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Abstract In this paper, we propose a graphcut method to
segment the cardiac right ventricle (RV) and left ventricle
(LV) by using context information from each other. Contex-
tual information is very helpful in medical image segmen-
tation because the relative arrangement of different organs is
the same. In addition to the conventional log-likelihood
penalty, we also include a “context penalty” that captures
the geometric relationship between the RV and LV. Contex-
tual information for the RV is obtained by learning its
geometrical relationship with respect to the LV. Similarly,
RV provides geometrical context information for LV seg-
mentation. The smoothness cost is formulated as a function
of the learned context which helps in accurate labeling of
pixels. Experimental results on real patient datasets from the
STACOM database show the efficacy of our method in
accurately segmenting the LV and RV. We also conduct
experiments on simulated datasets to investigate our meth-
od’s robustness to noise and inaccurate segmentations.

Keywords Mutual context information - LV - RV -
Segmentation - Cardiac - MRI - Graph cuts

Introduction

Cardiovascular diseases are one of the leading causes of death
in the Western world [1]. Diagnosis and treatment relies on
numerous imaging modalities like echography, computed to-
mography (CT), coronary angiography, and magnetic reso-
nance imaging (MRI). MRI has emerged as the preferred
diagnostic modality because of its non-invasive nature. It also
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gives reliable information on morphology, muscle perfusion,
tissue viability, and blood flow. These parameters are obtained
by segmenting the left ventricle (LV) and right ventricle (RV)
from cardiac MR images. Manual segmentation is tedious and
prone to intra- and inter-observer variability. This has neces-
sitated the development of automated/semiautomated seg-
mentation algorithms. An exhaustive review of medical
image segmentation algorithms can be found in [2], while an
excellent review of cardiac LV segmentation algorithms is
given in [3]. While there are many methods for LV segmen-
tation, the RV has not received so much attention [3] because:
(1) of its complex crescent shape, (2) lower pressure to eject
blood, (3) thinner structure than LV, and (4) less critical
function than LV. However, Shors et al. [4] show that MRI
can provide an accurate quantification of RV mass.

Knowledge-Based Cardiac Segmentation

Most cardiac MR images show poor contrast between LV
blood pool and myocardium wall, thus giving minimal edge
information. This, in addition to similar intensity distributions
in different regions, makes segmentation of the LV a very
challenging task when using only low level information
(e.g., intensity, gradient, etc.). RV segmentation poses chal-
lenges because of the reduced thickness in MRI and shape
variations. In such a scenario, inclusion of prior shape infor-
mation assumes immense significance in LV and RV segmen-
tation. Although there is a vast body of literature for cardiac
LV segmentation from short-axis images, we only review
those works that incorporate different kinds of prior knowl-
edge into the segmentation task.

Jolly propose a LV blood pool localization approach in
[5] which acts as an initialization for LV segmentation.
Paragios et al. [6] used a signed distance map to incorporate
prior shape knowledge in a level set framework for LV
segmentation. A probability density function of the shape
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or appearance from training data was used in level sets [7]
and graph cuts [8], while orientation histograms were used
as shape priors for graphcut segmentation of the LV [9, 10].
Cousty et al. [11] used mixture models and spatiotemporal
watershed transforms to segment the LV while [12]
employed clustering approaches. Ayed et al. employed level
sets to match overlap priors which is the relation between
overlapping intensity distributions of different areas like
myocardium and blood pool. Mutually beneficial registra-
tion and segmentation information was combined for LV
segmentation in [13-16].

Kaus et al. in [17] combine a statistical model with
coupled mesh surfaces for segmentation. However, their
assumption that the heart is located in the center of the
image is not always valid. Shape knowledge was combined
with dynamic information to account for cardiac shape
variability in [18, 19]. Zhu et al. in [18] use a subject
specific dynamic model that handles intersubject variability
and temporal dynamics (intrasubject) variability simulta-
neously. A recursive Bayesian framework is then used for
segmenting each frame. In [19], the cardiac dynamics is
learnt by using a second-order dynamic model. Davies et
al. in [20] propose a method to automatically extract a set of
optimal landmarks using the minimum description length.
But it is not clear whether the landmarks thus extracted are
optimal in the sense of anatomical correspondence. Perper-
idis et al. proposed a 4-D model by including temporal
information [21]. Besbes et al. [22] used a control point
representation of the LV prior and other images were de-
formed to match the shape prior.

