Skip to main content
. Author manuscript; available in PMC: 2013 Sep 25.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010:3463–3468. doi: 10.1109/CVPR.2010.5539979

Table 1.

TBD δf corresponding to f. x=1x,y=1y,x is the transpose of x. Δd is d-simplex

X f(x) δf (x, y) Remark
R x 2 (xy)2 (1 + 4y2)−1/2 Total square loss
[0, 1] xlogx+xlogx (xlogxy+xlogxy)/1+y(1+logy)2+y(1+logy)2 Total logistic loss
R+ −log x (xylogxy1)1+y2 Total Itakura-Saito distance
R ex (exey(xy)ey)1+e2y
Rd x2 xy21+4y2 Total squared Euclidean
Rd x’Ax ((xy)A(xy))1+4Ay2 Total Mahalanobis distance
Δ d j=1dxjlogxj (j=1dxjlogxjyj)/1+j=1dyj(1+logyj)2 Total KL divergence
Cm×n xF2 xyF21+4yF2 Total squared Frobenius