysis of the overall results that come from the application of each laboratory’s extensive processing
stream to the ADNI database. Obtaining accurate measures of change requires correcting for potential
bias due to the measurement methods themselves; and obtaining realistic sample size estimates for
treatment response, based on longitudinal imaging measures from natural history studies such as
ADNI, requires calibrating measured change in patient cohorts with respect to longitudinal anatomical
changes inherent to normal aging. We present results showing that significant longitudinal change is
present in healthy control subjects who test negative for amyloid-b pathology. Therefore, sample size
estimates as commonly reported from power calculations based on total structural change in patients,
rather than change in patients relative to change in healthy controls, are likely to be unrealistically low
for treatments targeting amyloid-related pathology. Of all the measures publicly available in ADNI,
thinning of the entorhinal cortex quantified with the Quarc methodology provides the most powerful
change biomarker. Hum Brain Mapp 33:2586–2602, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Structural magnetic resonance imaging (MRI) is highly
sensitive to the neurodegeneration that occurs in Alzhei-
mer’s disease (AD), even in prodromal stages [McEvoy
et al., 2009; Vemuri et al., 2009]. Atrophy measures in neu-
roanatomical subregions correlate well with disease stage
determined from histopathology [Vemuri et al., 2008], and
with clinical measures of disease severity [Jack et al., 2004;
McDonald et al., 2009]. They are predictive of clinical
decline and conversion to AD in individuals with mild
cognitive impairment (MCI) [Fan et al., 2008; Jack et al.,
1999, 2004; Kovacevic et al., 2009; McEvoy et al., 2011;
Vemuri et al., 2009]. Structural changes over time in neuro-
anatomical subregions can be quantified from serial MRI
scans [Holland et al., 2009], and provide powerful bio-
markers for tracking disease progression or slowing of
progression with treatment. As a reflection of the progres-
sive neurodegeneration that underlies the cognitive and
functional decline in AD, anatomical change measures
have high face validity as outcome measures for evaluat-
ing putative disease-modifying effects of new therapeutic
interventions, and are being evaluated in clinical trial set-
tings as potential surrogates for standard clinical or cogni-
tive outcomes.

To be useful as primary or secondary outcome measures
in clinical trials, longitudinal MRI analysis methods must
be able to detect with high fidelity subtle structural
changes over time. Multiple methodologies have been
developed to address this challenge. The Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI), a large-scale, multi-
site, longitudinal study of the natural history of AD
[Mueller et al., 2005] was launched in 2003 with an over-
arching goal of determining the best set of in vivo bio-
markers for early detection and tracking of AD (http://
www.adni-info.org) [Mueller et al., 2005]. A related goal is
to determine which methods provide maximum power for
detecting treatment effects in clinical trials of potential dis-
ease-modifying therapies [Cummings, 2010]. A unique as-
pect of ADNI is that all raw data are being made available
publicly as they are collected (http://adni.loni.ucla.edu).
Research groups funded by ADNI [Jack et al., 2010] have
made their derived data publicly available as well,
enabling a direct comparison of the relative sensitivity of
different methods for detecting and tracking neuropatho-
logical changes related to AD. Here, we use ADNI’s pub-
licly available derived data to present a comparative
analysis of measures of whole-brain and subregional
change, obtained from several widely used analysis meth-
ods. These methods amount to extensive processing

streams and involve many factors, such as image exclusion
decisions, quality control, the choice of using the pair of
scans or choosing just the best single scan available for
subject-timepoints, and the quality of gradient-field nonli-
nearity unwarping employed, and thus are composed of
far more than change-measurement algorithms. Given all
these differences, it is only practical to evaluate each meth-
odology based on the overall results individually available
from applying them to the same large ADNI database. To
compare methods, we use estimated sample size require-
ments, as these have become a standard metric for evalu-
ating biomarkers, and are directly relevant to clinical trial
design. We further provide statistical significance results
(P values) for differences in sample size estimates obtained
in strict head-to-head pairwise comparisons among all
measures.

To obtain realistic sample size estimates from longitudi-
nal neuroimaging measures, it is essential to control for
potential bias that can arise in image analysis [Thompson
and Holland, 2011]. The problem of bias in image registra-
tion has been known since the early days of nonrigid mor-
phometric methods [Ashburner and Friston, 2000;
Christensen, 1999; Christensen and Johnson, 2001] and has
received a great deal of attention recently, including the
development of some general and implementation-specific
solutions [Leow et al., 2007; Reuter et al., 2010; Yanovsky
et al., 2009; Yushkevich et al., 2010]. Sources of bias
include asymmetries in image smoothing and/or interpo-
lation, and asymmetry in the image matching or regulari-
zation term in the cost function used in image registration.
Such bias can be accentuated to varying degrees depend-
ing on the minimization scheme used [Yushkevich et al.,
2010].

Another critical consideration when estimating sample
sizes for treatment response is whether to include effects
seen in normal aging as treatable effects. When performing
power calculations based on a natural history (noninter-
vention) trial such as ADNI, sample size estimates are typ-
ically calculated for a hypothesized treatment effect
expressed in terms of a percentage of the total disease-
related effect, for example, a 25% slowing in rate of
decline on the outcome measure.

Compared to clinical or cognitive measures, neuroimag-
ing measures are very sensitive to changes that occur over
time in cognitively healthy older adults [Fjell et al., 2009;
Fotenos et al., 2005; Fox et al., 2000; Jack et al., 2008].
When effect sizes are estimated based on absolute change
measures, for example, 25% reduction in the total atrophy
rate of a given anatomical structure, the usually implicit
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and probably false [Herrup, 2010] assumption is that all
change over time is due to AD. Several ADNI presenta-
tions, the ADNI-2 grant proposal (available at www.adni-
info.org/Scientists/ADNIScientistsHome.aspx), and most
ADNI studies evaluating or comparing sample size esti-
mates for neuroimaging outcome measures make this
assumption implicitly [Beckett et al., 2010; Cummings,
2010; Ho et al., 2010; Hua et al., 2009, 2010; Kohannim
et al., 2010; Lorenzi et al., 2010; Nestor et al., 2008;
Risacher et al., 2010; Schuff et al., 2009; Vemuri et al.,
2010], with a few notable exceptions [Fox et al., 2000; Hol-
land et al., 2009; Leung et al., 2010; McEvoy et al., 2010;
Schott et al., 2010]. This is a critically important issue since
sample size estimates will be substantially smaller if effect
sizes are calculated based on absolute change measures
rather than on the difference in change measures between
patients and controls.