Active appearance models (AAM) were used in [23, 24] to
segment the LV. AAM and ASM (active shape models) were
combined in [25], with extensions to the time domain in [26].
Some of the works on LV segmentation also show results for
RV segmentation using deformable models [27, 28] and atlas-
based methods [29]. However, to our knowledge, none of the
works use any kind of contextual information from the RV (or
LV) to segment the LV (or RV). Our work uses a novel
approach to model the contextual relationship between the
RV and LV and achieve better segmentation accuracy.

Context-Based Segmentation

Use of contextual information is extremely popular in gen-
eral computer vision tasks like segmentation and scene
understanding. Markov random fields (MRFs) have been
widely used in vision [30] along with conditional MRFs
(CRFs) [31]. These models have similar disadvantages like:
(1) limited choice of functions, (2) they rely on a fixed
neighborhood giving very limited topological information,
and (3) obtain the optimal solution for a limited family of
functions. Many important works have been proposed to
include context information for segmentation. Belongie et

al. [32] proposed a shape context method using distribution
of relative distances for matching shapes. Hoiem et al. in
[33] learn the relationship between different target objects
for locating pedestrians, cars, and buildings from natural
images. Other works have modeled the direct relationship
between different objects [31], regions [34], or scene cate-
gories [35]. In [36], Tu propose “auto-context” which inte-
grates image and contextual information from a set of
trained classifiers to segment brain structures from MRI.
Auto context was used by Li et al. in [37] to segment the
human prostate gland from CT images.

Graph cut-based multiregion segmentations were intro-
duced in [38] where multiple regions were segmented si-
multaneously. Object interaction prior modeling the
geometric relationship between different disk-like structures
were used in [39] for intervertebral disk segmentation using
graph cuts. Based on the segmentation of one disk, other
interesting structures are segmented. Song et al. [40] pro-
posed a surface region context model for segmenting pul-
monary tumors. Context comes from a variety of sources.
Since the human anatomy is standard, and image acquisition
procedures are the same, presence of one organ gives a
strong cue about the presence of other organs in the medical
images. For example in abdominal MRI, the spine can be
easily identified, while segmenting other organs like the
kidney, liver, or prostate is challenging. It can be argued
that first by segmenting the spine we can include contextual
information to aid in the segmentation of other organs. A
similar scenario is encountered in segmenting the RV and
LV. Both of them provide mutually complementary contex-
tual cues to aid in segmentation.

Our Contribution

We propose a method to segment the RV and LV by learning
their mutual context information. None of the previous
works model the contextual relationship between RV and
LV for their mutual segmentation. We make use of geomet-
ric relationship between the shapes in the form of relative
orientations. The context information is learned from a set of
training images in which the RV and LV have been manually
segmented. The learned information is encoded on a graph-
ical model of the image as weights between pixel nodes and
terminal nodes, as well as the weights between pixel nodes.
Graph cuts are used to find the final labels in an iterative
fashion. Geometric relationships in the form of orientation
angles and distance were used in [39]. However, they try to
match distributions of different areas, and hence do not
encode costs at levels of pixels or their neighborhoods.
Therefore, graph cuts cannot be directly used for their for-
mulation. The authors introduce submodular graphs to over-
come this limitation and optimize over a upper bound which
enables use of graph cuts for optimization.
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This paper makes the following contributions: (1) we
encode context information for each pixel as well as be-
tween pixels. This allows us to directly use graph cuts
without constructing submodular graphs as in [39]; (2)
mutually beneficial context information from the RV and
LV is used to segment the individual organs. We describe
our method in “Materials and Methods™” section, present
experimental results in “Experiments and Results” section,
and conclude with “Conclusion” section.

Materials and Methods
Overview of Method

Our method comprises of the following steps: (1) select seed
points on the RV and LV, and use graph cuts to get initial
segmentations; (2) fix the LV segmentation and refine the
RV segmentation using contextual information from the LV;
(3) fix the new RV segmentation and refine LV segmenta-
tion using contextual information from the RV; (4) repeat
steps 2 and 3 till there is no further change in both
segmentations.

