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Toll-like receptors (TLRs) have long been known for their 
ability to initiate innate immune responses upon exposure to 
conserved microbial components such as lipopolysaccharide 
(LPS) and double-stranded RNA. More recently, this family of 
pattern recognition receptors has been attributed a critical 
role in the elicitation of anticancer immune responses, raising 
interest in the development of immunochemotherapeutic 
regimens based on natural or synthetic TLR agonists. In spite 
of such an intense wave of preclinical and clinical investigation, 
only three TLR agonists are currently licensed by FDA for use in 
cancer patients: bacillus Calmette–Guérin (BCG), an attenuated 
strain of Mycobacterium bovis that operates as a mixed TLR2/
TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of 
Salmonella minnesota that functions as a potent agonist of TLR4; 
and imiquimod, a synthetic imidazoquinoline that activates 
TLR7. One year ago, in the August and September issues of 
OncoImmunology, we described the main biological features of 
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Introduction

Although the Toll gene was originally identified as a controller of 
the dorsal-ventral embryonic polarity of Drosophila melanogaster 
as early as in 1985,1,2 its critical role in the response of fruit flies to 
fungal infections became clear only 10 y later.3 Approximately in 
the same period, human orthologs of Toll begun to be character-
ized4,5 and implicated in innate immune responses to bacterial 
lipopolysaccharide (LPS).6–8 Since then, the murine genome has 
been shown to encode 13 distinct Toll-like receptors (TLRs), 10 
of which are also coded by the human genome, and members of 
the TLR family have been discovered in evolutionarily distant 
organisms such as plants and fish.9–11

TLRs are enzymatically-inactive single membrane-span-
ning proteins best known for their ability to detect so-called 

TLRs and discussed the progress of clinical studies evaluating 
the safety and therapeutic potential of TLR agonists in cancer 
patients. Here, we summarize the latest developments in this 
exciting area of research, focusing on preclinical studies that 
have been published during the last 13 mo and clinical trials 
launched in the same period to investigate the antineoplastic 
activity of TLR agonists.
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not only in the orchestration of innate immune responses against 
infectious pathogens, but also in anticancer immunity, be it spon-
taneous or elicited by (chemo)therapeutic interventions.23,27,57,58 
In accord with this notion, functionally relevant polymorphisms 
in the genes encoding several TLRs (i.e., TLR1, TLR2, TLR3, 
TLR4, TLR6, TLR9 and TLR10) have been shown to influence 
the natural development of a wide array of neoplasms, including 
tumors that are not associated with a microbial etiology,59–77 as 
well as to affect the response of cancer patients to chemotherapy 
and immunotherapy, at least in some settings.54,78–80 Moreover, the 
expression of several TLRs including TLR2, TLR4, TLR7 and 
TLR9 by malignant cells appear to evolve not only along with 
oncogenesis and tumor progression, but also in response to micro-
environmental cues,81–90 suggesting that, at least in some types of 
cancer, TLRs may influence disease progression in a direct fashion 
rather than as a consequence of immunological effects.

Irrespective of the great preclinical and interest orbiting around 
TLRs since the late 1990s, however, only three TLR agonists are 
nowadays approved by FDA for use in cancer patients: bacillus 
Calmette–Guérin (BCG, an attenuated strain of Mycobacterium 
bovis initially developed as a vaccine against tuberculosis), which 
is currently approved for the immunotherapy of in situ bladder 
carcinoma;57,91 monophosphoryl lipid A (MPL), a derivative of 
the LPS of Salmonella minnesota, which is currently licensed as 
part of Cervarix®, a vaccine against human papillomavirus 16 
and 18 (the etiological determinants of > 70% cases of cervi-
cal carcinoma);92,93 and imiquimod (a small imidazoquinoline 
derivative originally developed as a topic antiviral agent), which 
is currently used (as a 5% cream) for the treatment of actinic 
keratosis, superficial basal cell carcinoma and external genital or 
perianal warts (condylomata acuminata).57 Of note, while both 
BCG and MPL function as mixed TLR2/TLR4 agonists,14,94,95 
imiquimod mainly exerts immunostimulatory effects in a TLR7-
dependent manner.96,97 Interestingly, also the Coley toxin, a 
mixture of killed Streptococcus pyogenes and Serratia marcescens,98 
is thought to mediate therapeutic effects by activating TLR2 
and/or TLR4.99–101 Nonetheless, the use of the Coley toxin as 
an anticancer medication has been discontinued in the 1960s, 
mostly due to concerns raised by the thalidomide case.102

One year ago, in the August and September issues of 
OncoImmunology, we presented the main functions of human 
TLRs in innate and cognate immunity and discussed the prog-
ress of recent clinical studies evaluating the safety and immu-
nostimulatory activity of TLR agonists in cancer patients.50,103 
Here, along the lines of our monthly Trial Watch series,50,103–117 
we review the latest developments in this area of research, focus-
ing on preclinical studies that have been published during the last 
13 mo and clinical trials initiated in the same period to assess the 
antineoplastic potential of hitherto experimental TLR activators 
as well as of FDA-approved TLR agonists employed as “off-label” 
medications against cancer.