The use of absolute change measures is valid if all atro-
phy over time in cognitively healthy older individuals is
due to AD, that is, if all cognitively healthy older individ-
uals are in a preclinical state of AD. Current research sug-
gests, however, that only 18% of cognitively healthy older
individuals aged 60–69 show signs of amyloid-b (Ab) pa-
thology, one of the key necessary features for AD, rising
to 65% in those over 80 years [Rowe et al., 2010]. Patholog-
ical levels of cortical Ab can be assessed directly through
positron emission tomography (PET) imaging of amyloid-
sensitive ligands [Rabinovici and Jagust, 2009] or indirectly
through cerebrospinal fluid levels of Ab42 [Blennow et al.,
2010]. CSF and PET measures of Ab pathology correlate
highly with each other [Fagan et al., 2009] and with meas-
ures of Ab at autopsy [Ikonomovic et al., 2008]. Proposed
models of the trajectories of different AD biomarkers
[Aisen et al., 2010; Frisoni et al., 2010; Jack et al., 2010] pos-
tulate that Ab pathology is the earliest detectable sign of
AD pathology, and may be apparent a decade or more
before other signs of AD occur, such as neurodegeneration
and cognitive impairment. These models further postulate
that neurodegenerative changes, reflected in atrophy on
structural MRIs, are downstream events that occur closer
in time to, and underlie, the functional and cognitive
impairment that characterize AD—and indeed for familial
AD, gradual atrophy acceleration has been found in the
prodromal stages [Ridha et al., 2006].

According to these models, atrophy observed in individ-
uals who do not show signs of Ab pathology would not
be due to AD, as Ab pathology appears prior to, and pre-
sumably triggers [Hardy and Selkoe, 2002], the AD-related
neurodegeneration. There would thus be no reason to
expect that a treatment, such as an anti-amyloid therapy,
aimed at slowing progression of AD pathology, would
affect atrophy that stems from causes other than AD pa-
thology. Therefore, determination of disease-specific effect
sizes for neuroimaging outcome measures, based on a nat-
ural history trial of AD, would be best estimated as the
difference in atrophy rates experienced by MCI or AD
patients relative to atrophy rates observed in cognitively

healthy individuals without Ab pathology. It should be
noted, however, that there is little evidence to date for dif-
ferences in atrophy rates in AD-vulnerable regions
between Ab-positive and Ab-negative healthy older adults
(or healthy older controls, HCs) [Chetelat et al., 2010; Fjell
et al., 2010], though using variants of Boundary Shift Inte-
gral (BSI) for whole brain, ventricles, and hippocampus, a
significant difference was found between 65 Ab-negative
HCs (including two converters) and 40 Ab-positive HCs
(including four converters) [Schott et al., 2010]. Here we
compare atrophy rates in ADNI’s full HC group, and in
HCs separated into two subgroups, those who test nega-
tive for Ab pathology and those who test positive, based
on CSF Ab42 levels, and examine the implications of these
findings for sample size estimation.

In this study, we analyze publicly available ADNI data
from the application of five methodologies to serial brain
scans to determine which method provides the most sensi-
tive detection of anatomical change over time. These meth-
odologies are: (1) Quarc (quantitative anatomical regional
change, developed in our laboratory) [Holland and Dale,
2011; Holland et al., 2009], (2) FreeSurfer Longitudinal
v.4.4, (3) FreeSurfer Cross-sectional v.4.3 [Dale and Sereno,
1993; Dale et al., 1999; Fischl et al., 1999, 2002; Jack et al.,
2010], (4) BSI [Freeborough and Fox, 1997; Leung et al.,
2010], and (5) Tensor-Based Morphometry (TBM) [Hua
et al., 2008a,b, 2009, 2010]. (We note that ‘‘Tensor-Based
Morphometry’’ is sometimes used to refer to any nonlinear
registration method, even if the only tensors involved are
rank 1, that is, vectors. ‘‘Tensor-Based Morphometry’’ is
used in the title of several of the Hua et al. articles, refer-
ring to the full processing stream developed and imple-
mented by those authors at LONI, UCLA; the tensors in
question comprise the set of 3 � 3 Jacobian matrices, one
at each voxel, which result from morphometric registra-
tion—the registration itself is not based on these tensors,
but the analysis of structural change is based on statistical
properties of the Jacobian field. In agreement with Hua
et al., here we use ‘‘Tensor-Based Morphometry’’ and
‘‘TBM’’ as identifiers referring exclusively to the complete
UCLA-LONI methodology.) Official ADNI data for Voxel-
Based Morphometry [Alexander et al., 2010; Ashburner
and Friston, 2000; Chetelat et al., 2005; Tzourio-Mazoyer
et al., 2002] did not yield meaningful results and so was
not included in our analysis. We assess the impact of mea-
surement bias on sample size estimates derived from these
neuroimage analysis methodologies and provide sample
size estimates, with confidence intervals, for the bias-cor-
rected data, along with P values for pairwise head-to-head
comparisons. We also evaluate the impact of failing to con-
trol for changes observed in healthy aging. Finally, to
determine the sensitivity of neuroimaging variables as out-
come measures, we compare sample size estimates derived
using change in the neuroimaging measures to those
derived using change on a standard clinical outcome mea-
sure, the Clinical Dementia Rating–Sum of Boxes (CDR-
SB) score.
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The five methodologies under discussion have some
aspects in common, and some unique features. FreeSurfer-
cross-sectional performs independent tissue segmentations
at each timepoint for each subject, and is the only method
considered here that does not use any form of registration
between longitudinal images; FreeSurfer-longitudinal is
conceptually an extension of the cross-sectional variant,
where input from all available time points for a subject is
used to update the segmentations at each timepoint. Quarc
and TBM are nonlinear registration methods, and estimate
change by integrating a volume-change field over anatomi-
cally predefined tissue ROIs or statistically defined ROIs;
they differ significantly in their details, for example, image
matching and regularization terms, minimization schemes,
use or not of Jacobians, use or not of an atlas, intensity
normalization, and so forth. BSI has evolved through sev-
eral versions, but essentially estimates tissue (contrast)
boundary displacements between pairs of affine registered
images. Altogether, this is a rich set of methodologies that
result in some remarkable similarities and differences,
which we discuss below.

METHODS

ADNI

All data used in the preparation of this article were
obtained from the ADNI database (www.loni.ucla.edu/
ADNI). ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies
and nonprofit organizations, as a $60 million, 5-year pub-
lic–private partnership. ADNI’s goal is to test whether se-
rial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to mea-
sure the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to de-
velop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials.

ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private
corporations. ADNI has recruited 227 cognitively normal
individuals to be followed for 3 years, 396 people with
MCI to be followed for 3 years, and 193 with mild AD to
be followed for 2 years (see www.adni-info.org). The
research protocol was approved by each local institutional
review board and written informed consent is obtained
from each participant.