Initial Segmentation of the RV and LV

Every segmentation task has to be defined within a segmen-
tation framework of a particular cost function. Every cost
function has two components: (1) the penalty cost—which
quantifies the deviation from the ideal labels and (2)
smoothness cost that regularizes the solution so that neigh-
boring pixels have similar segmentation labels. We use the
second-order MRF formulation to define our segmentation
costs. The cost function is written as

E(L) =Y Di(L)+1 Y Vi(LsL), (1)

seP (s,0)eN

where P denotes the set of pixels, L; is the label of pixel s €
P and denotes its segmentation class, and N is the set of
neighboring pixel pairs. D; (Ly) is the data penalty function
that measures how well label L fits pixel s; V; is the
smoothness cost that measures the cost of assigning labels
L, and L, to neighboring pixels s and ¢. Subscript I denotes
intensity. \ is a weight that determines the relative contribu-
tion of the two terms. Eq. 1 is optimized using graph cuts [41].

To calculate the penalty cost of a pixel for a particular
class, we need to have a reference function for each class.
For the segmentation task, the reference function is the
intensity distribution of pixel intensities known to belong
to a particular class. Pixels from different classes (known as
seed points) are chosen from an image with known labels,
and their intensity distributions are modeled as a Gaussian
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distribution. The penalty function D; (L;) is defined as the
negative log-likelihood of intensity:

Dy (L) = —logPr(Ls/Ly) (2)

where [ is the intensity at pixel s, Pr is the likelihood
(obtained by inserting the intensity value into the reference
distribution for class L), and L, is the label. /; assigns a low
penalty at edge points to ensure neighboring pixels have
similar labels, and favors a piecewise constant segmentation
result. It is defined as
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o determines the intensity difference up to which a region is
considered as piecewise smooth. It is equal to the average
intensity difference in a neighborhood of s. ||s—¢| is the
Euclidean distance between pixels s and ¢. /; and /, are the
intensities of neighboring pixels s and ¢. By optimizing Eq. 1,
we get a set of initial LV and RV segmentations which are not
optimal because intensity information alone is unable to over-
come the challenges of low resolution noisy images and
indistinct edges. We refine the LV and RV segmentations by
incorporating contextual information which is described in the
subsequent sections.

Modeling Contextual Relationship between RV and LV

To model the contextual relationship between the RV and
LV, we use 40 training images in which the RV and LV have
been manually segmented. The STACOM dataset that we
use provides only the manual segmentation of the LV. The
RV is segmented by two radiologists each having more than
5 years of clinical experience (details are given in the
“Description of Datasets” section). We shall denote these
shapes as Rv and Lv. Let the set of points on the outer edge
of Rv be denoted as {Rv;,",Rv;}, and the set of points on
Lv is denoted as {Lv;; - ; Lvj}. We choose points only on
the outer edge as they are sufficient to give a rich shape
descriptor without large computational overhead.

Figure 1b shows an illustration of our approach to model
the contextual relationship between the LV and RV. We
calculate the histogram of orientation angles (i.e., the distri-
bution of orientation angles) between each Lv; and all Ry;
By in Fig. 1b) and denote it as 4°, ;. The superscript o
denotes orientation angles. The 32 histogram bins are uni-
form in log-polar space making the descriptor more sensi-
tive to positions of nearby sample points than points further
away. Figure lc shows /., ; for the manual segmentations
(shown in red) in Fig. la. The angles are distributed over
different range of values and have more than one mode in
most cases. The x-axis gives the angle value in degrees and
is in the range [-180°, 180°]. If we consider all the Lv; over
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Fig. 1 Illustrations for context segmentation. a Example image with
the manual segmentations in red and the corresponding narrow bands
in cyan. b Illustration of contextual relationship between LV and RV. ¢

all training images, then there are a large number of /% ;.
The representative distributions are obtained by principal
component analysis (PCA). PCA gives the principal modes
of the distribution, i.e., those modes along which most of the
data is distributed. The principal components of the first
six histograms represents more than 94 % energy (as
determined from the Eigenvalues) and are chosen as the
reference histograms for determining the context penal-
ty. These histograms are denoted as H’,,, n={I, -,
6}. Thus, we obtain the contextual relationship of the
LV with respect to the RV which is the relationship of
orientation angles between each point on the LV with
respect to all points on the RV.

