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ABSTRACT

Regulation of eukaryotic gene transcription is often
combinatorial in nature, with multiple transcription
factors (TFs) regulating common target genes,
often through direct or indirect mutual interactions.
Many individual examples of cooperative binding by
directly interacting TFs have been identified, but
it remains unclear how pervasive this mechanism
is during animal development. Cooperative TF
binding should be manifest in genomic sequences
as biased arrangements of TF-binding sites.
Here, we explore the extent and diversity of such
arrangements related to gene regulation during
Drosophila embryogenesis. We used the DNA-
binding specificities of 322 TFs along with chromatin
accessibility information to identify enriched
spacing and orientation patterns of TF-binding site
pairs. We developed a new statistical approach for
this task, specifically designed to accurately assess
inter-site spacing biases while accounting for
the phenomenon of homotypic site clustering
commonly observed in developmental regulatory
regions. We observed a large number of short-
range distance preferences between TF-binding
site pairs, including examples where the preference
depends on the relative orientation of the binding
sites. To test whether these binding site patterns
reflect physical interactions between the corres-
ponding TFs, we analyzed 27 TF pairs whose
binding sites exhibited short distance preferences.

In vitro protein–protein binding experiments
revealed that >65% of these TF pairs can directly
interact with each other. For five pairs, we further
demonstrate that they bind cooperatively to DNA if
both sites are present with the preferred spacing.
This study demonstrates how DNA-binding motifs
can be used to produce a comprehensive map of
sequence signatures for different mechanisms of
combinatorial TF action.

INTRODUCTION

A major challenge in understanding transcriptional gene
regulation in eukaryotes is to uncover how transcription
factors (TFs) act together to implement tissue-specific
gene expression (1). There is an increasing number of
examples of co-acting TFs in the literature today,
including cases of direct protein–protein interactions
(PPIs), indirect chromatin-mediated interactions (such as
short/long-range repression and pioneer factor effects)
and independent co-regulation of target genes (2–8). In
particular, cooperative interactions of TFs with DNA
have been recognized as an important modulator of TF
activity in vivo since early studies of bacteriophage pro-
moters (9,10). Cooperative TF binding to precisely spaced
pairs of recognition sequences can produce complexes
with greater specificity, facilitate binding to weaker
motif matches or produce more switch-like behavior in
response to concentration changes (11–13).
Although many individual examples of cooperative TF

binding have been previously described, it is difficult
to perform systematic searches for this phenomenon.
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High-throughput screening approaches such as Yeast
2-hybrid and co-affinity purification coupled to mass spec-
trometry analysis have been developed to find physically
interacting proteins, including TFs, for several organisms
(14–22). However, these interaction screens typically
recover only a fraction (20–40%) of interactions (20,21).
In one recent study of TF–TF interactions in mammalian
cells, 25% of literature interactions was recovered (22).
They also do not reveal how the physical interaction
between two TFs may manifest as specific arrangements
of binding sites such as biased inter-site spacing and orien-
tation. Such ‘grammar rules’ will be key to successfully
using the knowledge of TF interactions in building gene
regulatory networks (23) and modeling gene expression
from sequence (24). Thus, despite the emergence of
large-scale PPI screening technologies, there remains a
major gap in our understanding of how combinatorial
TF action contributes to gene regulation. Our goal is to
help bridge this gap through a systematic analysis of
binding site locations in accessible genomic regions pre-
dicted from a large collection of TF motifs, resulting in a
comprehensive map of potential TF pair interactions.
These data can be further elaborated by TF expression
data to define potential interacting partners when the
recognition motifs of multiple TFs within a genome are
similar.
Compiled sets of TF-binding specificities have enabled

motif enrichment analysis tools such as Clover/PASTAA
to find motifs likely to act in particular tissues and to
predict co-acting TFs (25–27). However, such analyses
have been limited to relatively modest numbers of motifs
[e.g. motifs in Drosophila segmentation network (25)] pre-
viously available. Moreover, identifying TFs that may
regulate gene expression in the same tissue type does not
discriminate between different modes of TF co-action. In
particular, these methods do not examine whether the
binding site arrangement of TF pairs carries clues about
direct physical interactions between the two TFs.
A few studies have searched for specific patterns of

