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Abstract
Shape database search is ubiquitous in the world of biometric systems, CAD systems etc. Shape
data in these domains is experiencing an explosive growth and usually requires search of whole
shape databases to retrieve the best matches with accuracy and efficiency for a variety of tasks. In
this paper, we present a novel divergence measure between any two given points in  or two
distribution functions. This divergence measures the orthogonal distance between the tangent to
the convex function (used in the definition of the divergence) at one of its input arguments and its
second argument. This is in contrast to the ordinate distance taken in the usual definition of the
Bregman class of divergences [4]. We use this orthogonal distance to redefine the Bregman class
of divergences and develop a new theory for estimating the center of a set of vectors as well as
probability distribution functions. The new class of divergences are dubbed the total Bregman
divergence (TBD). We present the l1-norm based TBD center that is dubbed the t-center which is
then used as a cluster center of a class of shapes The t-center is weighted mean and this weight is
small for noise and outliers. We present a shape retrieval scheme using TBD and the t-center for
representing the classes of shapes from the MPEG-7 database and compare the results with other
state-of-the-art methods in literature.

1. Introduction
In applications that involve measuring the dissimilarity between two objects (numbers,
vectors, matrices, functions, images and so on) the definition of a divergence/distance
becomes essential. The state of the art has many widely used divergences. The square loss
(SL) function has been used widely for regression analysis; Kullback-Leibler (KL)
divergence [11], has been applied to compare two probability density functions (pdfs); the
Mahalanobis distance is used to measure the dissimilarity between two random vectors of
the same distribution. All the aforementioned divergences are special cases of the Bregman
divergence which was introduced by Bregman in 1967, and of late has been widely
researched both from a theoretical and practical viewpoint [1, 2, 7, 17, 22]. More recently,
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several methods have adopted the square root density representation for representing shapes
which then can be treated as points on a hypersphere and one can use the metric on the
sphere to compare the shapes efficiently since the metric on the sphere is in closed form. We
refer the reader to [18, 20] In this work, we propose a new class of divergences which
measure the orthogonal distance between the value of a convex and differentiable function at
the first argument and its tangent at the second argument. We dub this divergence the total
Bregman divergence (TBD). A geometrical illustration of the difference between TBD and
BD is given in Figure 1. df(x, y) is Bregman divergence between x and y based on a convex
and differentiable function f where as δf(x, y) is the TBD between x and y based on a convex
and differentiable function f. We can observe that df(x, y) will change if we apply a rotation
to the coordinate system, while δf(x, y) will not.

Bregman divergence has been widely used in clustering, where cluster centers are defined
using the divergence. In this paper, we will define a cluster center using the TBD in
conjunction with the l1-norm that we dub as the t-center. The t-center can be viewed as the
cluster representative that minimizes the l1-norm TBD between itself and the members of a
given population. We derive an analytic expression for the t-center which affords it an
advantage over its rivals (for example, the χ21 distance based median of a population of
densities). The key property of the t-center is that it is a weighted mean and the weight is
inversely proportional to the magnitude of the gradient of the convex function used in
defining the divergence. And since noisy data and outliers have greater gradient magnitude
their influence is underplayed. In other words, t-center puts more weight on the normal data
and less weight on the “extraordinary” data. In this sense, t-center is a robust and stable
representative and this property makes the t-center attractive in many applications. Another
salient feature of the t-center is that it can be computed very efficiently due to its analytic
form and this leads to efficient clustering.

The rest of this paper is organized as follows. In Section 2 we review the conventional
Bregman divergence, followed by the definition of TBD and derivation of its properties.
Section 3 introduces the t-center, which is derived from TBD, and delves into its better
accuracy as a representative than centers obtained from other divergence measures. Section
4 describes the shape retrieval application of TBD and the t-center. The detailed description
of the experimental design and results with quantitative comparison with other divergences
are presented in Section 5. Finally, we draw conclusions in Section 6.

2. Total Bregman Divergence
We first recall the definition of conventional Bregman divergence [2] and then define the
TBD. Both divergences are dependent on the corresponding convex and differentiable
function f :  that induces the divergences.

2.1. Definition of TBD and Examples
Definition 2.1—[2] The Bregman divergence d associated with a real valued strictly
convex and differentiable function f defined on a convex set X between points x, y ∈ X is
given by,

1

Liu et al. Page 2

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

where ▿f(y) is the gradient of f at y and ⟨·, ·⟩, is the inner product determined by the space on
which the inner product is being taken.

df(·, y) can be seen as the distance between the first order Taylor approximation to f at y and
the function evaluated at x.