Literature Update

Clinical studies. During the last 13 mo, the results of no less than 
28 clinical trials investigating the immunostimulatory potential 

“microbe-associated molecular patterns” (MAMPs), conserved 
microbial products including (but not limited to) bacterial 
LPS and derivatives thereof (which generally operate as mixed 
TLR2/TLR4 agonists),12–14 components of the bacterial cell wall, 
such as lipoteichoic acid (a specific activator of TLR2),15 bacte-
rial flagellin (a pure TLR5 agonist),16–19 microbial DNA (mostly 
functioning as a TLR9 agonist),20 microbial single-stranded 
RNA (ssRNA, which can be detected by both TLR7 and 
TLR8)21–23 and viral double-stranded RNA (dsRNA, which spe-
cifically activates TLR3).24–26 Of note, TLRs that detect nucleic 
acids (i.e., TLR3, TLR7, TLR8 and TLR9) are localized to the 
endosomal compartment, while TLRs that mainly detect proteo-
lipidic structures (i.e., TLR1, TLR2, TLR4, TLR5, TLR6 and 
TLR10) are exposed on the cell surface.27,28 As an exception to 
this general pattern, TLR2 and TLR10 (the sole orphan TLR 
in humans) have been shown to co-localize at phagosomes, per-
haps indicating that TLR10 shares some binding specificity with 
TLR2. Compelling evidence in support of this hypothesis, how-
ever, is missing. Along similar lines, the actual role of murine 
Tlr11, Tlr12 and Tlr13 has just begun to emerge (see below).

Several TLRs have recently been shown to sense not only exog-
enous MAMPs but also endogenous “damage-associated molec-
ular patterns” (DAMPs), i.e., molecules released or exposed by 
stressed, dying or dead cells to convey a danger signal.29–32 These 
DAMPs include, but presumably are not limited to: several heat-
shock proteins (e.g., HSP60, HSP70),33,34 uric acid35 and surfac-
tant protein A,36 all of which function as mixed TLR2/TLR4 
agonists; the non-histone chromatin-binding protein high mobil-
ity group box 1 (HMGB1) and the Ca2+- and Zn2+-binding 
protein S100A9, both operating as TLR4 agonists;37–41 mul-
tiple components and breakdown products of the extracellular 
matrix, which mainly activate TLR4;42 and mitochondrial DNA 
(mtDNA), a pure TLR9 agonist.43,44 Interestingly nuclear DNA 
from eukaryotic cells can also be recognized by TLR9 if the latter 
is ectopically expressed at the plasma membrane (rather than in 
endosomes).45 This suggests that TLR9 might specifically respond 
to exogenous (as opposed to self) DNA because of its own sub-
cellular localization rather than due to the methylation state and 
frequency of CpG islands on its ligand (as originally thought).20,46 
A detailed description of the signaling cascades triggered by TLRs 
in response to MAMPs or DAMPs exceeds the scope of the pres-
ent Trial Watch and can be found in refs. 27 and 47–50.

The spatiotemporally defined emission of specific DAMPs by 
dying cells has been proposed to constitute the essence of immu-
nogenic cell death (ICD), a peculiar type of apoptosis that acti-
vates adaptive immune responses.39,51,52 So far, only a few bona fide 
inducers of ICD have been identified: specific chemotherapeutic 
agents such as mitoxantrone, doxorubicin and oxaliplatin, ioniz-
ing irradiation ad some types of photodynamic therapy. DAMPs 
that play a prominent role in ICD include (but presumably are 
not limited to) the endoplasmic reticulum (ER) chaperone cal-
reticulin (CRT), ATP, HSP70 and HMGB1.39,52,53 Importantly, 
both HSP70 and HMGB1 appear to exert immunostimulatory 
functions by activating TLR4 on the surface of antigen-present-
ing cells, hence promoting the cross-priming of antigen-specific 
T lymphocytes.54–56 Thus, TLRs appear to play a prominent role 
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have been published during the last 13 mo (8 of which employing 
imiquimod as an off-label medication). Conversely, no reports on 
the immunostimulatory activity of resiquimod (R-848), another 
synthetic imidazoquinoline that operates as a TLR7 agonist, in 
cancer patients have been made in the same period, though the 
clinical interest in this compounds remains high (see below).