Participants

The ADNI general eligibility criteria have been
described elsewhere [Petersen et al., 2010]. Briefly, subjects
are not depressed, have a modified Hachinski score of 4 or

less, and have a study partner able to provide an inde-
pendent evaluation of functioning. HC subjects have a
Clinical Dementia Rating (CDR) of 0. Subjects with MCI
have a subjective memory complaint, objective memory
loss measured by education-adjusted scores on Wechsler
Memory Scale Logical Memory II, a CDR of 0.5, preserved
activities of daily living, and absence of dementia. Subjects
with AD have a CDR of 0.5 or 1.0 and meet National Insti-
tute of Neurological Disorders and Stroke and Alzheimer’s
Disease and Related Disorders Association criteria for
probable AD.

Data Processing

Analyses were performed on data sets available from
www.loni.ucla.edu/ADNI/Data through April 16, 2011.
These data sets comprise measures derived from longitu-
dinal structural MRI processed with: Quarc; FreeSurfer-
longitudinal (FS); FreeSurfer-cross-sectional (FSx); BSI; and
TBM. The measures in these data sets are for various
ROIs, both predefined tissue regions and data-driven
regions, at baseline and follow-up (generally 6-months
apart) through 36-months. Images for Quarc were prepro-
cessed locally, similarly to the preprocessing at Mayo
Clinic performed by ADNI for the other methodologies,
but using both images per time point where available, and
using image correction procedures for site-specific distor-
tion effects updated for recent scanner changes. The other
methodologies used only a single scan per timepoint—the
best scan in the event of artifactual degradation in the
other. Since one of the goals of ADNI is to identify bio-
markers that are more powerful than current standard out-
comes for tracking early disease progression, sample sizes
were also determined using CDR-SB as an outcome vari-
able. Change with respect to baseline was the measure
used in all cases (follow-up images were directly regis-
tered with baseline). All data that passed quality control
(as defined by the several methodologies) for all available
time points were used. This provides for a global overview
when comparing the full methodological processing
streams, and implicitly takes into account differences
in the methods’ failure rates. We also carried out pairwise
comparisons on identical subject-timepoint data sets for a
more narrowly focused assessment of relative
performance.

For the FreeSurfer-related methods, we focused primar-
ily on the entorhinal, hippocampus, and whole brain, these
being the ROIs traditionally of interest in AD studies, but
we also provide results for other ROIs in Tables II and III;
for BSI we used the whole-brain measure ‘‘KN-BSI,’’
described in [Leung et al., 2010]; and for TBM we used the
‘‘Stat-ROI,’’ the statistically defined ROI in the temporal
lobe that was designed to undergo a high degree of
change from AD, as described in [Hua et al., 2009]. An
earlier analysis of the TBM Stat-ROI showed that the dif-
ferences between 0 to 6 month and subsequent interval
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atrophy rates were highly significant for this measure for
all diagnostic groups [Thompson and Holland, 2011], and
an attempt to redress the issues raised [Hua et al., 2011]
resulted in alternative sample size estimates, which we
discuss below. Individual subject data from the modified
method are not available on the ADNI website, but since a
large number of publications have reported on the prob-
lematic TBM Stat ROI results [Beckett et al., 2010; Cum-
mings, 2010; Ho et al., 2010; Hua et al., 2008a,b, 2009, 2010;
Jack et al., 2010; Kohannim et al., 2010], and results from
the modified method are similar, we provide a more
detailed analysis here of this method, and compare results
from the two approaches.

Quality control information, using acronymic nomencla-
ture, was explicitly provided by the individual research
groups in the publicly available ADNI spreadsheets for FS,
FSx, BSI, and Quarc data, and used here for filtering out
subject visits that did not have values as follows: FS and
FSx QVERALLQC ¼ ‘‘Pass’’ or ‘‘Partial’’; BSI VENTAC-
CEPT ¼ 1, REGRATING � 3, KMNREGRATING � 3; and
Quarc QCPASS ¼ 1. The total numbers of remaining sub-
jects, categorized by diagnosis (and CSF-Ab status for
HCs), for all methodologies and CDR-SB are shown in Ta-
ble I.

Bias Estimation

All measures were evaluated for potential bias by esti-
mating the intercept based on a linear fit to the 6- and 12-
month timepoints [Yushkevich et al., 2010]. This linear fit
was performed simultaneously across groups (AD, MCI,
and HC), allowing different slopes for each group but
requiring constant intercept, based on the assumption that
additive bias, if arising from methodology, should equally
affect measures from all groups.

More formally, we used the following linear model to fit
for additive bias (intercept) b, and slopes (rates of change)
sH for HCs, sM for MCI subjects, and sA for AD subjects: Y
¼ sH � TH þ sM � TM þ sA � TA þ b. Here, Y, TH, TM,
and TA are vectors of length equal to the total number of
all subject-visits at 6- and 12-months: Y is the vector of

response measurements (percent volume change from
baseline) for all subjects-visits; TH is the vector of times
from baseline for all HC subject-visits, with zeros at posi-
tions corresponding to non-HCs; TM, and TA are similar
vectors but for MCI and AD subjects, respectively. The
general linear model was fit using Matlab, and the null hy-
pothesis that the y-intercept is zero, indicating no bias,
was tested.

Measures were corrected for bias by subtracting the esti-
mated b at all follow-up timepoints. Bias-corrected meas-
ures were then used for subsequent power calculations.

Power Calculations

Power calculations, modeling linear change over time,
were performed for each methodology with standard
methods briefly described in [Holland et al., 2009], using
all available timepoints through 36-months for each sub-
ject. Since we are measuring change from baseline, in plots
of measured change versus time of measurement all inter-
cepts are zero at baseline. Each subject, however, is
assumed to change at an independent rate. Thus we have
a linear mixed-effects model (fixed intercepts, fixed group
slopes, random individual subject slopes, random within-
subject additive or observational error) where, for a spe-
cific diagnostic group, the measurement Yij at time tij for
subject i at follow-up timepoint j is Yij ¼ mitijþeij. Here, eij

is the within-subject error, assumed to be independent and
identically normally distributed with zero mean and var-
iance r2

e; mi = m 1 ci, where m is the fixed effect slope
(mean rate of change for the group) and ci is the between-
subject random effect slope with variance r2

m. We use the
Matlab (version R2009b) nlmefit function in the Statistics
Toolbox (http://www.mathworks.com) to obtain maxi-
mum likelihood point estimates of r2

e, r2
m, and m. These

fixed and random effects parameter estimates can be used
in power calculations to obtain point estimates of the sam-
ple sizes N, per arm, required for a hypothetical placebo-
controlled longitudinal study, as described in [Fitzmaurice
et al., 2004]. This approach was used to calculate sample
sizes required to detect a 25% slowing in mean rate of
decline for a hypothetical disease-modifying treatment ver-
sus placebo for a 24-month, two-arm, equal allocation trial,
with 6-month assessment intervals. Power calculations
were performed with the requirement that the trial have
80% power to detect the treatment effect using a two-sided
significance level of 5%. When correcting for normal aging,
the sample size estimates were calculated using the var-
iance parameters (r2

e, r2
m) from the patient cohort, while

the treatment effect size of interest was assumed to be 25%
of the difference between the mean rates of change in the
patient and healthy populations.