Definition 2.2—The total Bregman divergence (TBD) δ associated with a real valued
strictly convex and differentiable function f defined on a convex set X between points x, y ∈
X is defined as,

(2)

⟨·, ·⟩ is the inner product as in definition 2.1, and ‖▿f(y)‖2 = ⟨▿f(y), ▿f(y)⟩ generally.

As shown in Figure 1, df(·, y) measures the ordinate distance, and δf(·, y) measures the
orthogonal distance. δf(·, y) can be seen as a higher order “Taylor” approximation to f at y
and the function evaluated at x. Since

(3)

then

(4)

where O(·) is the Big O notation, which is usually small compared to the first term and thus
one can ignore it without worrying about the accuracy of the result. Also, we can choose the
higher order “Taylor” expansion if necessary.

Compared to the BD, TBD contains a weight factor (the denominator) which complicates
the computations. However, this structure brings up many new and interesting properties
and makes TBD an “adaptive” divergence measure in many applications. Note that, in
practice, X can be an interval, the Euclidean space, a d-simplex, the space of non-singular
matrices or the space of functions. For instance, in the application to shape representation,
we let p and q be two pdfs, and f(p): = ∫ p log p, then δf(p, q) becomes what we will call the
total Kullback-Leibler divergence (tKL.) Note that for tKL, we define ‖▿f(q)‖2 = ∫(1 + log
q)2q specifically to make it integrable. Table 1 lists some TBDs with various associated
convex functions.

3. The t-center
It is common and desirable to seek a center that is “reasonably” representative and easy to
compute for a set of objects with similar properties. We will use the TBD to derive l1-norm
cluster center of this population namely, the t-center, and explore its properties.
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Definition 3.1
Let f :  be a convex and differentiable function and E = {x1, x2, · · · , xn} be a set of n
points in X, then, the lp-norm TBD δpf between a point x ∈ X and E associated with f and lp
norm is defined as

(5)

The lp-norm center  is defined as

(6)

3.1. l1-norm t-center x*
We obtain the l1-norm t-center x* of E by solving the following minimization problem

(7)

x* has advantages over other centers resulting from the norms with p > 1 in the sense that x*
is the median which is stable and robust to outliers. Moreover, it has a closed form
expression which makes its computationally attractive.

To find x*, we take the derivative of  with respect to x, and set it to 0,
giving,

(8)

Solving (8) yields:

(9)

where wi = (1 + ‖▿f(xi)‖2)−1/2 is the weight for its corresponding ▿f(xi). Since δf(·, y) is

convex for any fixed y ∈ X, we know that  is also convex as it is the sum of n
convex functions. Hence, the solution to (8) i.e. the t-center x*, exists and is indeed a
minimizer of F(x). We summarize this result in the following theorem.

Theorem 3.1
The gradient at the l1-norm t-center x* is a weighted Euclidean average of the gradient of all
the elements in the set E = {x1, x2, · · · , xn}. The weights are given by wi = (1 + ‖▿f(xi)
‖2)−1/2. Moreover, x* is unique.

Theorem (3.1) reveals that the t-center has a closed form expression, which is a weighted
average, and the weight is inversely proportional to the magnitude of the gradient of f at the
corresponding element. Also, since f is convex, ▿f is monotonic, and x* is unique. For a
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better illustration, we provide two concrete examples of TBD with their t-centers in explicit
form.

• tSL (total square loss): f(x) = x2, the t-center

(10)

•
Exponentials: f(x) = ex, the t-center , where ;

4. Application of TBD to shape retrieval
We propose an efficient and accurate method for shape retrieval that includes an easy to use
shape representation, and an analytical shape dissimilarity divergence measure. Also, we
present an efficient scheme to solve the computationally expensive problem encountered
when retrieving from a large database. The scheme is composed of clustering and pruning,
which will be elaborated on in section 4.3.

4.1. Shape representation
A time and space efficient shape representation is fundamental to shape retrieval. Given a
segmented shape (or a binary image), we use a mixture of Gaussians [5, 9] to represent it.
The procedure for obtaining the mixture of Gaussians from a shape is composed of three
steps. First, we extract the 2D points on the shape boundary, since MPEG-7 shapes are
binary, the points that have nonzero gradient lie on the boundary; after getting the 2D
boundary points for every shape, we use the affine alignment algorithm proposed by Ho et

al. [8] to align these points, e.g., given two sets of points  and , we can find

affine alignment , such that g(A, b) = ∑i minj{(Axi+b−yj)2}

achieves a minimum, and then we use the aligned  to represent the original
point set ; finally, we compute the mixture of Gaussians from the aligned boundary
points. A parametric mixture of Gaussians is a weighted combination of Gaussian kernels,
and can be written as

(11)

 is the Gaussian density with mean μi, variance ∑i, and weight ai in the mixture
model. The mixture model is obtained through an application of the Expectation-
Maximization (EM) algorithm and iteratively optimizing the centers and widths of the
Gaussian kernels. The above process is depicted using the flow chart shown below, with
some concrete examples shown in Figure 2.