The combination of imiquimod 5% cream (commercial-
ized by 3M Pharmaceuticals under the label of Aldara®) with 
aminolevulinate-based photodynamic therapy has been shown to 
provide therapeutic benefits to patients affected by actinic kera-
tosis and basal cell carcinoma over the use of either intervention 
alone.127,128 In addition, imiquimod 5% cream has been evaluated 
as a means to reduce the size of nodular basal cell carcinomas 
of the face, and hence limit the aesthetic impact of subsequent 
Mohs micrographic surgery, with encouraging results.129 Besides 
being tested in such on-label indications, imiquimod has been 
investigated for its ability to exert immunostimulatory effects as 
an off-label medication, for instance (1) in melanoma patients 
receiving imiquimod as a standalone intervention or as an adju-
vant to a nanoparticle-based vaccine;130,131 (2) in subjects with 
cutaneous metastases of breast carcinoma or melanoma, receiv-
ing imiquimod alone or in combination with 5-fluorouracil (a 
nucleoside analog), respectively;132,133 (3) in prostate and renal 
cancer patients, receiving imiquimod as an adjuvant to a dual 
peptide-based vaccine;134 and (4) in women with high-grade cer-
vical intraepithelial neoplasms and in HIV-1-infected men bear-
ing anal intraepithelial tumors, two settings in which imiquimod 
was employed as a standalone therapeutic intervention.135,136 
Moreover, the safety and immunostimulatory potential of the 
intravesical instillation of a liquid formulation of imiquimod 
(TMX-101) have been assessed in a cohort of NMIBC patients.137 
Although imiquimod appeared to be inferior to other thera-
peutic modalities (notably electrocautery) in the treatment of 
HIV1-associated anal intraepithelial neoplasms,136 these studies 
confirmed the safety of imiquimod and its ability to stimulate 
(natural or vaccine-induced) immune responses that—at least in 
a fraction of patients—engender clinical benefits.

Picibanil (OK-432) is a lyophilized preparation of Streptococcus 
pyogenes (operating as a mixed TLR2/TLR4 agonist) that has 
been approved for use in cancer patients by the Japanese Ministry 
of Health and Welfare as early as in 1975.42,138 In line with this 
notion, the immunostimulatory activity of picibanil is being 
intensively investigated in Japan, but very much less so in the US 
and Europe. During the last 13 mo, picibanil has been shown 
to be well tolerated and effective as an adjuvant (1) to immature 
DCs administered intratumorally to resectable pancreatic cancer 
patients;139 (2) to cisplatin (a DNA-damaging agent frequently 
associated with chemoresistance)140 and hyperthermotherapy, 
in a cohort of individuals with malignant pleural effusions;141 
and (3) to a NY-ESO-1-based vaccine, in a single lung cancer 
patient selected out of a previously completed clinical trial142 for 
the study of multiple immunological parameters.143 In the same 
period, additional TLR2/TLR4 agonists have been shown to be 
safe and to exert therapeutically relevant immunostimulatory 
effects in cancer patients, including OM-174 (also known as 
CRX-527), a water soluble, diphosphorylated and triacetylated 

of TLR agonists (all confounded) in cancer patients have been 
published. Seventeen of these studies involved FDA-approved 
agents (i.e., BCG, MPL and imiquimod), most often employed 
as “on-label” medications, while the other 11 trials assessed the 
safety and therapeutic profile of hitherto experimental TLR ago-
nists (source www.clinicaltrials.gov). Interestingly, none of the 
clinical studies published since May 1, 2012, have investigated 
the immunostimulatory potential of BCG in off-label oncologi-
cal settings. Rather, the intravesical instillation BCG was chosen 
as a reference approach for the treatment of non muscle-invasive 
bladder carcinoma (NMIBC), and hence given to the control 
arm of the cohort,118,119 or alternative dosing schedules were inves-
tigated.120,121 Thus, the perioperative instillation of mitomycin C 
(a DNA crosslinker) or gemcitabine (a nucleoside analog) appears 
not to improve the therapeutic profile of intravesical BCG given as 
a standalone intervention.118,119 Moreover, it has been shown that 
(1) a 2-week intravesical BCG maintenance regimen is virtually 
as efficient as a standard 3-week course;120 (2) BCG administered 
at 1/3 of the standard dose causes the same side effects than the 
full-dose regimen among intermediate- and high-risk NMIBC 
patients;121 and (3) individuals affected by high-risk (but not 
intermediate-risk) NMIBC benefit from a 3-year full-dose BCG 
maintenance therapy only in terms of tumor recurrence, but not 
of disease progression and overall survival.121 Finally, the pres-
ence of cytogenetically abnormal cells as detected by fluorescence 
in situ hybridization has been proposed as a means of predict-
ing the response of NMIBC patients to standard-of-care BCG 
immunotherapy.122