To determine 95% confidence intervals on the sample
size estimates, the joint a posteriori probability density
function for the mixed effects model parameters (r2

e, r2
m,

and m) was computed based on the multivariate Gaussian

TABLE I. Number of subjects

Methodology AD MCI HCa HC(Abþ) HC(Ab�)

Quarc 131 311 182 35 58
FS 135 320 182 36 59
FSx 169 365 199 37 64
BSI 156 346 192 35 65
TBM 133 291 148 31 48
CDR-SB 177 371 200 38 66

aHC does not include 13 converters, based on clinical records up
to and including the visit 36 months from baseline. Only 113 of
227 subjects diagnosed as HC at baseline had CSF Ab-status
determined; six (2 Ab�, 4 Abþ) of these converted.
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likelihood function of the observed data, given the model
parameters, evaluated at a regular mesh of points in the
space spanned by the model parameters. The sample size
values at the mesh points were then sorted, and the cumu-
lative distribution calculated from the correspondingly
sorted a posteriori probability values. The 95% confidence
intervals were then computed from the cumulative distri-
bution function (cdf) values of 0.025 and 0.975.

To calculate P values for pairwise comparisons of sam-
ple sizes required for different measures, we carried out a
two-tailed test for the null hypothesis of equal sample
sizes (N1 � N2 ¼ 0). We used the a posteriori probability
distributions described above to compute the probability
distribution for the difference between the sample sizes for
the two measures; the latter is given by the convolution of
the two sample size distributions, since N1 and N2 are in-
dependent random variables. Thus, p ¼ 2 � min[P (N1 �
N2), P (N2 � N1)], where P (N1 � N2) ¼ cdfN1-N2(0), and P
(N2 � N1) ¼ 1-cdfN1-N2(0) [Casella and Berger, 2002].

RESULTS

Bias

The TBM Stat-ROI measure showed statistically signifi-
cant bias, as illustrated in Figure 1. This figure shows the
average cumulative atrophy detected by this method, as a
percentage of baseline volume, for HC, MCI, and AD sub-

jects up through 36-months, along with the additive bias
estimate. Without accounting for bias, the cumulative atro-
phy plots show that all three groups undergo an initial
high rate of change (an average of 1.64% for HC, 1.93% for
MCI, and 2.28% for AD over the first 6-month interval of
the study), with substantially lower rates of change after
that (e.g., average change in the second 6-month period of
the study is 0.34% for HC, 0.55% for MCI, and 0.76% for
AD subjects; for the final 12-months of the study, the aver-
age change was 0.09% for MCI and �0.01% for HC—a
pronounced deceleration that is indicative of higher-order
contributions to bias in TBM). Based on the simultaneous
linear fit to the 6- and 12-month timepoints of all three
diagnostic groups, estimated additive bias was 1.31%,
which is equal to 68% of the observed change in the MCI
cohort and 57% of the observed change in the AD cohort
at 6-months. The P value for the null hypothesis of no bias
was, to the precision of the Matlab numerical libraries, 0.
Although subject data from the modified TBM Stat-ROI
method are not available, Hua et al. [2011] report a bias of
0.29% in the modified method, which is substantially
reduced from 1.31% reported above. However, the new
measures of change for the Stat-ROI are also substantially
reduced (average change measurement of 0.5% for HC,
0.6% for MCI, and 0.9% for AD over the first 6-month
interval of the study), so that the bias as a percentage of 6-
month change in MCI remains large: 48%. (We note that
the bias reported in [Hua et al., 2011] would be slightly
reduced if actual visit times were used, that is, not assum-
ing that all visits happened exactly at 6-month intervals.)

The KN-BSI measure also showed significant bias,
accounting for 18% of the change observed in MCI subjects
and 12% of the change observed in AD subjects at 6-
months (P ¼ 0.042). None of the other methods showed
significant bias.

Estimated sample sizes for absolute-change were small-
est for the bias-uncorrected TBM Stat-ROI measure. For
example, using 291 MCI subjects, the sample size estimate
to detect 25% slowing in the MCI population was N ¼ 84,
and the 95% confidence interval was CI ¼ [71 103]. After
bias correction, however, this estimate more than tripled,
to N ¼ 287, CI ¼ [223 395], rendering this method signifi-
cantly less powerful for detecting change than bias-cor-
rected KN-BSI (head-to-head comparison of 266 MCI
subjects: TBM N ¼ 319, CI ¼ [239 457]; KN-BSI N ¼ 147,
CI ¼ [117 197]; P value for difference in sample-size esti-
mates ¼ 0.0002), Quarc entorhinal (236 MCI subjects: TBM
N ¼ 233, CI ¼ [179 327]; ERC N ¼ 150, CI ¼ [118 202]; P
¼ 0.029), and Quarc hippocampus (Hipp. N ¼ 156, CI ¼
[122 210]; P ¼ 0.047). Sample size estimates for all meth-
ods, after bias-correction, are shown in Table II for MCI
and Table III for AD.

For the modified TBM Stat-ROI method, the sample size
estimate reported for absolute change in MCI is N ¼ 129;
correcting this for the 0.29% bias (and using the new esti-
mated MCI annual rate of change of 1%, along with the
standard sample size formula, ibid.), gives N ¼ 129/(1 �

Figure 1.

Average cumulative atrophy for TBM Stat-ROI, as a percentage

of baseline volume, for HC, MCI, and AD subjects, along with

linear fits for the additive bias estimate. The additive bias of

1.31% is large, equal to 68% of the change in the MCI cohort,

and 57% of the change in the AD cohort, at 6-months, and

highly statistically significant (P ¼ 0 to precision of Matlab nu-

merical libraries). The linear fits are conservatively restricted to

the 6- and 12-month visits. Note the slight shift to the right for

follow-up visits. On average, actual visit dates occurred later

than the nominal interval dates.
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0.29)2 ¼ 256, close to the value N ¼ 287, CI ¼ [223 395],
reported above and in Table II for the original TBM Stat-
ROI method.

Relative vs. Absolute Change: Defining the

Potentially Treatable Effect

To determine whether atrophy rates in HCs are due to
preclinical AD (the implicit assumption in numerous pub-
lished studies that use absolute rather than relative change
measures in sample size calculations), we examined atro-
phy rates in the two ROIs affected earliest in AD–entorhi-
nal cortex and hippocampus—as well as in the whole
brain in HCs who tested negative for Ab pathology, based
on the cut-off value of CSF Ab42 levels >192 pg/mL as
determined by Shaw et al. [2009], for all methodologies for
which these ROIs are defined; we also similarly examined
the TBM temporal lobe Stat-ROI (note that CSF measures
were obtained only on a subset of ADNI subjects—see Ta-

ble I). Figure 2 shows bias-corrected annual atrophy rates
with 95% confidence intervals for the full HC group, the
two HC subgroups who were, respectively, Ab-negative
and Ab-positive, and the MCI group; these atrophy rates
were calculated using a mixed-effects regression model on
all baseline data and follow-up data available up to 3-
years, as described in the Methods section.