Similarly, the contextual relationship of the RV with
respect to the LV means the relationship of orientation
angles between each point on the RV with respect to all
points on the LV. This relationship is obtained by calculating
the histogram of orientation angles between each Rvi and all
Lvj and denoted as /°gy;. Note the difference in notation
(i.e., Rv and i). The six principal histograms are denoted by
Hrys n={1, -, 6}. Since contextual information is incor-
porated to refine the segmentations obtained in the initial
step we choose to calculate the cost function values over a
narrow band around the segmented RV or LV. The narrow
band is obtained by expanding the contour outline (obtained
in the initial segmentation steps) in both directions normal to
its edges. The expanded distance is 20 pixels in each direc-
tion and the width of the band is 40 pixels. Figure 1a shows
the narrow band (in cyan) around which the pixel labels are
updated.

For a pixel in the band around the LV, let its orientation
histogram with respect to the Rv be denoted as /°. Distance
of h° from each H°|,,, is given by the x> metric as

2
{ho(k) — Hipw

1 K
av =5
WVlom) =3 e (k) + H, g ()

(4)

0
Anglein Degrees Angiein Degrees

Angle distribution of LV with respect to RV. d Angle distribution for
RV with respect to LV

Where k denotes the bin index of the histogram and K=
32 is the total number of bins. Note that the distance is
calculated for all n=6 reference distributions of the LV.
The x0 metric gives values between 0 (identical distribu-
tions) and 1 (no similarity in distribution), although other
metrics (like Bhattacharya distance) can also be used. The
“context cost” (Dcont) 0f assigning label 1 (LV) to the pixel
is the minimum of d; ,(o,n)

Dcont(Ls = 1) = arg, min dpy(o, n) (5)

The principal component among H’, giving the mini-
mum cost represents the most similar direction of 4° in the
training dataset and hence also the similarity of 4% with Lv.
Therefore, it makes sense to take the minimum of all histo-
gram distances. The context cost of assigning label 0
(background) to the pixel is defined as

DCont(Ls = 0) =1- DCOIlt(LS = 1) (6)

Note that for each round of segmentations there are only
two labels (RV or LV, and background). Thus the above
formulation of D, (Ls=0) is justified. The learned contex-
tual relationship is incorporated into the smoothness cost by
the following approach.

The pairwise cost is the weight between the two
corresponding pixels (nodes) on the graph. If the two
pixels have the same labels, then their mutual weight
should be high such that the link is not severed (be-
cause graph cut optimization severs links in such a way
that the combined sum of weights of severed links is
minimal). On the other hand, if the two pixels have
different labels then their edge weight should be low.
For a neighboring pixel pair s and ¢ around the LV, we
determine their distribution of orientation angles with
respect to the current RV segmentation, which we de-
note as A% and A°. The difference in histograms is
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calculated using the y’metric and denoted as |h°s, h°.
The smoothness cost between s and t due to context is
defined as

VCont(Lsth) = 1 - |hsaht| (7)

Similar pixels s and ¢ will have low value of |°s, h°1], and
the corresponding Vcgye is high. Dissimilar neighboring
pixels s and t will have high value of |A°s, 4°f|, and the
corresponding Ve is low. Thus, the above formulation of
Veont serves our desired purpose. To obtain the updated
segmentation, we incorporate both intensity penalty and
contextual penalty in the cost function. Thus, the final
energy function is

=Y [Di(L) + Deon(Ls)]

+ xZ(S‘I)SN [V[(LS7 Lt) + VCont<Lsy LZ)] (8)

E(L)

where A=0.05. Equation 8 is optimized using graph cuts to
get an updated LV segmentation. The obtained LV segmen-
tation is used to update the RV segmentation by steps similar
to above. For a pixel in the band around the RV, its orien-
tation histogram with respect to the Lv is calculated (4°) and
its distance from each H’g,,, is given by

2
Ik |0) = Hiyynyg
dry(0,n) = 2 Zkzl {ho(k) +Hf{v,n(;)] 7 Y

The Dcoy of assigning label 1 (RV) to the pixel is the
minimum of dr(0; n),

Dcont(Ls = 1) = arg, mindgry(o,n) (10)

Dcon(Ls=0) and Von(s, t) are calculated according to
Egs. 6 and 7, and the final energy function is obtained as in
Eq. 8 which is optimized to get the updated RV segmenta-
tion. The sequence of steps is repeated till convergence.

