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Introduction

Multipotent mesenchymal stem/stromal cells (MSCs) are origi-
nally isolated from human bone marrow (BM) as adherent, 
fibroblast-like shaped cells with an ability to differentiate into 
the mesenchymal lineage cells of mesoderm such as osteoblasts, 
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Multipotent mesenchymal stem/stromal cells (MSCs) have 
been extensively used as a transplantable cell source 
for regenerative medicine and immunomodulatory 
therapy. Specifically in allogeneic hematopoietic stem cell 
transplantation (HSCT), co-transplantation or post-transplant 
infusion of MSCs derived from bone marrow (BM) of non-self 
donors has been implicated in accelerating hematopoietic 
recovery, ameliorating graft- vs.-host disease, and promoting 
tissue regeneration. However, irrespective of the use of 
MSC co-administration, post-transplant chimerism of BM-
derived MSCs after allogeneic HSCT has been reported to 
remain of host origin, suggesting that the infused donor 
MSCs are immunologically rejected or not capable of long-
term engraftment in the host microenvironment. Also, 
hematopoietic cell allografts currently used for HSCT do not 
seem to contain sufficient amount of MSCs or their precursors 
to reconstitute host BM microenvironment. Since the toxic 
conditioning employed in allo-HSCT may impair the function 
of host MSCs to maintain hematopoietic/regenerative 
stem cell niches and to provide a local immunomodulatory 
milieu, we propose that new directions for enhancing 
immunohematopoietic reconstitution and tissue repair after 
allogeneic HSCT include the development of strategies to 
support functional replenishment of residual host MSCs or to 
support more efficient engraftment of infused donor MSCs. 
Future areas of research should include in vivo tracking of 
infused MSCs and detection of their microchimeric presence in 
extra-marrow sites as well as in BM.
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adipocytes, and chondrocytes.1,2 In addition to such multi-dif-
ferentiation capacity, MSCs are shown to have protean immu-
nomodulatory properties to ameliorate immune dysfunctions 
caused by pathologic effector cells. In the last decade, substantial 
efforts have been made to develop regenerative or anti-inflam-
matory cellular therapy using culture-expanded autologous or 
allogeneic MSCs.3,4 Specifically in the field of allogeneic hemato-
poietic stem cell transplantation (HSCT), various clinical trials 
have been performed with the aim of accelerating engraftment 
or ameliorating graft- vs. -host disease (GVHD) by infusion of 
MSCs obtained from the hematopoietic cell donors or third-
party donors. However, in the allogeneic setting, most of infused 
MSCs are considered short-lived in the host and the mechanisms 
by which MSC-based therapy can work in clinics remain mostly 
unclarified. In this short review, we critically look back on the 
biological basis of cellular therapy using culture-expanded allo-
geneic MSCs in the context of allogeneic HSCT. We also pro-
pose that a new area of translational research should include 
functional replenishment of host-type MSCs by pharmacologic 
agents or chimerism enhancement of donor-type MSCs by their 
in situ infusions.

Biological Characteristics of Human Mesenchymal 
Stem/Stromal Cells (MSCs)

In a current understanding of the biology of human MSCs, they 
are characterized by the following in vitro features:3,5 (1) their 
ability to adhere to plastic plate and to form colony forming 
unit-fibroblastic (CFU-F); (2) their ability to differentiate into 
osteoblasts, adipocytes and chondrocytes; (3) their positive sur-
face expression of CD105 (endoglin), CD73, and CD90 (Thy-1) 
in the absence of pan-leukocyte (CD45), endothelial/primitive 
hematopoietic (CD34), and hematopoietic lineage markers as 
well as in the absence of surface human leukocyte antigen (HLA)-
class II molecules. MSCs or MSC-like cells appear to be widely 
distributed in the human body, because the cells with similar 
biological characteristics to BM-derived MSCs have been dem-
onstrated to be isolated from a variety of adult organs or tissues 
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CXCL-9 and CXCL-10 to attract T cells into close proximity 
with MSCs.20,21 Conversely, MSCs express chemokine receptors 
that are involved in migration of MSCs to the sites where they 
participate in immune responses.22-24 In such a milieu, MSCs 
exert their inhibitory effects on T cell proliferation through the 
secretion of soluble factors such as nitric oxide,25 indoleamine-
2,3-dioxygenase,26-28 heme oxygenase-1,29 prostaglandin E