As shown in Figure 2, longitudinal volumetric changes
in entorhinal cortex, hippocampus, and whole brain are
clearly present in Ab-negative HC subjects, and the annual
percentage changes in these subjects do not substantially
differ from those observed in the full HC group. Atrophy
rates in Ab-negative HC subjects for all ROIs, regardless
of methodology, are a substantial fraction (one-third to
one-half) of the atrophy rates seen in MCI subjects. As the
anatomical changes seen in Ab-negative HC subjects are
not likely to be due to Ab pathology, there is no reason to
expect that they would be affected by therapeutic agents
designed specifically to target amyloid pathology. The

TABLE II. Bias-corrected sample size estimates for MCI

Measure N MCI N MCI-HC(Ab�) N MCI-HC

Quarc entorhinal 134 [110 171] 286 [201 446] 293 [214 432]
Quarc amygdala 165 [133 214] 297 [215 444] 366 [264 549]
Quarc hippocampus 164 [133 213] 388 [273 605] 444 [314 687]
Quarc fusiform 150 [121 194] 440 [302 707] 479 [338 742]
Quarc inf temporal 186 [149 246] 490 [334 800] 480 [340 742]
Quarc mid temporal 200 [159 266] 515 [347 856] 522 [364 825]
Quarc whole brain 149 [121 193] 555 [341 1057] 657 [433 1137]
Quarc ventricles 183 [146 241] 813 [465 1785] 1008 [623 1934]
FS hippocampus 175 [142 223] 327 [209 585] 576 [386 963]
FS entorhinal 413 [315 578] 694 [400 1505] 745 [490 1286]
FS inf temporal 449 [337 636] 988 [555 2240] 986 [617 1846]
FS mid temporal 488 [364 701] 825 [491 1679] 1013 [626 1936]
FS fusiform 518 [385 750] 799 [437 1932] 1121 [663 2326]
FS ventricles 164 [133 211] 1095 [542 3328] 1179 [695 2461]
FS amygdala 1113 [755 1842] 716 [423 1480] 1799 [974 4444]
FS whole brain 384 [294 531] 1769 [743 8642] 2179 [1053 7010]
FSx hippocampus 233 [190 298] 620 [377 1206] 771 [513 1310]
FSx ventricles 153 [126 194] 721 [434 1443] 991 [632 1803]
FSx mid temporal 549 [417 774] 1162 [701 2327] 1082 [703 1917]
FSx entorhinal 656 [494 935] 1592 [777 4928] 1121 [706 2080]
FSx inf temporal 661 [492 955] 2188 [992 8424] 1452 [863 2993]
FSx fusiform 763 [559 1129] 1870 [915 5740] 1661 [961 3608]
FSx whole brain 381 [299 512] 1445 [717 4353] 1961 [1052 4944]
FSx amygdala 1863 [1194 3371] 1856 [805 8164] 5169 [2114 27691]
KN-BSI 142 [115 182] 500 [330 853] 715 [472 1221]
VBSI 181 [145 235] 778 [449 1675] 1173 [703 2368]
TBM Stat. ROI 287 [223 395] 1184 [523 4825] 1358 [712 3624]
CDR-SB 542 [404 775] 608 [443 898] 638 [464 946]

See Methods section for methodology nomenclature; references are given in the Introduction. Val-
ues for selected measures are plotted in Figure 3. The 95% confidence intervals of the estimated
sample sizes are shown in brackets. N MCI refers to sample size estimates required to detect 25%
slowing in the total or absolute change seen in MCI, with 80% power and 5% significance. N MCI-
HC are sample size estimates for 25% slowing in the rate of change in MCI that is in excess of that
seen in all HCs; ditto for N MCI-HC(Ab�), but with respect to the Ab-negative subgroup of HCs.
P-values for head-to-head pairwise comparisons of relative change sample sizes are in Table IV.
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potentially treatable effect therefore would be most realisti-
cally defined as the amyloid-negative aging-corrected rate of
change in the patient cohort, that is, the difference in rates
of change between the patient group and the Ab-negative
HC subjects. However, since there is little difference
between the atrophic rates of change in the Ab-negative
HC group and the full HC group (compared with the dif-
ferences between either of these groups and the MCI or
AD groups), the potentially treatable effect could conserva-
tively be defined as the aging-corrected rate of change in the
patient cohort, that is, the difference in rates of change
between the patient group and the full HC group–to take
advantage of the larger N of the full control group.

The annual rates of change for the TBM Stat-ROI shown
in Figure 2 are very similar to those for the whole brain
measure KN-BSI, which in turn are fairly consistent with
the whole brain measures for Quarc, FS, and FSx. (Note
that the statistics for the HC(Abþ) group are poorest,
reflecting the relatively small number of subjects in that
group—see Table I.) This is, on the face of it, an unex-
pected result because the TBM Stat-ROI was specifically
designed to identify the brain subregion undergoing the
highest rate of change, yet the resulting rates are essen-
tially the same as those for whole brain change obtained by

the other methods. The estimates reported in [Hua et al.,
2011] imply even smaller rates of change; for example, the
TBM Stat-ROI annual rate of change for MCI, when cor-
recting for the remaining bias, is 1 � 0.29 ¼ 0.71%, com-
pared with 0.98%, CI ¼ [0.90% 1.06%], for KN-BSI.

Sample Size Estimates

Sample size estimates using disease-specific (aging-cor-
rected) and absolute (aging-uncorrected) rates of change
for bias-corrected data are shown in Figure 3 for MCI sub-
jects and Figure 4 for AD subjects, for representative meas-
ures for each methodology (numerical values for these and
other neuroimaging measures are shown in Tables II and
III). For reference, the sample size estimate using CDR-SB,
the most sensitive standard clinical outcome measure, is
also shown. P-values for the significance of the difference
in sample size estimates from all head-to-head pairwise
comparisons of relative-change (aging-corrected) measures
are in Tables IV and V, for MCI and AD, respectively. In
the figures, data are arranged in ascending order for the
conservative aging-corrected sample size estimate, ‘‘MCI-
HC’’ or ‘‘AD-HC.’’ CDR-SB represents a demarcation for
those neuroimaging measures that are competitive with