Convergence Criteria The iterative segmentation is stopped
if the change in segmentations between consecutive itera-
tions is small. We calculate the dice metric (DM) between
two consecutive segmentations. If the DM is greater than 95,
then the segmentation is immediately stopped. The optimal
segmentations are obtained in three to four iterations.

Optimization Using Graph Cuts

Pixels are represented as nodes Vp in a graph G which also
consists of a set of directed edges E that connect two nodes.
The edge weight between two neighboring nodes is the
smoothness term while the data penalty term is the edge
weight for links between nodes and label nodes (terminal
nodes). The optimum labeling set is obtained by severing

@ Springer

the edge links in such a manner that the cost of the cut is
minimum. The number of nodes is equal to the number of
pixels N and the number of labels is equal to L. There are
two labels for each iteration, i.e., 0 for background and 1 for
RV or LV. Details of graph construction and optimization
can be found in [41].

Evaluation Criteria

The accuracy of the segmentation results against the ground
truth was evaluated using the following metrics: sensitivity
(p), specificity (q), positive predictive value (PPV), and
negative predictive value (NPV). These were calculated by
using the following equations:

T1 70 T1
== ppy——— NPV
P=N1 977 Noo TI 1 FL’
T
T (11)
To + FO

where 71 and 70 are the number of detected pixels charac-
terized correctly as myocardium and nonmyocardium,
while F1 and FO are the number of misclassified pixels
detected as myocardium and non-myocardium, respec-
tively. The total number of myocardial and nonmyocar-
dial pixels is N1 and NO, respectively. Other commonly
used evaluation metrics include similarity indices in terms of
the dice metric:

2ID1NTI

DM(D1,Tl) = ———— 12
( ) |D1| + |T1] (12)
and the Jaccard index:
|IDINT1]
JIDI,T]) = ————— 13
(OLT) = g7 (13)

where D1 and 71 are automatic and ground truth segmenta-
tions, and |X] denotes the number of elements in the set X. In
both cases, values closer to 1 represent better performance.

Hausdorff Distance (HD) The DM gives a measure of how
much the actual manual segmentation was recovered by the
automatic segmentation. But the boundaries of the segment-
ed regions may be far apart. The HD aims to measure the
distance between the contours corresponding to different
segmentations. We follow the definition of HD as given in
[42]. If two curves are represented as sets of points A= {ay,
as,...} and B={b,, b,,...}, where each a; and b; is an
ordered pair of the x- and y-coordinates of a point on the
curve, the distance to the closest point (DCP) of a; to the
curve B is calculated. The HD is defined as the maximum of
the DCPs between the two curves [43]

HD = max (DCP{(a;, B)}, DCP{ (b;,A) }) (14)
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Experiments and Results
Description of Datasets

We have tested our algorithm on 30 training datasets from
the STACOM 2011 4D LV Segmentation Challenge run by
the Cardiac Atlas Project [44]. All the data came from the
Defibrillators to Reduce Risk by Magnetic Resonance Im-
aging Evaluation [45] cohort which consists of patients with
coronary artery disease and prior myocardium infarction.
The data were acquired using steady-state free precession
MR imaging protocols with thickness of <10 mm, gap of
<2 mm, TR of 30-50 ms, TE of 1.6 ms, flip angle of 60°,
FOV of 360 mm, and 256%x256 of image matrix. MRI
parameters varied between cases, giving a heterogeneous
mix of scanner types and imaging parameters consistent
with typical clinical cases. The images consist of two to
six LA slices and on average 12 SA slices and 26 time
frames. Possible breath hold-related misalignments between
different LA and SA slices were corrected using the method
of [46]. The ground truth images of the LV were defined by
an expert using an interactive guide point modeling segmen-
tation algorithm [47]. Although there are 100 training data-
sets, none of them have manual segmentations of the RV.
Two radiologists from the National University Hospital,
Singapore, each having more than 5 years of clinical expe-
rience in studying patients with cardiac abnormalities, man-
ually annotated the RV using he interactive guide point
modeling segmentation algorithm [47]. The average dice
metric between the two sets of contours is greater than
0.97 indicating good agreement between the individual seg-
mentations. Therefore, we take the reference RV segmenta-
tion as the average of the two segmentations. The RV was
segmented in 30 (out of 100) datasets.