A single study of those mentioned above dealt with Cervarix®, 
which contains the MPL-based adjuvant AS04 (MPL + alumi-
num salts). This work actually demonstrated the immunogenic-
ity and safety of Cervarix® co-administered with Twinrix®, an 
FDA-approved vaccine consisting in inactivated hepatitis A and 
B viral particles, in girls aged 9–15 y.123 In addition, the hitherto 
experimental formulation AS15, that is, MPL + QS21 (a water 
soluble saponin extracted from the South American tree Quillaja 
saponaria Molina)124 + CpG oligodeoxynucleotides (ODNs), has 
been employed to boost the immunogenicity of a v-erb-b2 eryth-
roblastic leukemia viral oncogene homolog 2, neuro/glioblastoma 
derived oncogene homolog (avian) (ERBB2)-targeting vaccine 
in patients with trastuzumab-resistant ERBB2-overexpressing 
metastatic breast carcinoma.125 In this Phase I clinical trial, the 
co-administration of ERBB2-derived peptides with lapatinib, a 
relatively unspecific inhibitor of ERBB2 tyrosine kinase activ-
ity,126 was well tolerated, triggered detectable ERBB2-specific 
immune responses in a majority of patients, and was associated 
with promising clinical benefits, warranting the initiation of 
Phase II/III studies.125

Imiquimod (also known as R-837) still stands out as the TLR 
agonist that generates the broadest clinical interest of all, pre-
sumably owing not only to its approval status, but also to the 
increasing amount of data from clinical studies and pharmaco-
surveillance demonstrating that—at least in its 5% cream for-
mulation—imiquimod has an exceptional safety profile.97,103 In 
line with this notion, no less than 12 studies investigating the 
immunostimulatory potential of imiquimod in cancer patients 
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endothelial cells have been shown to respond to the release of per-
oxiredoxin 1 (a TLR4-interacting DAMP) from dying prostate 
cancer cells by secreting vascular endothelial growth factor, thus 
stimulating angiogenesis.214 Thus, TLR agonists may promote 
tumor progression not only as they directly alter the behavior of 
malignant cells, but also as they engage signaling circuitries that 
involve the tumor stroma. Taken together, these observations 
suggest that the therapeutic potential of a given TLR agonist in a 
given clinical setting should be carefully evaluated in view of its 
(more or less pronounced) propensity to mediate direct or indi-
rect pro-tumor effects.

The discovery/development of novel TLR agonists is also a 
very active area of research and during the past 13 mo several 
new compounds and strategies to activate specific TLRs have 
been reported. Great interest has gathered around the use of 
cationic preparations, notably liposomes, as a means to deliver 
immunotherapeutic agents (e.g., TLR agonists, vaccines) to 
neoplastic lesions.215–217 Indeed, cationic agents may per se exert 
immunostimulatory effects by binding to, and hence activat-
ing TLR4.216 In addition, several new TLR agonists have been 
identified, including endogenous DAMPs as well as exogenous 
chemicals. Thus, heparan sulfate, a component of the extracel-
lular matrix, has turned out to bind TLR4 on the surface of DCs, 
hence promoting their maturation (in vitro), and to be involved 
in the etiology of the graft- vs. -host disease.218 Along similar 
lines, multiple mature microRNAs have been demonstrated 
to activate natural killer (NK) cells, in vitro and in vivo, in a 
TLR1-dependent manner, hence protecting mice from a chal-
lenge with A20 lymphoma cells,219 while two specific microR-
NAs secreted by tumor cells, namely, miR-21 and miR-29a, have 
been reported to mediate pro-metastatic effects by stimulating a 
TLR7-dependent inflammatory response.220 A novel, chemically-
defined LPS derivative has been reported to reinstate the immu-
nogenicity of HGMB1-deficient cancer cells, thus compensating 
for cell-intrinsic alterations that may compromise the therapeutic 
efficacy of ICD inducers.221 Finally, extracts of Larix kaempferi 
(a popular Japanese larch) have been shown to exert promising 
immunostimulatory effects in a murine model of thymoma as 
they activate TLR2 and TLR4,222 while distinct isothiocyanates 
have been reported to differentially modulate (either promote or 
inhibit) TLR3-dependent signal transduction cascades.223

Several papers published since May 1, 2012, have investigated 
the fundamental mechanisms whereby TLRs exert a prominent 
influence not only on immune effector cells but also on malig-
nant and stromal cells. Among dozens of top quality reports, we 
have found the following works of particular interest. Shi et al. 
have identified a role for Tlr11 in the control of Salmonella spp 
infection at the level of Peyer patches,224 while Oldenburg and 
colleagues have discovered (one of) the natural ligand(s) of Tlr13, 
namely, bacterial 23S rRNA.225 Several groups have demonstrated 
that specific microRNAs play a critical function in the signaling 
cascades elicited by various TLRs, including TLR4 and TLR9, 
in both immune and malignant cells.198,226–228 Dibra et al. have 
demonstrated that TLR9 signaling in macrophages and CD3 sig-
naling in T cells underpin a cellular crosstalk that result in the 
secretion of high levels of interleukin (IL)-30.229 Balamurugan 