4.2. Shape dissimilarity comparison using tSL
After getting the mixture of Gaussians representation of each shape, we use tSL (total square
loss divergence) to compare two mixtures of Gaussians, and take the difference as the
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dissimilarity between the corresponding shapes. Suppose two shapes have the following
mixture of Gaussians p1 and p2 representation,

(12)

Since

(13)

(14)

where

Given a set of mixture of Gaussians , their t-center can be obtained from equation (10),
which is

(15)

We evaluate the dissimilarity between the mixture of Gaussians of the query shape and the
mixture of Gaussians of the shapes in the database using tSL, and the smallest dissimilarity
corresponds to the best matches.

4.3. Shape retrieval in a large database
When retrieving from a small database, it is possible to apply the brute-force search method
by comparing the query shape with each shape in the database one by one, however, when
retrieving in a large database, it becomes extremely slow to use this brute-force search
method. Therefore, we turn to a far more efficient strategy, namely divide and conquer.
First, we split the whole database into small clusters and then choose a representative for
each cluster. When retrieving, we only need to compare the query with each cluster’s
representative, if the divergence is larger than some threshold, we will prune this whole
cluster. Once the representative that best matches the query is obtained, we will recursively
split the corresponding cluster into smaller clusters, and repeat the aforementioned process
on each smaller cluster, and in this way, successfully seeking out the best matches. More
conveniently, the step of splitting can be done offline, which saves a lot of computation
time. To partition the database into smaller clusters efficiently and accurately, we utilize an
idea similar to that of k-Tree [12], by dividing the database into k clusters, calculating the t-
center and repeat the above process on the resulting clusters to get k sub-clusters, and
accordingly get a hierarchy of clusters. The t-centers for the hierarchical clusters form the k-
Tree, as shown in Figure 3
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We should note that to maintain the accuracy, the division should follow a coarse to fine
strategy (as in our experiment in 5.2), rather than fixing k, which still assures logarithmic
O(log n) time expense of retrieving while enhancing accuracy.

5. Experimental Results
The proposed divergence is evaluated on shape retrieval using the MPEG-7 database [10],
which consists of 70 objects with 20 shapes per object. This is a fairly difficult database to
perform shape retrieval because of its large intraclass variability, and, for many classes,
small interclass dissimilarity. We did two groups of experiments using this database. One is
retrieving in the subsets of the MPEG-7 database, each subset containing two difficult to
distinguish categories of shapes. The other one is retrieving from the whole database.

5.1. Retrieval from the subsets of the MPEG-7 database
We mix two categories having similar shapes as shown in Figure 4. There are 9 groups of
mixed categories, each containing the category of the top row and the category of the
corresponding bottom row. We first get the mixture of Gaussians (with 10 kernels) for each
shape, then set one shape as the query and compare its mixture of Gaussians with those of
all other shapes using tSL, and select the shapes according to the rank of the similarity to the
query.

The first experiment is about retrieval in a set containing the bird and the chicken categories
of the MPEG-7 database, including 20 bird and 20 chicken shapes, which have various
scales, orientations as well as poses. Let one bird shape be the query, remove it from the set,
and the goal is to find 19 best matches to the query. Figure 5 shows the retrieval results
using SL 5(a) and tSL 5(b). The top left shape in each figure is the query and the other 19
shapes are the retrieval results shown from left to right, top to bottom, ranked according to
the similarity to the query. Figure 5 illustrates that tSL can retrieve all the bird shapes even
though there is a large amount of variation in the scales, orientations and poses.

Table 2 presents the comparison of the hit rate (the number of correctly retrieved shapes
divided by 19) for retrieving other mixed categories in Figure 4 using SL and tSL.