2
,30,31 

transforming growth factor-β1,22 and leukemia inhibitory fac-
tor.32 Some of these soluble molecules are also demonstrated to 
be involved in the suppression of proliferation and cytotoxicity 
of NK cells or maturation and function of dendritic cells.28,33-35 
However, MSC-mediated immunosuppression is thought to be a 
“combined” effect that cannot be fully explained by any one of 
those molecules released from MSCs. Furthermore, direct cell-to-
cell interactions might also be associated with the MSC-mediated 
immunosuppression. Although activating NK cells are capable of 
killing MSCs with low levels of HLA class I molecules expressed 
on their surface, upon simulation of MSCs with interferon-γ, the 
expression of HLA class I molecules is upregulated,36 resulting in 
inhibition of NK cell-mediated lysis of MSCs.37

Given such protean immunomodulatory properties, infu-
sions of allogeneic MSCs have been suggested to be beneficial 
for the treatment of diseases in which the immune system is 
dysregulated such as multiple sclerosis, type 1 diabetes mellitus, 
Crohn’s disease, systemic lupus erythematosus, and rheumatoid 
arthritis/Sjögren syndrome.3 Le Blanc et al. was the first to report 
successful treatment of steroid-resistant severe acute GVHD of 
the gut and liver by intravenous infusion of culture-expanded 
BM-derived MSCs from a haploidentical mother in a boy who 
had previously received unrelated HLA-matched HSCT for his 
acute lymphoblastic leukemia.38 In this report, they demonstrated 
the partial female donor epithelium chimerism (4%) in the biopsy 
specimens of colon by X and Y chromosomes fluorescence in situ 
hybridization analysis, which might imply the contribution of 
donor MSCs to the improvement of gut GVHD. A large study 
from the same group showed that infusion of MSCs from mul-
tiple donor sources conferred overall response rate of 69% includ-
ing complete response for the treatment of steroid-resistant acute 
GVHD.39 These studies support the experimental and preclini-
cal observations that the infused MSCs can directly or indirectly 
exert immunomodulatory effects possibly through the production 
of soluble factors and/or direct cell-to-cell interactions. However, 
intriguingly, many of these immunomodulatory effects of infused 
MSCs can be exerted without their long-term persistence in the 
host.40,41

Effects of Ex Vivo Expanded MSCs on Hematopoietic 
Reconstitution after Hematopoietic Cell 

Transplantation

Clinical application of MSCs for tissue/organ regeneration has 
also been extensively considered based on their capability of 
secreting trophic factors, homing to sites of damage, and multi-
differentiation. One of the important roles of BM-derived MSCs 
is to provide the microenvironment of hematopoietic stem cell 
(HSC) niche that supports durable and effective hematopoiesis. 

including adipose tissues, cartilages, fetal liver, and fetal lungs, 
although their mutual identities remain elusive.3

Whether umbilical cord blood (CB) and peripheral blood 
(PB) contain MSCs or not has been a great interest since, as well 
as BM, CB and cytokine-mobilized PB have been successfully 
used as stem cell sources for allogeneic HSCT. Recent studies 
have clearly demonstrated that CB contains MSCs, but its fre-
quency is estimated to be extremely low around one in 1 × 108 
mononuclear cells compared with that in BM around one in  
1 × 106 to 1 × 104 mononuclear cells. However, CB-derived MSCs 
show tremendous proliferation to generate much more prog-
eny than BM-derived MSCs and can be expanded to the order 
of 108 cells, which are deemed sufficient for clinical studies.6,7 
CB-derived MSCs differ from BM-derived MSCs in their vari-
able expression levels of CD146, a marker for multipotency and 
differentiation potential: CB-derived MSCs show robust poten-
tial for chondrogenic differentiation, while their potential for 
adipogenic differentiation is not obvious. Therefore, the use of 
an appropriate origin or unit of MSCs is important for achieving 
satisfactory effects according to the planned clinical application.