binding site arrangements within regulatory regions such
as enhancers. These studies have mostly examined spacing
between heterotypic pairs of sites and neglect other aspects
of site arrangements, such as relative orientation of site
pairs, or spacing biases exclusive to specific relative orien-
tations (11–13,28). Also, their application has been limited
to small collections of enhancers and TFs (29–33). In a
related study, Whitington et al. (19) developed a program
called SpaMo that searches a TF’s bound regions (BRs)
for overrepresentation of secondary motifs at a specific
distance from the ChIP peak’s ‘summit’ or from the
location of the primary motif. However, their approach
to detecting sequence signatures of TF interactions does
not explicitly consider (i) the phenomenon of binding site
clustering (34,35), (ii) the background frequency of each
motif within the genome and (iii) the relative orientation
of binding sites. All three of these properties are expected
to influence the statistics of site arrangement patterns (see
‘Discussion’ section). In addition, the relatively small
number of metazoan TFs with high-quality ChIP data
sets currently available represents an additional limitation
of this approach.

In this study, we use binding motifs for 322 Drosophila
TFs characterized using the Bacterial 1-Hybrid (B1H)
technology (36–39), a Hidden Markov Model-based
scoring scheme (40,41) and chromatin accessibility
(ACC) information from DNase I hypersensitivity assays
(42) to produce computational maps of genome-wide TF–
DNA binding in different stages of embryonic develop-
ment in Drosophila melanogaster. We next analyze the
common binding locations of TF pairs for statistical
patterns in the relative spacing and orientation between
binding sites using a newly designed statistical tool
called ‘interacting TF signatures’ (iTFs), which is available
as an online service at http://veda.cs.uiuc.edu/iTFs. Our
analysis identifies several hundred instances where short
distance preferences are observed between binding sites for
a single TF or a pair of TFs and many instances where
such preferences are stronger under specific relative orien-
tations. We use in vitro PPI assays to confirm a physical
association between many of these inferred TF pairs, and
that several of these TF pairs bind DNA cooperatively
with a preference for the computationally detected inter-
site distance. Overall, this study produces an extensive
map of hundreds of sequence signatures for combinatorial
TF action involving inter-site spacing and orientation
biases and thereby provides a more complete view of
how the complexity of sequence constraints dictates the
regulatory potential of these factors in vivo.

MATERIALS AND METHODS

TF-ChIP data sets

We obtained 33 TF-ChIP profiles from various sources
(43–49). The selected ChIP profiles corresponded to
stage 5 of embryonic development or to a longer develop-
mental period that included this stage. For more details on
the source of each TF-ChIP data set, see Supplementary
Table S1.

Selecting genomic regions

We divided the entire genome to �241 k non-overlapping
segments of size 500 bp. All the analyses were performed on
release 5.34 of theD.melanogaster genome.We ‘N’-masked
the entire genome using Tandem Repeat Finder v4.04 (50).
We further removed all the segments in the genome that
overlapped >50% with exons or repeats of type ‘Satellite’,
‘Low complexity’ and ‘Simple’ obtained from Repeat
Library 20080611 for dm3 [(51), Repeatmasker Open3.0].
We only kept the segments that were accessible (DNase I
hypersensitivity scores in the top 10%) during the relevant
stages of development (42). This covered �6–8mbp
(�11–16 k segments depending on stage) of the entire
genome. The accessibility score in each segment was
obtained by averaging the raw scores in that segment.

Spatial co-expression of TF pairs

We obtained spatial expression information on TFs
from Berkeley Drosophila Genome Project (52,53). We
removed the expression terms that did not carry any
spatial information (e.g. fertilized egg) or were too
broadly defined (e.g. ‘maternal’, a term assigned to
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>1000 genes of �7000 annotated genes in the database).
We found spatial expression annotation for 310 of 322
TFs (Supplementary Table S2). We created a data set of
32 537 spatially co-expressed TF pairs. This data set
included 15 090 TF pairs that were co-expressed in a
specific tissue (i.e. neither of the TFs in a given TF pair
was annotated with ubiquitous expression in the corres-
ponding tissue) and 17 477 TF-pairs for which either TF
was annotated with ubiquitous expression in the corres-
ponding stage of development.

Motif collection

We obtained 613 binding specificities (motifs) for 322
TFs from FlyFactorSurvey (39) (September 2011). The
vast majority of these motifs were characterized by the
B1H technology. In cases where multiple motifs were
available for the same TF (based on different sequencing
technologies), we preferred the one obtained from
SOLEXA method to SANGER method, and B1H
motifs were preferred to motifs from the FlyReg
database. All selected motifs are made available in
Supplementary File 1. Positions from both ends of the
motif were removed if they had information content
<0.25, unless the length of the resulting motif becomes
<6 bp. On average, this procedure trimmed down motifs
to �85% of their original length. All trimmed motifs are
made available in Supplementary File 2.