form of lipid A from Escherichia coli,144 which has been tested 
in patients with refractory solid tumors;145 and IMM-101, a 
preparation of heat-killed Mycobacterium obuense146 that has been 
investigated as a standalone therapeutic intervention against mel-
anoma.147 Moreover, recently completed trials have evaluated the 
safety and immunostimulatory profile of (1) the TLR3 agonist 
Hiltonol, a particular formulation of polyriboinosinic polyribo-
cytidylic acid (polyI:C) that includes carboxymethylcellulose and 
poly-L-lysine as stabilizing agents,148 employed as adjuvant of a 
peptide-derived vaccine against ovarian cancer;149 (2) the imidaz-
oquinoline 852A, a TLR7 agonist, administered subcutaneously 
for a prolonged period to patients with advanced hematologic 
malignancies;150 (3) the TLR9 agonist IMO-2055 (an immuno-
modulatory oligonucleotide also known as EMD1201081),151,152 
given in combination with 5-fluorouracil, cisplatin, and cetux-
imab (an FDA-approved monoclonal antibody specific for the 
epidermal growth factor receptor, EGFR)153 as a first-line pal-
liative treatment to patients with recurrent/metastatic head and 
neck squamous cell carcinoma (HNSCC);154 and (4) Agatolimod 
(also known as CpG-7909, PF-3512676 and Promune®), an 
unmethylated CpG ODN that also activates TLR9,155 given in 
combination with tremelimumab (an experimental monoclonal 
antibody targeting the immune checkpoint regulator cytotoxic 
T-lymphocyte-associated protein 4, CTLA4)156,157 to patients 
affected by advanced solid tumors (including melanoma),158 
or combined with local irradiation in subjects bearing mycosis 
fungoides.159

Preclinical studies. During the last 13 mo, TLR agonists 
have been the subject of an intense wave of preclinical investiga-
tion, resulting in more than 200 hundreds scientific publications 
(source www.ncbi.nlm.nih.gov/pubmed/). A large fraction of 
these studies has confirmed the ability of multiple TLR agonists 
to mediate—alone or combined with radio-, chemo- or immu-
notherapy—prophylactic or therapeutic effects against a vari-
ety of tumors, including (but not limited to) lymphoma,160–162 
mastocytoma,162 glioma,163 breast carcinoma,164,165 thymoma,166 
fibrosarcoma,167 head and neck cancer,168,169 melanoma,170–174 lung 
cancer,174–176 colorectal carcinoma,174,177–179 renal cancer177,180 and 
ovarian carcinoma.181,182 For the most part, such robust antineo-
plastic effects have been ascribed to the ability of TLR agonists to 
induce de novo or boost pre-existing (natural or therapy-elicited) 
immune responses. This said, accumulating preclinical evidence 
suggests that TLR-targeting agents can also influence tumor pro-
gression in a direct manner as they interact with TLRs expressed 
on the surface of malignant cells. Thus, activators of TLR3 (e.g., 
dsRNA, polyI:C),183–186 TLR4 (e.g., picibanil, LPS)187,188 and 
TLR7 (e.g., imiquimod)189 have all been shown to arrest the pro-
liferation or induce the death of various cancer cell lines in vitro, 
in the absence of immune effectors. However, the direct effects 
of TLR agonists on malignant cells exhibit a consistent degree 
of context-dependency. In line with this notion, TLR-conveyed 
signals have also been shown to confer malignant cells with a 
proliferative advantage,190–201 with an increased invasive/meta-
static potential,193,194,196–200,202–208 with a profound resistance to 
environmental and chemotherapeutic cues,192,195,209–212 or with the 
ability to secrete immunosuppressive cytokines.201,211,213 Of note, 
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will not be discussed further here. Of the remaining 25 clinical 
trials, 10 aimed at assessing the immunostimulatory potential of 
BCG or imiquimod in “off-label” oncological settings, and 15 
were launched to test the safety and antineoplastic activity of 
hitherto investigational TLR agonists (Table 1).

Recently initiated clinical trials are testing BCG, either 
in combination with the FDA-approved immunostimulatory 
monoclonal antibody ipilimumab78,249–251 (NCT01838200) 
or as an adjuvant to irradiated allogeneic melanoma cells plus 
recombinant granulocyte macrophage colony-stimulating factor 
(GM-CSF, Molgramostin®) (NCT01729663), only in advanced 
melanoma patients. Ad odds with such an apparent decrease in 
the clinical interest generated by BCG, the possibility to use of 
imiquimod as an immunostimulatory agent in patients affected 
by a variety of tumors remains under intensive investigation. In 
particular, during the last 13 mo clinical trials have been initi-
ated that aim at assessing the safety and therapeutic efficacy of 
imiquimod (1) employed as a standalone intervention to mini-
mize the risk of recurrence as well as the esthetic impact of sur-
gery in patients bearing lentigo maligna melanomas on the head 
and face (NCT01720407); (2) given in support of DCs loaded 
with tumor cell lysates to pediatric and adult sarcoma patients 
who have optionally been pre-conditioned with gemcitabine (to 
inhibit myeloid-derived suppressor cells)252–255 (NCT01803152); 
(3) used as a topic support to a DC-based vaccine in adult and 
pediatric patients affected by anaplastic astrocytoma, glioma or 
glioblastoma multiforme (NCT01808820), or to a tumor cell 
lysate-based vaccine in individuals with high-grade/recurrent 
glioma256 (NCT01678352); (4) given as an adjuvant to HLA-
A2-restricted tumor-associated antigen (TAA)-derived peptides 
in children bearing recurrent ependymomas (NCT01795313); 
(5) used as a standalone intervention in the form of anal supposi-
tories (as an alternative to ablative therapy) to men who had sex 
with HIV-1-infected men (NCT01663558); or (6) employed as a 
primary measure in alternative to surgery in women affected by 
vulvar intraepithelial neoplasia (NCT01861535). Moreover, fol-
lowing the encouraging results of a recent Phase I clinical trial,137 
a Phase II study has been initiated to test the therapeutic activ-
ity of a liquid imiquimod preparation (TMX-101) administered 
intravesically to NMIBC patients (NCT01731652).