On the other hand, the presence of MSCs in steady-state PB 
is a matter of controversy, although several investigators have 
reported that MSCs or MSC-like cells can be isolated in postnatal 
PB or in PB samples obtained from individuals receiving granu-
locyte-colony stimulating factor,8,9 patients with breast cancer,10 
and patients with osteoporosis.11 These findings might reflect one 
of the potential features of MSCs that they might be occasion-
ally supplied into the blood circulation from the MSC niche in 
response to systemic or local hormones, cytokines, and growth 
factors to migrate toward organs or tissues in need.12,13 However, 
further studies are necessary to confirm if MSC-like multipotent 
cells can be reproducibly obtained from the steady-state circulat-
ing blood.14

Immunomodulatory Properties of MSCs  
and Treatment of Immunologic Diseases  

by Culture-Expanded MSCs

Lines of evidence demonstrate that MSCs have immunomodu-
latory properties with anti-inflammatory, anti-proliferative and 
immunosuppressive capacities. The possible mechanisms under-
lying such immunomodulatory effects of MSCs are thought to 
be mediated by a combination of soluble molecules in the micro-
environment where MSCs can directly interact with immune 
cells. MSCs are initially demonstrated to exhibit anti-pro-
liferative effects on T cells,15 but these effects are observed on 
other immune cells including B cells, NK cells, and dendritic 
cells.16,17 Mature mesenchymal cells such as chondrocytes can 
also show anti-proliferative effects on immune cells.18 However, 
they do not exert the immunomodulatory effects mediated by 
MSCs,19 implying the unique property of MSCs in the immune 
system. Effective immunosuppression by MSCs is supposed to 
be achieved in local microenvironment where MSCs reside. In 
mouse experiments, MSCs become activated by proinflamma-
tory cytokines interferon-γ, tumor necrosis factor-α, interleu-
kin (IL)-1-α or IL-1-β and express T-cell-specific chemokines 
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mesenchymal progenitor cells in an animal model,56 it is still 
controversial if durable engraftment of native donor-derived 
MSCs without ex vivo treatment can occur in the recipient of 
allogeneic HSCT.57-63 In this context, clinical studies of culture-
expanded high-dose MSCs transplantation for children with 
severe osteogenesis imperfecta (OI) are very informative.64,65 
Horwitz et al. reported the engraftment of donor-type MSCs 
in children who underwent allogeneic marrow transplantation 
and subsequent infusion of culture-expanded booster MSCs as 
treatment for severe OI; the infused MSCs were derived from 
the BM of the original donors and gene-marked for tracking.66 
Despite high doses of infused MSCs, the fraction of donor cells 
at any samples was less than 1% when PCR-based chimerism 
analyses of osteoblasts, fibroblasts, and marrow stromal cells of 
these children were performed between 18 and 34 mo after the 
MSC infusions.

Similarly to gene-marking, recent development of noninva-
sive imaging techniques has enabled us to have a better insight 
into in vivo cell tracking of transplanted MSCs in a real-time 
manner.66 These experimental imagings have revealed that intra-
venously transplanted MSCs are mainly distributed in the lungs 
and liver, while their distribution to the other tissues such as BM 
is barely detectable.67 Also, in conventional BM transplantation 
where MSCs are being transferred in their native form without 
an ex vivo expansion phase, it is believed that only a small pro-
portion of MSCs can reach to the marrow because most of them 
are trapped in the microvasculatures of lungs, particularly when 
MSCs are intravenously administered. By contrast, in a rat model 
of myocardial infarction, Barbash et al. reported that direct left 
ventricular infusion of MSCs could enhance their migration and 
colonization to the area of ischemic myocardium as compared 
with systemic intravenous infusion.68 Similarly, there is accumu-
lating evidence that intra-BM transplantation of hematopoietic 
cell graft relatively rich in MSCs may be a promising procedure 
to facilitate the sustained engraftment of donor MSCs in a series 
of experiments using large animal models.69 To get a better 
understanding of the fate of donor-derived MSCs after alloge-
neic HSCT or other MSC-based therapy, development of reli-
able imaging methods to track infused MSCs is highly required. 
Furthermore, it is warranted to develop a technique for detecting 
microchimeric presence of infused MSCs in extra-marrow sites 
as well as in BM.

Future Prospects

One caveat in allogeneic HSCT using current protocols might 
be very low chimerism of donor-type MSCs at least in the 
hematopoietic microenvironment. Although it is well known 
that recipients of allogeneic HSCT successfully recover normal 
hematopoietic function despite lack of engraftment of donor-
derived MSCs in the majority of cases, host-type MSCs that sur-
vived after sublethal conditioning for HSCT can harbor genetic 
abnormalities that may compromise crucial functions of MSCs 
to support effective hematopoiesis and tissue regeneration.