Motif similarity

Twomotifs were considered similar if either their similarity
q-value reported by the TOMTOMprogram (54) is<0.2 or
their consensus sequences are identical (or one consensus
sequence is a substring of the other). All parameters of the
TOMTOM program were kept at default values.

TF pairs with known PPI from high-throughput assays

We downloaded the ‘Jan-2012, non-combined’ version of
D. melanogaster networks from GeneMANIA and selected
the Physical interactions databases (55). We chose all pairs
of interactions where both partners were among the 322
TFs studied by us. This revealed 122 TF pairs with previ-
ously reported PPI. GeneMANIA does not provide
examples of homotypic site interactions. To include
such interactions, we collected all 13 homotypic inter-
actions included in the BioGRID database v3.1.86 in
D. melanogaster (56) that correspond to TFs studied
here. We additionally included 15 heterotypic TF pairs
from BioGRID that were not present in GeneMANIA,
thus creating a collection of 137 heterotypic and 13
homotypic TF pairs.

Locating individual binding sites

We used the FIMO program (57) for locating individual
binding sites in a sequence. In cases of overlapping binding
sites, we kept the strongest binding site (i.e. the site with the
largest LLR score to the motif) and broke ties, if any, by
randomly choosing among the sites with the same score.
All the parameters of FIMO were kept at default values
except ‘-thresh’ that was set to 0.000912 (= e�7).

Statistical tests of relative orientation bias in co-binding
segments of a TF pair

Given the set of genomic segments where a TF pair is
predicted to co-bind, we noted the relative orientation of
each pair of adjacent binding sites (one binding site for
each TF in a TF pair) and tested for overrepresentation
of a particular orientation using a Binomial test. Every
possible orientation was considered equally likely a priori.

Statistical tests of inter-site spacing bias

To test for a spacing bias between a pair of motifs in a
given set of sequences, we first identified all pairs of
adjacent heterotypic binding sites [obtained by using the
FIMO program (57)] and categorized them as having
inter-site distance within or outside a fixed range, which
is either 0–10, 10–25, 25–50 or 50–100 bp. (To test for
homotypic site-spacing biases, we considered all pairs of
adjacent binding sites.) We then compared the counts of
within-range site pairs and outside range site pairs to cor-
responding counts in a ‘background’ data set using a one-
tailed Fisher’s exact test on the corresponding contingency
table (Supplementary Table S11). To construct the ‘back-
ground’ data set, we shuffled the locations of predicted
sites in each given sequence and pooled together 10 such
randomized data sets. Shuffling the locations preserves the
number of binding sites in each sequence.

Comparison between iTFs and SpaMo

For each method (SpaMo or iTFs), we first estimated the
spacing bias significance threshold that corresponds to a
fixed false-positive rate (FPR), using randomized data
sets. In particular, we first selected 10 TF pairs at
random from all possible TF pairs. For each TF pair,
we collected the sequences where the two TFs are pre-
dicted to co-bind and shuffled the locations of binding
sites (predicted using FIMO) in each sequence. This
gives us one randomized data set, on which a spacing
bias should not be detected. Repeating the random
shuffling step 100 times gave us 100 data sets for each
TF pair and 1000 in all (as 10 TF pairs were considered).
We then used each tool (SpaMo or iTFs) separately to
detect spacing biases in these 1000 randomized data sets
and recorded the spacing bias significance threshold at
which a certain number of biases were detected. This
gave us a mapping between the significance values
reported by each method and FPR on a common bench-
mark of randomized data sets. When using a tool on any
data set, we treated the best spacing bias among all orien-
tations as the spacing bias reported for that data set. We
ran the SpaMo program with two different parameter
settings: (i) default, where we kept all the parameters as
their default values and (ii) adjusted, where we changed
four of the parameters to match them with those of iTFs
[‘bin’=10, ‘minscore’=3.04 (corresponding to e�7),
‘overlap’=0 and ‘margin’=100].

Correlation between motif profiles and chromatin
accessibility profiles

For each developmental stage for which ACC data were
available (42), we created an ‘ACC data set’. The ACC
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data set comprises 1000 accessible and 1000 random
non-coding segments of length 500 bp. The average of
all read scores (from DNase I hypersensitivity assays)
in each segment were treated as its accessibility score.
We used the STUBB program (40) to predict TF
binding level for each segment in a data set. We then
computed the Pearson Correlation Coefficient between
ACC scores and STUBB scores across the 2000 windows
in each data set.