Also the general interest in experimental TLR agonists 
appears to decrease, with the notable exception of Hiltonol™, a 
particular formulation of polyriboinosinic polyribocytidylic acid 
(polyI:C, Ampligen™, Rintatolimod) that includes carboxy-
methylcellulose and poly-l-lysine as stabilizing agents.148 Thus, the 
safety and immunostimulatory potential of Hiltonol™, which 
operates as a TLR3 agonist, are being investigated in (1) acute 
myeloid leukemia (AML) and myelodysplastic syndrome (MDS) 
patients receiving a recombinant vaccine consisting of full-length 
NY-ESO-1 fused to an anti-LY75 monoclonal antibody in com-
bination with 5-aza-2'-deoxycytidine (an FDA-approved ana-
log of cytidine also known as decitabine)257 (NCT01834248); 
(2) multiple myeloma (MM) patients treated with a multi-
peptide vaccine (PVX-410) (NCT01718899); (3) melanoma 
patients administered with a NY-ESO-1 based vaccine plus ipili-
mumab (NCT01810016); (4) unresectable pancreatic carcinoma 

and colleagues have unveiled a molecular cascade linking the 
oncosuppressive activity of FBXW7 to the transcriptional repres-
sion of TLR4,230 whereas Aksoy et al. have reported that the 
subcellular compartmentalization of TLR4 is under the control 
of phosphoinositide-3-kinase (PI3K).231 As PI3K is frequently 
hyperactivated in malignant cells,232 these findings lend further 
support to the notion that TLR4 may be implicated in tumor-
cell intrinsic oncogenic signaling cascades.79,188,211,233 By generat-
ing induced pluripotent stem cells from the dermal fibroblasts 
of TLR3-deficient patients and healthy individuals, Lafaille and 
coworkers have implicated TLR3 in the cell-intrinsic immunity 
of neurons and oligodendrocytes to herpes simplex virus 1.234 The 
research group lead by Richard Gallo has demonstrated that UV 
rays induce alterations in the double-stranded domains of some 
non-coding RNAs, endowing them with the ability to operate as 
DAMPs and activate TLR3.235 Luger and colleagues have shown 
that TLR4-activated DCs switch from an initial pro-inflamma-
tory mode, characterized by the release of T

H
1 cytokines includ-

ing IL-12 and interferon (IFN)γ, to an anti-inflammatory one, 
featuring the autocrine secretion of IL-10.236 During this latter 
functional phase, DCs reportedly become able to inhibit the 
proliferation of T cells and to convert them into IL-10, FOXP3-
expressing regulatory T cells (Tregs).236–239 Karbach and cowork-
ers have demonstrated that the use of Agatolimod is associated 
with the formation of neutralizing antibodies in significant frac-
tion of patients, de facto abolishing its long-term therapeutic 
potential.240 According to Lin et al., TLR2 is required for the 
removal of senescent hepatocytes by immune effector cells, hence 
restraining the development of hepatocellular carcinoma.241,242 
Ochi et al. have implicated TLR4 and TLR7 in pancreatic car-
cinogenesis, in both mice and humans, presumably linked to 
their robust pro-inflammatory functions.243–245 Hodven and col-
laborators have reported that picibanil not only activates TLR2 
and TLR4, but also exert TLR3-dependent immunostimula-
tory effects.246 Finally, Walter et al. have discovered that Aldara® 
stimulates inflammatory responses also in an imiquimod- and 
TLR7-independent manner.247 Indeed, an abundant component 
of Aldara®, isostearic acid, appears to trigger the activation of 
the inflammasome, hence stimulating the release of IL-1β and 
IL-18,248 even in the absence of imiquimod. Altogether, these 
findings suggest (1) that the biological functions of TLRs are 
complex and exhibit a significant degree of context-dependency,  
and (2) that the signal transduction cascades originating from 
TLRs are intimately intertwined with several other cell-intrinsic 
and cell-extrinsic signaling pathways. Much work is still needed 
to characterize this functional crosstalk, which has profound 
implications for cancer (immuno)therapy.