TABLE III. Bias-corrected sample size estimates for AD

Measure N AD N AD-HC(Ab�) N AD-HC

Quarc entorhinal 44 [33 63] 73 [53 113] 74 [54 113]
Quarc fusiform 57 [44 81] 98 [72 147] 102 [75 151]
Quarc inf temporal 73 [55 105] 118 [85 181] 117 [85 177]
Quarc mid temporal 76 [57 109] 123 [88 189] 124 [90 188]
Quarc hippocampus 71 [54 103] 118 [85 181] 126 [91 195]
Quarc amygdala 78 [59 113] 116 [83 179] 132 [94 205]
Quarc whole brain 84 [63 123] 179 [121 302] 196 [134 321]
Quarc ventricles 92 [69 135] 219 [144 382] 243 [164 409]
FS hippocampus 105 [79 152] 157 [105 265] 217 [150 355]
FS ventricles 90 [68 128] 247 [159 450] 255 [174 427]
FS entorhinal 240 [169 383] 326 [206 617] 340 [225 597]
FS inf temporal 226 [160 356] 352 [223 658] 352 [232 623]
FS fusiform 236 [167 375] 299 [188 564] 354 [231 637]
FS mid temporal 261 [182 423] 346 [223 631] 383 [248 692]
FS whole brain 252 [175 408] 629 [332 1658] 696 [393 1617]
FS amygdala 1410 [729 4074] 879 [441 2635] 2380 [971 13548]
FSx hippocampus 119 [91 169] 230 [153 396] 264 [183 428]
FSx ventricles 95 [73 131] 240 [163 396] 280 [195 451]
FSx mid temporal 347 [241 564] 516 [328 959] 498 [323 897]
FSx fusiform 360 [249 593] 547 [334 1092] 522 [333 969]
FSx whole brain 228 [162 359] 504 [295 1077] 586 [354 1193]
FSx entorhinal 429 [291 730] 713 [404 1645] 591 [370 1139]
FSx inf temporal 456 [305 790] 903 [489 2287] 729 [437 1515]
FSx amygdala 1399 [742 3747] 1395 [611 5996] 2604 [1095 13180]
KN-BSI 75 [58 104] 152 [109 234] 180 [129 276]
VBSI 92 [70 128] 213 [144 353] 257 [177 417]
TBM Stat. ROI 110 [82 165] 243 [143 516] 260 [168 472]
CDR-SB 279 [198 437] 292 [206 464] 298 [210 474]

See notes for Table II. Values for selected measures are plotted in Figure 4. P-values for head-to-
head pairwise comparisons of relative change sample sizes are in Table V.
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current clinical outcome measure in tracking longitudinal
change over time in MCI and mild AD. In the case of
MCI, only the entorhinal cortex (ERC) as measured by
Quarc has a conservative disease-specific 95% confidence
interval that is wholly below the CDR-SB confidence inter-
vals (head-to-head comparison involving 311 MCI subjects
and 181 HC subjects gives: Quarc ERC N ¼ 297, CI ¼ [216
439]; CDR-SB N ¼ 582, CI ¼ [417 884]; P value for differ-
ence in N’s ¼ 0.01). Head-to-head comparisons of the
Quarc measures with measures from the other methodolo-
gies are shown in Figure 5 for MCI and Figure 6 for AD; P
values presented in the first row in Table IV show that for
MCI the Quarc entorhinal is significantly more powerful
than all other measures of change, except the Quarc Hip-
pocampus. From either the last column (MCI-HC) or last
row (MCI-HC(Ab�)) in Table IV, Quarc ERC is the only
measure that is statistically significantly superior to CDR-
SB. From Figure 2, the measurement of rates of change for
FS Hippocampus appears to be anomalous for the
HC(Ab�) and HC(Abþ) groups, which show substantial
and significant difference. This is in contrast with the
much higher degree of similarity among these subject
groups for all other measures. Furthermore, one would
expect the point estimates for FS and FSx to be similar, as

indeed they are for the hippocampus measured for all
MCIs and all HCs, and for all subject groups for the whole
brain. It should be noted that there are much fewer sub-
jects in the HC(Ab�) and, particularly, the HC(Abþ)
groups compared to all HCs (see Table I), so the estimates
for these subgroups are not as robust.

Sample size estimates for the more realistic amyloid-
negative aging-corrected rates of change, that is, for ‘‘MCI-
HC(Ab�)’’, are generally lower compared with those for
‘‘MCI-HC’’, reflecting the slightly smaller atrophic rates for
HC(Ab�) compared with those for HC in Figure 2. Note
that the point estimates for both the Quarc and FS entorhi-
nal remain unchanged.

Using the estimated annual rates of change reported in
[Hua et al., 2011] for MCI, and noting that additive bias is
essentially eliminated when calculating relative change
between groups, the sample size estimate from the modi-
fied TBM Stat-ROI method for the change in MCI relative
to that in all HCs is N ¼ 129/(1 � 0.7)2 ¼ 1,433, close to
the value N ¼ 1,358, CI ¼ [712 3624], reported in Table II
for the original TBM Stat-ROI method.

Sample size estimates for a trial involving mild AD
patients, shown in Figure 4 and Table III, are substantially
smaller, with most neuroimaging outcome measures

Figure 2.

Annual rate of volume change in entorhinal cortex (ERC), hip-

pocampus (Hipp), and whole brain (Brain and KN-BSI), with

95% confidence intervals, calculated for all methodologies, along

with the TBM Stat-ROI. Ab-negative HCs are almost the same

as all HCs, but have approximately a third to a half the change

seen in MCI; Ab-positive HCs atrophy at a slightly higher rate

than Ab-negative HCs. Thus, most HC change is not AD-

related; assuming it is leads to seriously underpowered clinical

trials. All rates are corrected for bias, if any. Note that only a

subset of all HCs had Ab status determined.
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yielding smaller estimated sample sizes than the CDR-SB
(significance of differences are in Table V). Sample size esti-
mates based on absolute change are also shown for compar-
ison. As expected, for any given neuroimaging measure,
they are substantially smaller with much tighter confidence
intervals than their disease-specific counterparts.

Figures 5 and 6 show direct head-to-head comparisons
of all methodologies with Quarc. In all cases, the entorhi-
nal and hippocampal measures from Quarc were the
strongest measures of change.

DISCUSSION

This study compared five widely used methodologies
for quantifying longitudinal change measures from struc-
tural MRIs and examined two critical issues that signifi-
cantly impact sample size estimation when neuroimaging
measures are used as outcome variables: bias in image
analysis and the definition of the potentially treatable
effect. Failure to control for either of these factors can lead
to dramatic underestimation of sample sizes needed to
detect a potentially beneficial effect of a disease-modifying
therapy.

Potential bias in image registration is a well-known
problem in the analysis of serial MRIs that has received
much attention in recent literature [Thompson and Hol-
land, 2011]. Although most methodologies employ proce-
dures to minimize bias, our results show that some
commonly used methods, particularly TBM Stat-ROI, are
significantly affected. For TBM Stat-ROI, correction for
bias tripled (or doubled, using the alternative results from
the modified method) the sample size estimates for detec-
tion of change in MCI subjects. Acquiring scans on the
same day, where no deformation is expected, would pro-
vide ideal images for testing the presence of additive
bias—though multiplicative bias would remain undetect-
able using such images. A simple way to eliminate bias
due to registration methodology is to make the entire pro-
cedure symmetric by construction: register image A to
image B, independently register image B to image A, and
then combine the changes measured in both directions by
algebraic or geometric averaging.