The dataset was divided into training (15 patients) and
test (15 patients) data. The training and test data was per-
muted to obtain 30 different groups such that each patient
data was part of the training and test data. The reported

results are the average of these 30 dataset groups. Automatic
segmentations were obtained using three methods: the ori-
entation histogram-based shape prior method of [9] (Met 1);
our method using contextual information in graph cuts
(GCCont), the method in [39] using object interaction priors
(Met 2) and the multilabel graph cuts method of [38] (Met
3). The automatic segmentations were compared with man-
ual segmentation using DM and HD. Shape prior methods
are used for comparison to highlight the advantages of
including contextual information. We also summarize the
results of LV segmentation for different algorithms used in
the STACOM segmentation challenge [48]. Note that [48]
provides only the results of LV segmentation over the 100
patient datasets, while we provide LV (and RV) segmenta-
tion results for 30 datasets. While these set of results may
not be exactly comparable, it provides a fair indication of
our method’s performance on the same database.

To fix A, we adopt the following steps. We choose a small
subset of the training data consisting of 10 patient volumes,
and perform segmentation using our method but with A
varying from 0 to 1 in steps of 0.01. Based on the segmen-
tation accuracy using DM, we set A=0.05

Segmentation Results

Table 1 summarizes the performance of different algorithms
for LV segmentation and Table 2 summarizes the perfor-
mance of four methods for RV segmentation. In addition to
the four methods mentioned above, in Table 1 we also show
results for the seven methods used for the same datasets for
which LV segmentation results were published in [48]. Our
method gives the best performance as shown by all the
different evaluation metrics. HD values (in pixels) are
shown only for the first four methods because we did not
have access to the segmentations generated by the other
methods. Analysis of the results shows that the inclusion
of context information contributes to a significant increase
in segmentation accuracy, higher than when using prior

Table 1 Comparative perfor-

mance of segmentation accuracy DM ul Sen Spe PPV NPV HD

of LV (real patient images) using

different methods and metrics Met1  0.87(0.12) 0.79 (0.11) 0.91 (0.09)  0.88(0.13)  0.85(0.11)  0.91 (0.10) 3.2 (0.7)
GCeone 093 (0.06)  0.87 (0.09) 0.96 (0.0.5) 0.93(0.09) 0.91 (0.09) 0.96 (0.06) 1.5 (0.2)
Met2 091 (0.12) 0.83(0.10) 094 (0.07) 0.89(0.12) 0.89 (0.11) 0.93 (0.08) 2.2 (0.4)
Met3  0.85(0.13) 0.74(0.16) 0.89 (0.15)  0.82(0.14) 0.84 (0.15) 0.88 (0.16) 3.9 (0.9)
SCR  0.83(0.11) 0.73(0.14) 0.78 (0.15)  0.96 (0.04) 0.92 (0.07)  0.87 (0.08)

4 4 INR 0.68 (0.17)  0.53(0.17)  0.75(0.24)  0.73 (0.16)  0.66 (0.14)  0.85 (0.12)

Since the segmentations of other 5 ) 0.86 (0.09)  0.76 (0.12)  0.90 (0.12)  0.87 (0.09) 0.83 (0.09)  0.94 (0.06)

methods were not available, we

could not caleulate their HD DS 0.80 (0.14)  0.68 (0.16)  0.79 (0.16)  0.88 (0.08)  0.82 (0.13)  0.87 (0.09)

values. Values indicate the mean ~ EM 0.88 (0.07)  0.80 (0.10)  0.89 (0.10)  0.91 (0.08) 0.89 (0.09)  0.93 (0.06)

and standard deviation AU 0.88 (0.09) 0.80 (0.13) 0.85(0.11)  0.96 (0.04) 0.93 (0.09)  0.90 (0.08)