Update on Clinical Trials

When this Trial Watch was being redacted (May 2013), official 
sources listed only 32 clinical trials launched after May 1, 2012, 
to investigate the safety and therapeutic potential of experimental 
and FDA-approved TLR agonists (source www.clinicaltrials.gov). 
Of these, 7 involved BCG (1 study), AS04 (3 studies) or imiqui-
mod (3 studies) as fully “on-label” medications, and therefore 
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Table 1. Recent clinical trials evaluating Toll-like receptor agonists in cancer patients*

Agent Target Cancer type Status Phase Route Notes Ref.

AS15

TLR2

TLR4

TLR9

NSCLC
Not yet

recruiting
II i.m. As single agent NCT01853878

BCG
TLR2

TLR4
Melanoma Recruiting

I i.t. Combined with ipilimumab NCT01838200

II/III n.a.
Combined with irradiated  

melanoma cells and rhGM-CSF
NCT01729663

CBLB502 TLR5 HNSCC
Not yet

recruiting
I s.c. Combined with cisplatin and IMRT NCT01728480

GNKG168 TLR9
ALL

AML
Active, not 
recruiting

I i.v. As single agent NCT01743807

Hiltonol™ TLR3

AML

MDS
Recruiting I s.c.

Combined with recombinant  
vaccine and decitabine

NCT01834248

Melanoma Recruiting I s.c.
Combined with a NY-ESO-1- 

based vaccine and ipilimumab
NCT01810016

MM
Active, not 
recruiting

I i.m.
Combined with a  

multi-peptide vaccine (PVX-410)
NCT01718899

NSCLC Recruiting I/II s.c.
Combined with MUC1- 
targeting vaccination

NCT01720836

Pancreatic cancer Recruiting 0 i.t. Combined with immature DCs NCT01677962

Solid tumors
Active, not 
recruiting

II n.a. Combined with autologous DCs NCT01734564

Imiquimod TLR7

Anal dysplasia
Not yet

recruiting
IV Local As single agent NCT01663558

Astrocytoma

GBM

Glioma

Not yet

recruiting
I Topical

Combined with DC- 
based vaccination

NCT01808820

Ependymoma Recruiting n.a. Topical
Combined with HLA-A2- 

restricted TAA-derived peptides
NCT01795313

Glioma Recruiting 0 Topical
Combined with a  

tumor cell lysate-based vaccine
NCT01678352

Lentigo maligna 
melanoma

Recruiting III Topical
As a standalone 

neoadjuvant intervention
NCT01720407

Sarcoma Recruiting I Topical
Combined with DC-based  
vaccination ± gemcitabine

NCT01803152

VIE
Not yet

recruiting
III Topical

As an alternative 
to primary surgery

NCT01861535

Resiquimod
TLR7 
TLR8

CTCL Recruiting I/II Topical As single agent NCT01676831

Melanoma Recruiting n.a. Topical
Combined with MLANA- 

targeting vaccination
NCT01748747

nBCC Recruiting I/II Topical As single agent NCT01808950

SD-101 TLR9 Lymphoma Recruiting I i.t. Combined with radiotherapy NCT01745354

TMX-101 TLR7 NMIBC Recruiting II Intravesical As single agent NCT01731652

VTX-2337 TLR8
HNSCC

Not yet

recruiting
II n.a.

Combined with conventional  
chemotherapy plus cetuximab

NCT01836029

Reproductive 
tract cancer

Recruiting II n.a. Combined with PLD NCT01666444

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCG, bacillus Calmette-Guérin; CTCL, cutaneous T-cell lymphoma; DC, dendritic cell; 
GBM, glioblastoma; HNSCC, head and neck squamous cell carcinoma; i.m., intra musculum; IMRT, intensity-modulated radiation therapy; i.t., intra tu-
morem; i.v., intra venam; MLANA, melan-A; MDS, myelodysplastic syndrome; MM, multiple myeloma; MUC1, mucin 1; n.a., not available; nBCC, nodular 
basal cell carcinoma; NMIBC, non-muscle-invasive bladder carcinoma; NSCLC, non-small cell lung carcinoma; PLD, pegylated liposomal doxorubicin; 
rhGM-CSF, recombinant human granulocyte-macrophage colony-stimulating factor; s.c., sub cutem; TAA, tumor-associated antigen; TLR, Toll-like 
receptor; VIE, vulvar intraepithelial neoplasia. *Started after May 1, 2012.
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has been suspended for safety concerns. The results of only 1 
(NCT00707174) of the 9 studies that are nowadays listed as 
completed (NCT00006352; NCT00079300; NCT00581425; 
NCT00707174; NCT00773097; NCT00785122; 
NCT00952692; NCT01161888; NCT01219348) have been 
published, indicating that the administration of topical retinoid 
may reduce the risk of local recurrence among lentigo maligna 
melanoma patients treated with imiquimod 5% cream.265