The definition of the potentially treatable effect is
another critical factor that profoundly affects estimated
sample sizes. The majority of publications in the ADNI lit-
erature, notably [Beckett et al., 2010; Cummings, 2010; Hua
et al., 2010; Vemuri et al., 2010], implicitly define the
potentially treatable effect as the absolute change from
baseline, although as mentioned earlier there are excep-
tions [Fox et al., 2000; Holland et al., 2009; McEvoy et al.,
2010; Schott et al., 2010]. The rationale for use of absolute
change measures has not clearly been articulated in pub-
lished reports, but presumably it arises from the assump-
tion that atrophy in HCs is dominated by a subset of HCs
who are in a preclinical stage of AD and experiencing

Figure 4.

Estimated sample sizes, per arm, to detect a 25% reduction in

rate of change in mild AD subjects, at the P < 0.05 level with

80% power assuming a 24-month trial with scans every 6

months. See caption of Figure 3 for further details. Numerical

values are shown in Table III. P-values for all head-to-head pair-

wise comparisons of measures are in Table V.

Figure 3.

Estimated sample sizes, per arm, to detect a 25% reduction in

rate of change in MCI subjects, at the P < 0.05 level with 80%

power assuming a 24-month trial with scans every 6 months.

Sample sizes are estimated using a linear mixed effects model

with fixed intercepts (no relative change at baseline) and random

slopes applied to all data available up through 36 months. Results

for the conservative aging-corrected rates of change are shown in

red; results for the more realistic amyloid-negative aging-cor-

rected rates of change are shown in green; and results for abso-

lute (aging uncorrected) rates of change are shown in blue. Error

bars show the 95% confidence intervals. All numerical values are

shown Table II. P-values for all head-to-head pairwise comparisons

of measures are in Table IV. FS is FreeSurfer-longitudinal. FreeSur-

fer-cross-sectional (FSx) generally performs poorer than FS; it is

not shown here, but values for it are in Tables II and IV.
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Figure 5.

Estimated sample sizes for MCI, as in Figure 3, but from pair-

wise head-to-head comparison of Quarc with: BSI (subjects in

common: 287 MCI, 170 HC, 55 HC(Ab�)); TBM (236 MCI, 132

HC, 41 HC(Ab�)); FreeSurfer-longitudinal (267 MCI, 161 HC,

49 HC(Ab�)); and FreeSurfer-cross-sectional (305 MCI, 178

HC, 56 HC(Ab�)). P-values for all head-to-head pairwise com-

parisons of measures are in Table IV.

Figure 6.

Estimated sample sizes for AD, as in Figure 4, but from pairwise head-to-head comparison of

Quarc with BSI (123 AD subjects in common—see also Figure 5); TBM (97 AD); FreeSurfer-lon-

gitudinal (FS; 107 AD); and FreeSurfer-cross-sectional (FSx; 129 AD; note different scale due to

relatively poor performance for entorhinal cortex). P-values for all head-to-head pairwise com-

parisons of measures are in Table V.



disease-related elevated rates of decline. We directly tested
this assumption by examining atrophy rates in HCs who
tested negative for Ab pathology on the basis of CSF Ab42

levels and comparing these rates with those seen in all
HCs. Since amyloid lesions neuropathologically partly
characterize AD [Mirra et al., 1991], and CSF and PET
measures of their prevalence are believed to be the earliest
detectable signs of possible AD [Morris et al., 2010] (in
which case clinical decline might not occur until a decade
or so after the lesions become manifest [Price and Morris,
1999]), elderly individuals without Ab pathology are
highly unlikely to be in a preclinical stage of AD—and
indeed since many elderly HCs have elevated plaque bur-
den while remaining cognitively normal [Price et al.,
2009], it might be that ‘‘Alzheimer’s is not a part of normal
aging any more than breaking your hip is a part of normal
aging’’ [Herrup, 2010]. Our results show, however, that
the Ab-negative HCs experienced an approximately simi-
lar rate of whole brain, entorhinal, and hippocampal atro-
phy as the full, undifferentiated HC group. Furthermore,
as can be seen in Figure 2, apart from the anomalous ‘‘FS
Hipp’’ result discussed above, hippocampal and entorhinal
atrophy rates are similar for HC(Abþ) and HC(Ab�). This
result is in agreement with neuropathological studies that
show no significant difference in total entorhinal [Price
et al., 2001] and hippocampal [West et al., 2004] neuron
counts—even in CA1, the hippocampal sector most
affected by neuron loss in the early stages of AD—
between cognitively normal subjects essentially free of
amyloid pathology and those exhibiting significant
amounts of amyloid deposition, to a degree consistent
with a neuropathological diagnosis of possible AD. Thus,
the preponderance of atrophy in HCs must arise from
causes other than Ab pathology, and it would not be rea-
sonable to expect an AD therapy, in particular one target-
ing Ab pathology, to reduce atrophy rates for atrophy that
occurs in the absence of such pathology. Neuropathologi-
cal analysis of HCs who do not fulfill criteria for the neu-
ropathological diagnosis of AD or other neurodegenerative
disease [Freeman et al., 2008] supports this conclusion. At-
rophy in such individuals can persist over an age range of
five decades, likely reflects loss of dendritic complexity in
neuropil and/or changes in neuronal size, but in contrast
with AD-related atrophy, preserves neuronal number. The
neuropathological study shows further that in these sub-
jects the presence of diffuse plaques did not correlate with
cortical atrophy; that cortical atrophy correlates with age;
and though neuritic plaque burden also correlates with
age, the small number of plaques and tangles had no
direct influence on cortical atrophy. Therefore, ‘‘cortical
changes seen in aging are not simply the result of early
AD changes but are related to aging itself’’ (ibid.).

It should be noted that in a clinical trial employing bio-
markers for the natural history of the disease, care must
be taken in assessing the disease modifying ability of the
therapy [Citron, 2010; Salloway et al., 2008]. Correlation is
not sufficient [Baker and Kramer, 2003]: the biomarker

must also be in the causal pathway of the disease, and
directly relate to clinically meaningful endpoints [Mani,
2004]. By the same token, therapy might affect atrophy in
unexpected ways, as shown by the AN1792 Ab immuno-
therapy trial [Gilman et al., 2005] where whole brain atro-
phy was greater in the approximately one-fifth of subjects
who were antibody responders than in the placebo group,
a result possibly due to brain hydration state related to
therapy, or to negative effects of the vaccination on fiber
or white matter volume, and that was not reflected in wor-
sening cognitive performance [Fox et al., 2005]. Though
clinical improvement in this trial largely may have been
precluded because the patient cohort was at a relatively
advanced stage of the disease [Holmes et al., 2008; Hyman,
2011], this outcome nevertheless argues in favor of analyz-
ing subregional, in particular cortical, change rather than
global change when monitoring disease-modifying effects
of therapy.