PPV positive predictive value,  NU 0.75 (0.10)  0.61 (0.12)  0.63(0.12)  0.99 (0.02)  0.96 (0.06)  0.81 (0.06)

NPV negative predictive value
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Table 2 Comparative perfor-

mance of segmentation accuracy Dice metric (%)

HD (pixels)

of RV using FOUR methods and

two metrics (DM and HD). Values Met 1 GCcont Met 2 Met 3 Met 1 GCcont Met 2 Met 3
indicate the mean and standard
deviation RV 88.2+0.9 929+12  90.4+1.0 84.9+1.1 3.9+0.7 1.5+£0.3 2.1£04  4.4+0.6

shape information. Although shape priors provide high level
knowledge, contextual knowledge is much more informa-
tive in segmentation. This is because context information
encodes higher level knowledge with respect to other
regions in an image, while shape priors encode knowledge
about the one shape in question.

A statistical measure of segmentation performance was
determined by conducting ¢ tests on the set of HD and DM
values obtained by Metl, Met2, Met3, and GCCont. Com-
paring between Met 3 and all other methods, we get p<
0.015 indicating a large difference in segmentation output.
This is expected because Met 3 uses only intensity informa-
tion while all the other methods use prior knowledge to

different degrees. Comparing between Met 1 and Met 2,
we obtain p<0.04 which means a small degree of
significance between the two sets of results. This leads us
to conclude that the two measures use similar level of
information, but Met 2 integrates a little more relevant
information because of the use of global context. However,
for GCCont, we get p<0.024 when compared with Met 1
and Met 2 which is an indication of fairly significant
improvement over the two methods.

Figure 2 shows segmentation results for different
algorithms. While prior shape information is helpful, we
observe that context information improves segmentation
accuracy as observed by the results of GCcont and Met 2.

Fig. 2 Segmentation results for different methods. Each row shows
results of different patient datasets from the STACOM database. Red
contour shows the manual segmentations, and green contours show
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results for automatic segmentations. Columns /—4 show segmentation
outputs for Met 1, Met 2, GCcont, and Met 3
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It is interesting to note that Met 1 and Met 2 have similar
performance. Both context and shape priors give helpful
knowledge to aid segmentation. Met 3 relies only on inten-
sity to achieve a high level of segmentation accuracy. Infor-
mation and even though it is a multilabel optimization
method intensity information is not sufficient The advantage
of context information is its ability to encode more global
knowledge into the segmentation than shape priors. These
methods are able to capture a wider range of shape changes
than shape priors over the same training data. Our method
compares favorably with Met 2 and in many cases gives
better segmentation accuracy. Although Met 2 and GCcont
are similar in terms of the geometric features used, our
method is simpler as we do not need to introduce submod-
ular graphs for graph cut optimization. Additionally, we
incorporate interpixel relationships into the smoothness cost
based on training data which contributes to higher segmen-
tation accuracy. A ¢ test between results of GCCont and Met
2 gives p<0.03 indicating statistically different results.

Segmentation Results for Added Noise

Figure 3 shows segmentation results after various iterations
of our method under different levels of added noise. The

Fig. 3 Segmentation results of
our method for different noise
levels. The first row shows
results for original image. The
second and third row show
results with added Gaussian
noise of zero mean and variance
of 0:01 and 0:05, respectively.
Red contour shows the manual
segmentations, and green
contours show results for
automatic segmentations.
Columns /-3 show
segmentation outputs after first,
second, and third iterations

first row corresponds to results on the original image (from
the STACOM dataset) without any added noise. The first
column shows the initial segmentations of the RV and LV,
followed by the updated segmentations (after each iteration)
in each subsequent column. The second row shows segmen-
tation results for the image to which zero mean Gaussian
noise (of variance 0.01) has been added, and the third row
shows results for zero mean Gaussian noise of variance
0.05. With addition of noise, the initial segmentations tend
to leak out to the background. However, the segmentations
are refined at each subsequent iteration and the final output
is quite close to the desired segmentations. The average DM
for the initial segmentations of RV in the three cases are
85.3, 82.1, and 80.3 with the corresponding HD values
being 4.2, 5.1, and 5.9 pixels. The average DM value of
the final segmentations are 90.3, 88.2, and 86.7, and the
corresponding HD are 1.9, 2.3, and 3.2. These values indi-
cate a large improvement in segmentation over multiple
iterations. A series of 7 tests on the corresponding DM and
HD values after the initial and final iterations gives p<
0.025, indicating statistically significant improvements.
For LV, the average initial DMs are 86.3, 84.2, and 81.5
and the corresponding HD values being 3.8, 4.8, and 5.3
pixels. The DM value of the final segmentations are 91.4,
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Table 3 Performance of our method for different levels of added noise