5.2. Retrieval from the entire MPEG-7 database
As described in 4.3, we first perform clustering and then do retrieval. For the clustering part,
we apply a variation of k-Tree method by setting k = 10 at the first level of clustering, 7 at
the second level, 5 at the third level and 2 at all following levels of clustering, so the average
number of shapes in each level cluster is 140, 20, 4, 2, and 1. We compare the clustering
accuracy of tSL, χ2 and SL by a reasonable measure, which is the optimal number of
categories per cluster divided by the average number of categories in each cluster. Figure 6
compares the clustering accuracy of tSL, χ2 and SL, which shows that tSL has a high
clustering accuracy, implying a strong ability to detect outliers and distinguish shapes from
different categories.

The evaluation of accuracy for retrieving in the whole MPEG-7 database is based on the
recognition rate [6]. Table 3 lists the recognition rate obtained using various techniques, and
as evident, our method outperforms all others.

6. Conclusions
We presented a new dissimilarity measure dubbed the total Bregman divergence(TBD), and
its l1-norm based center namely, the t-center, which has an analytic form, is stable and
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robust to noise and outliers. We demonstrated the salient features of TBD and the t-center
using an accessible shape retrieval scheme. The results show that the t-center is a good
representative of the clusters and that TBD has superior performance compared to
competing methods in literature.
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Figure 1.
df(x, y) (dotted line) is BD, δf(x, y) (bold line) is TBD, and the two arrows indicate the
coordinate system. (a) df(x, y) and δf(x, y) before rotating the coordinate system. (b) df(x, y)
and δf(x, y) after rotating the coordinate system.
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Figure 2.
Left to right: original shapes; aligned boundaries; mixture of Gaussians with 10 components,
the dot inside each circle is the mean of the corresponding Gaussian density function; 3D
view of the mixture of Gaussians.
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Figure 3.
k-Tree diagram. G-M: mixture of Gaussians. Every key is a mixture of Gaussians. Each key
in the inner nodes is the t-center of all keys in its children nodes. The key of a leaf is a
mixture of Gaussians corresponding to an individual shape.
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Figure 4.
There are 9 groups of mixed categories, each of which contains the category of the top row
and the category of the corresponding bottom row. Each shape in the top row is used as a
query, the goal is to retrieve shapes matching the query.
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Figure 5.
Retrieval using SL (a) and tSL (b). The top left shape in each figure is the query. The other
shapes are retrieval results, shown from left to right, top to bottom, according to the rank of
the similarity to the query.
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Figure 6.
Comparison of clustering accuracy of tSL, χ2 and SL, versus average number of shapes per
cluster.
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Table 1

TBD δf corresponding to f.  is the transpose of x. Δd is d-simplex

X f(x) δf (x, y) Remark

R x 2 (x − y)2 (1 + 4y2)−1/2 Total square loss

[0, 1] x log x + x
‒

log x
‒ (x log

x
y

+ x
‒

log
x
‒

y
‒ )/ 1 + y(1 + log y)2 + y

‒(1 + log y
‒)2

Total logistic loss

R+ −log x ( x
y

− log
x
y

− 1) ∕ 1 + y −2 Total Itakura-Saito distance

R ex (e x − e y − (x − y)e y) ∕ 1 + e 2y

Rd x 2 x − y 2 ∕ 1 + 4 y 2 Total squared Euclidean

Rd x’Ax ((x − y)′A(x − y)) ∕ 1 + 4 Ay 2 Total Mahalanobis distance

Δ d ∑ j=1
d xj log xj (∑ j=1

d xj log
xj
yj

)/ 1 + ∑ j=1
d yj(1 + log yj)2 Total KL divergence

Cm×n x F
2 x − y F

2 ∕ 1 + 4 y F
2 Total squared Frobenius
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Table 2

Hit rate of shape retrieval using SL and tSL on mixture of two categories of similar shapes shown in Figure 4.

Hit rate(%) fork guitar tree deer

SL 52.63 68.42 57.89 57.89

tSL 94.74 100 94.74 84.21

Hit rate(%) horse cup sea-snake watch

SL 52.63 52.63 63.16 68.42

tSL 84.21 89.47 94.74 100
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Table 3

Recognition rates comparison

Technique Recognition rate (%)

Mixture of Gaussians + tSL 89.1

Mixture of Gaussians + χ2 63.3

Mixture of Gaussians + SL 56.7

Shape-tree[6] 87.7

IDSC + DP + EMD[14] 86.56

Hierarchical Procrustes [15] 86.35

IDSC + DP [13] 85.4

Shape L’Âne Rouge[18] 85.25

Generative Models [21] 80.03

Curve Edit [19] 78.14

SC + TPS [3] [3] 76.51

Visual Parts [10] 76.45

CSS [16] 75.44
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