Defining the potentially treatable effect based on abso-
lute change from baseline is attractive in that it leads to
small sample size requirements—often much smaller than
those based on standard clinical outcome measures. This
approach represents the most optimistic assessment of the
potentially treatable effect. The more conservative
approach of defining the potentially treatable effect rela-
tive to change experienced by all HCs, or the slightly more
realistic approach of defining it relative to change experi-
enced by Ab-negative HCs, may represent a more achieva-
ble goal, particularly since most current therapies target
amyloid pathology. Requiring the treatment to slow all
change, even that unrelated to the targeted mechanism of
the drug, is likely to result in a trial that is substantially
underpowered to detect slowing of disease-specific atro-
phy. An additional advantage of using relative rather than
absolute change measures is that any purely additive sys-
tematic bias in the results arising from errors in image ac-
quisition or analysis methods will, by definition, be
removed upon subtraction.

Consideration of these two factors together–bias correc-
tion and defining the potentially treatable effect as a mea-
sure of relative rather than absolute change–substantially
alters the conclusions regarding the relative sensitivity of
different neuroimaging biomarkers from what has been
published in the literature [Beckett et al., 2010; Cummings,
2010; Jack et al., 2010]. From data available on the ADNI
website through April 16, 2011, estimates of change in sub-
regional cortical areas, as determined by Quarc, produce
the smallest estimated sample sizes when change relative
to HCs is taken into account. In particular, for the entorhi-
nal cortex, the area known to be first affected by AD pa-
thology, N ¼ 293 CI ¼ [214 432] for MCI-HC, N ¼ 74 CI ¼
[54 113] for AD-HC, and as can be seen in Table IV, sam-
ple size estimates based on the Quarc entorhinal are the
only ones that are significantly smaller than those achieved
using CDR-SB as the outcome measure for either MCI-HC
or MCI-HC(Ab�). Several other temporal lobe structures
quantified with Quarc (Tables II and III) also provided
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powerful relative-change biomarkers, including the amyg-
dala (N ¼ 366 CI ¼ [264 549] for MCI-HC, N ¼ 132 CI ¼
[94 205] for AD-HC) which suffers from a significant
increase in the numbers of both neuritic plaques and NFTs
when transitioning from HC to amnestic MCI, and again
when transitioning from amnestic MCI to early AD [Mar-
kesbery et al., 2006]. Quarc was designed not only to cap-
ture large-scale structural change, but also to measure
change in small regions with high precision [Holland and
Dale, 2011], and generally provides significantly improved
measures of change compared with those of the standard
(cross-sectional) FreeSurfer and FreeSurfer-longitudinal,
the only other methods that attempt to quantify change in
cortical regions. The results presented here for Quarc were
derived using both the back-to-back scans per timepoint
(which should improve signal to noise); the other methods
used a single scan per timepoint (choosing the best scan
from each pair should reduce the degrading impact of
image artifacts). Though these effects have not been
assessed here, when considering future trials the require-
ment for acquiring two scans to achieve these sample sizes
should be borne in mind. Also, sample size estimates have
not been modeled to account for attrition due to QC. (The
methods used in Quarc are fully documented in [Holland
and Dale, 2011], and are available to other researchers on
a not-for-profit recharge basis through the UCSD Multimo-
dal Imaging Laboratory, mmil.ucsd.edu.)

Although the current study is primarily concerned with
issues that affect the use of neuroimaging biomarkers as
outcome measures in clinical trials, it is important to point
out that longitudinal MRI measures as provided by ADNI
are also being used in the comparative investigation of dis-
ease-related trajectories of various AD biomarkers [Caroli
and Frisoni, 2010; Frisoni et al., 2010; Jack et al., 2010; Per-
rin et al., 2009; Trojanowski et al., 2010]. To ensure fidelity
of the serial measurements, it has been proposed in a
recent consensus article [Klein et al., 2009] that registration
procedures be validated with respect to linearity (the
inverse consistency of forward and reverse transforma-
tions between image pairs), and transitivity (e.g., the total
change calculated when registering visit 3 to visit 1 should
equal the sum calculated when registering visit 3 to visit
2, and visit 2 to visit 1). The methodologies used in ADNI,
including Quarc, have not been validated in this respect.
Therefore, caution is advised when considering the valid-
ity of the nonlinear trajectories that have been published
based on ADNI data.

CONCLUSION

ADNI has been revolutionary in its pioneering of the
open source model of data sharing, making raw data and
derived measures freely accessible to the scientific commu-
nity and industry as soon as they become available. It has
been highly successful in advancing research on bio-
markers in AD. ADNI results are being used by the phar-

maceutical industry to aid in decision-making on the
choice of biomarkers for use as outcome measures, and for
powering clinical trials. Ultimately, ADNI data and analy-
ses may form the basis for regulatory qualification for
imaging biomarkers.

It is thus essential that these biomarkers are validated
and that the models used for power calculations be con-
sistent with the biological mechanisms targeted by the
therapy under investigation. It should be noted, however,
that establishing imaging biomarkers as surrogates for
clinical-cognitive outcomes cannot be achieved with natu-
ral history studies, but will require successful clinical tri-
als, that is, ones where cognitive outcomes are improved
and where there is a clear and cogent biological connec-
tion with the imaging measures [Carrillo et al., 2009; Katz,
2004]. Establishing the surrogacy of biomarkers will be all
the more difficult if those biomarkers are not correctly cali-
brated for non-disease-related effects. For therapies target-
ing Ab pathology, it is not reasonable to expect that they
will affect atrophy rates observed in healthy individuals
without evidence of Ab pathology. Since such individuals
show atrophy rates in AD-vulnerable structures equivalent
to those of the larger HC group, the potentially treatable
effect is best conservatively defined as change relative to
that experience by HCs. It is also essential to provide con-
fidence intervals for any sample size estimates to enable
selection of biomarkers that estimate change with the high-
est certainty [Holland et al., 2009; McEvoy et al., 2010;
Schott et al., 2010].

As part of the stated goals of the study, ADNI has been
charged with statistically evaluating and comparing the
different biomarkers and analysis methods to inform clini-
cal trial design. To date, results presented and published
by ADNI have not taken these critical issues into account.
They report sample size estimates based only on absolute
change measures; they have not considered issues of
potential bias in image registration; and they have not pro-
vided a clear index of uncertainty of the results. If left
uncorrected, these findings could lead to the adoption of
suboptimal biomarkers for outcome measures, and to trials
that are substantially underpowered for detecting potential
disease-modifying effects.
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