Table 4 Performance of our method for different degrees of initial
undersegmentation. DM indicates the range of DM for the initial

1=0, 0=0.005 1=0, 0=0.01 #=0, 0=0.08 undersegmentations. Values indicate mean and standard deviation
LV DM 86.1+1.2 81.1+£0.9 76.8+1.3 Initial DM 79-83 70-79 61-69
HD 2.2+0.7 3.1+0.2 4.4+04
RV DM 842409 80,5412 75.120.5 LV Final DM 91.0£1.2 84.1+0.9 78.8£1.3
HD 28405 37403 49403 HD 1.7+0.7 2.8+0.2 4.1+0.4
RV Final DM 89.2+0.9 82.5+1.2 77.1£0.5
The image intensities were in the range 0 and 1 HD 1.9£0.5 2.7£0.3 42403

4 mean, o variance of added noise

88.8, and 87.2, and the corresponding HD are 1.7, 2.1, and
2.9. t tests for DM and HD values after initial and final
segmentation gives p<0.033, which also indicates signifi-
cant improvement after iterations. The average DM and HD

measures for different levels of noise are summarized in
Table 3.

Performance for Initial Undersegmentation

In another set of experiments, we deliberately undersegment
the RV and LV in the first step and apply our method.
Figure 4 shows the visual results of our method for different
degrees of undersegmentation. When the undersegmenta-
tions have DM >62, the final segmentations have DM
>80. When the initial DM <62, the final segmentations have
DM <80. In [27], the authors report that DM >80 indicates
good agreement with manual segmentations for cardiac
images. Table 4 summarizes the final segmentation results
for different degrees of undersegmentation. A highly under-
segmented initial image does not provide sufficient geomet-
ric information for the subsequent segmentations to
approach the actual shape. The same holds true for

Fig. 4 Segmentation results of
our method for different
degrees of undersegmentation.
The first and second rows show
results for an initial
undersegmentation of DM =

70 % and DM=74 %. Red
contour shows the manual
segmentations and green
contours show results for
automatic segmentations.
Columns /-3 show
segmentation outputs after first,
second, and third iterations

@ Springer

oversegmentations. The threshold undersegmentation (or
oversegmentation) degree for a good final segmentation
would depend upon the degree of shape variations captured
from images in the training data.

An additional factor influencing the accuracy of the final
segmentation is the search range or the width of the search
band in each iteration. A low search range will not be able to
recover the actual shape from a under/oversegmented initial
shape. We set a search width of £20 pixels after the following
considerations. We had made available the manual segmenta-
tions for different phases of the cardiac cycle where the size of
the RV and LV are changing. For one dataset, we found the
mean of the segmentations and the difference contour from the
mean for each phase. The maximum distance between con-
tours for a single patient was found to be 18 pixels. Therefore,
we set the threshold distance as 20 pixels in each direction.

Conclusion

We have proposed a novel graph cut framework for cardiac
MR image segmentation that incorporates context information
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from RVand LV for improved segmentation accuracy of
each. Context information was modeled in the form of
relative orientation of the two organs from a set of
training images in which the LV and RV were manually
segmented. The learned orientation relationship is used
to formulate two penalty and smoothness costs that lead
to improved segmentation performance. Our formulation
avoids the need to construct submodular graphs as given
in [39]. Experimental results on publicly available
patient datasets show the efficacy of our method com-
pared to previous shape prior-based methods. Although
shape priors also incorporate knowledge, contextual in-
formation provides a more global knowledge from the
same training dataset and hence improves segmentation.
Tests on experiments simulating different levels of noise
and inaccurate initial segmentations show that our
method is able to recover the desired final output in
three to four iterations of graph cut optimization.
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