Concluding Remarks

There is an abundant literature demonstrating that TLR ago-
nists can exert potent immunostimulatory effects in vivo, hence 
triggering de novo or boosting pre-existing (natural or therapy-
elicited) anticancer immune responses.23,27,47,52,58,266 Nonetheless, 
only a few TLR agonists are nowadays licensed by international 
regulatory agencies for use in cancer patients, i.e., BCG, MPL, 
imiquimod (all of which are approved by the US FDA) and pici-
banil (which is approved by the Japanese Ministry of Health and 
Welfare). In addition, the number or clinical trials that are initi-
ated to test the safety and therapeutic profile of TLR agonists in 
oncological indications is steadily decreasing. Thus, the trend that 
we have delineated one year ago, in the August and September 
issues of OncoImmunology,50,103 appears to be confirmed. Such 
a decline has surely been influenced by limited availability of 
clinical grade TLR agonists, prompting academic researchers 
to focus on surrogate compounds.267,268 Moreover, most (if not 
all) TLR agonists activate a complex set of signal transduction 
cascades that involve not only immune effectors but also malig-
nant cells and components of the tumor stroma. As the biologi-
cal outcomes of such a cell-intrinsic and cell-extrinsic signaling 
network exhibit an elevated degree of context-dependency, it is 
possible—yet remains to be formally demonstrated—that TLR 
agonists induce therapeutic responses only in specific patient sub-
sets. Thus, the future of these immunostimulatory agents might 
depend not only on the precise elucidation of the signaling path-
ways that they activate at the cell-intrinsic and cell-extrinsic level, 
but also on the identification of biological markers that predict 
the propensity of individual cancer patients to obtain a clinical 
benefit from TLR agonists.
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patients receiving immature DCs258 (NCT01677962); (5) indi-
viduals administered with a mucin 1 (MUC1)-derived peptide 
vaccine for the treatment of non-small cell lung carcinoma 
(NSCLC) (NCT01720836); and (6) subjects bearing not bet-
ter specified neoplasms and allocated to receive autologous DCs 
(NCT01734564).

The TLR5 agonist CBLB502 (a derivative of Salmonella 
flagellin also known as Entolimod) is being tested in Stage 
III–IV HNSCC patients receiving cisplatin and radiation ther-
apy (NCT01728480), reflecting the robust immunostimulatory 
and radioprotective activities that have been ascribed to this com-
pound in preclinical settings.259–262 The safety and immunostim-
ulatory profile of the TLR7 agonist resiquimod are being assessed 
(1) in cohorts of cutaneous T-cell lymphoma (CTCL) and nodu-
lar basal cell carcinoma (nBCC) patients, two settings in which 
resiquimod is administered topically as a standalone therapeu-
tic intervention (NCT01676831; NCT01808950); as well as 
(2) in patients with recurrent or advanced melanoma, receiving 
resiquimod or an HIV-1-derived peptide as alternative adjuvants 
to a melan-A (MLANA)-targeting vaccine (NCT01748747). 
VTX-2337, a small molecule that specifically binds and activates 
TLR8,168 is under investigation for its ability to improve the ther-
apeutic response of HNSCC patients to conventional chemother-
apy plus cetuximab (NCT01836029) and that of women bearing 
reproductive tract neoplasms to pegylated liposomal doxorubi-
cin (NCT01666444). Finally, a few clinical trials have recently 
been initiated to evaluate the immunostimulatory potential of 
TLR9 agonists in cancer patients. In particular, (1) AS15 (which 
actually operates as a mixed TLR4/TLR9 agonist, as it contains 
both MPL and Agatolimod) is being tested for its ability to boost 
immune responses elicited by full-length recombinant prefer-
entially expressed antigen in melanoma (PRAME) in NSCLC 
patients upon tumor resection (NCT01853878); (2) the safety 
and therapeutic profile of GNKG168 (a CpG ODN),263,264 given 
intravenously as a standalone agent, are being assessed in a cohort 
of relapsed acute lymphoblastic leukemia (ALL) or AML patients 
(NCT01743807); and (3) the intratumoral administration of 
SD-101 (a phosphorothiolate CpG ODN)263 is being evaluated 
as a means to exacerbate the antineoplastic effects of local irradia-
tion in subjects bearing Hodgkin and non-Hodgkin lymphoma 
(NCT01745354).

Of note, during the last 13 mo, 11 clinical trials investi-
gating the immunostimulatory activity of TLR agonists in 
cancer patients that had been registered at www.clinicaltri-
als.gov after January 1, 2008, are now listed as terminated (2 
studies), suspended (1 study) or completed (9 studies). In par-
ticular, NCT01013623 (testing BCG as a standalone agent in 
melanoma patients) and NCT01396018 (assessing the activ-
ity of VTX-2337 in combination with radiotherapy in B-cell 
lymphoma patients) have been terminated owing to a lack of 
accrual and to an excessively slow rate of recruitment, respec-
tively, while NCT01400672 (investigating the immunostimu-
latory potential of a tumor cell lysate-based vaccine adjuvanted 
with imiquimod in individuals bearing glioma or glioblastoma) 
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