Although little information exists regarding the function of 
MSCs residing in the recipient of allogeneic HSCT, BM-derived 

In animal models, nestin-positive cells are shown to be MSCs that 
comprise the HSC niche in BM.42 Osteoblasts, CD146-expressing 
sub-endothelial stromal cells, and adipo-osteogenic progenitors 
expressing CXCL12 also are demonstrated to be cellular con-
stituents of HSC niche;43,44 these cells are derived from MSCs or 
have similar characteristics to MSCs. Conversely, aberrant MSC-
derived osteoprogenitor cells have been demonstrated be associ-
ated with disease pathophysiology in animal models.45-48 Given 
the results of studies demonstrating the importance of MSCs or 
MSC-derived stromal cells for the maintenance of hematopoiesis, 
the Lazarus group intravenously administered autologous cul-
ture-expanded MSCs in patients with hematologic malignancies 
without any infusion-related adverse reactions.49 Their group also 
reported the ability of MSCs to enhance hematopoietic recovery 
by co-infusion of autologous PB progenitor cells and culture-
expanded MSCs in patients with breast cancer receiving high-
dose chemotherapy.50

Upon allogenic HSCT especially when using HLA-mismatched 
grafts, primary graft failure is one of the early and very serious 
complications. Co-administration of MSCs with HSCs could be 
a promising strategy to overcome this shortcoming. In myeloab-
lative allogeneic HSCT using BM or PB progenitor cells from 
HLA-identical siblings, co-transplantation of culture-expanded 
BM-derived MSCs was safe without immediate or late toxicities 
but showed no apparent acceleration of engraftment.51 Importantly, 
at 6 and 18 mo after transplantation, microsatellite-based chime-
rism analysis of MSCs in BM aspirates revealed that loss or very 
rare presence of infused donor-type MSCs.51 In a situation of graft 
failure or graft rejection after the first allogenic HSCT, a pilot 
study showed the utility of co-infusion of MSCs in the subsequent 
salvage HSCT to improve engraftment of the second graft.52 In 
haploidentical allogenic HSCT using cytokine-mobilized CD34 
positive progenitor cells, co-transplantation of haploidentical 
MSCs did not confer acceleration of either neutrophil or platelet 
engraftment but prevented graft rejection.53 In this study, donor-
type chimerism of MSCs evaluated by PCR analysis using donor/
recipient polymorphisms was only transiently detected at very low 
levels in 3 out of 14 patients at 3 mo after transplantation. In 
unrelated HLA-mismatched CB transplantation for children with 
high risk hematological malignancies, co-transplantation of hap-
loidentical parental MSCs conferred relatively rapid hematopoi-
etic recovery.54 More recently, de Lima et al. reported that ex vivo 
coculture of CB cells with MSCs derived from BM of haploiden-
tical family members or third-party donors is feasible and effec-
tively expanded CD34+ cells to accelerate hematopoietic recovery 
when infused with the second unexpanded CB unit.55 Although 
these pilot studies suggest the utility of MSCs on hematopoietic 
recovery after allogeneic HSCT, further studies are needed to elu-
cidate the appropriate dose of MSCs and timing of their infusions 
for achieving optimal outcomes.

Chimerism of Donor-Derived MSCs  
after Allogeneic Hematopoietic Cell Transplantation

Although there is experimental evidence suggesting the presence 
of a common mesoderm cell as origin of both hematopoietic and 
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therapeutic approach for the treatment of intractable hematologic 
and MSC-associated disorders.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported in part by grants from the ministry of 
Education, Culture, Sports, Science, and Technology of Japan 
(#22591061 to TI) and grants from the ministry of Health, 
Labour and Welfare of Japan (TI).

MSCs from a long-term survivor after myeloablative transplant 
can have complex chromosome abnormalities (TI, unpublished 
observation). Since various cytokines including erythropoi-
etin and parathyroid hormone are reported to have activities to 
enhance MSC-mediated bone formation, hematopoiesis, and tis-
sue regeneration,70-72 we propose that future direction of MSC-
based therapy should include pharmacologic upregulation of 
their functions. Another promising approach will be to improve 
the engraftment of donor-type MSCs by their in situ administra-
tion into the BM cavity of the recipient. Attempts to reconstitute 
abnormal microenvironment with allogeneic normal MSCs and 
to achieve appropriate donor MSC chimerism could be a novel 
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