Protein–protein and protein–DNA-binding assays

Open reading frame (ORF) clones for TFs were part of
the Berkeley Drosophila Genome Project from the collec-
tion of universal donor clones. ORFs were transferred
into two vectors, pHPT7-FRluc-BD and pHPT7-MBP-
BD, using Cre Recombinase (New England Biolabs,
M0298L). For one TF, Kruppel (KR), the ORF was
PCR amplified ligated into AscI and PmeI restriction
sites in each vector. These vectors contain a T7 promoter
for in vitro transcription, a loxP site for cloning and either
maltose-binding protein (MBP) or Renilla luciferase (luc)-
coding regions. Clone names and primer sequences are
provided in supplementary information (Supplementary
Tables S8–10). Proteins were made by coupled in vitro tran-
scription/translation using the PURExpress In Vitro
Protein Synthesis Kit (New England Biolabs, E6800S).
Samples were analyzed by western blot to confirm that
some full-length product was obtained. Luciferase input
was measure using the Renilla Luiferase Assay System
(Promega, E2820). PPIs were performed using a variation
of the LUMIER method (58,59), modified as described in
Cheng et al. (manuscript in review).
DNA sequences were designed to contain two known

binding sites from target genes containing a particular
spacing and orientation. Oligonucleotides ranged from
24 to 42 bp in length and were annealed to the reverse
complement to generate double-stranded DNA with no
overhangs. One oligonucleotide containing the wild-type
sequence with binding sites for each TF pair was biotin
labeled at the first residue and used as the probe. A series
of mutations were made to the consensus site to disrupt
the binding sites or alter the spacings. A full list of wild-
type and mutant oligo sequences can be found in
Supplementary Information.
Protein–DNA interactions were measured in a modifica-

tion of a previously described microwell-based assay (60).
Proteins were diluted with low-stringency binding buffer
[140mM KCl, 5mM NaCl, 1mM K2HPO4, 2mM
MgSO4, 20mM HEPES (pH 7.05), 100 mM EDTA, 1 mM
ZnSO4] +1% BSA such that 106 counts of luciferase
activity were present in 10 ml. A 10 ml of DNA mixture
was made from 2 ml of 1.2 uM biotinylated DNA, 6 ml of
competitor DNA and 2 m of 500 ng/m Poly(dI-C)*Poly(dI-
dC) and incubated for 1 h. Proteins were diluted such that
106 luciferase counts were present in each 10 ml of sample.
An equivalent amount of MBP protein was included for
heterodimers contained two TFs. The diluted proteins were
added to the DNA mixtures and incubated with gentle
rocking at 25�C for 2 h. Streptavidin-coated sepharose
beads (GE Lifesciences, 17-5113-01) were blocked with

5% BSA, added to the TF–DNA mixture and incubated
for 2 h at 4�C. The samples were washed twice with low-
stringency-binding buffer and transferred to 96-well plates
(Corning, 07-200–589) for luciferase measurements.
The readings were normalized by dividing by the sample
containing amutation in both predicted TF-binding sites as
the competitor.

RESULTS

Computational prediction of TF-binding landscapes

Our first goal was to predict genome-wide binding loca-
tions of individual TFs that will be used later to recover
signatures of TF interactions. We obtained TF-binding
specificities (motifs) of 322 TFs from the FlyFactor
Survey database (39). For each TF, we used the STUBB
program (40,41) to predict the TF binding at 500 bp
segments located in accessible chromatin regions (see
‘Materials and Methods’ section). We first sought to
assess the quality of these computational profiles by com-
parison to ChIP data. We treated the average ChIP scores
in each 500 bp segment as the TF-binding level in that
segment and calculated the Pearson correlation coefficient
between the ChIP scores and STUBB scores. We observed
a highly significant correlation (P<E-18) for 31/33 of the
TFs where ChIP data were available, with 20/33 data sets
having correlation coefficient >0.15 (P<E-114,
Supplementary Table S1). On average, the accessible chro-
matin regions with the top 2000 STUBB-scores included
566 ChIP peaks (average across 20 data sets,
Supplementary Table S1). If sufficient ChIP data were
available, sites of cooperative TF binding would be
expected to exhibit occupancy of both TFs. Our observa-
tions suggested that a promising alternative strategy to
systematically search for signatures of TF interactions
might be to apply our sequence analysis methods to
regions where both TFs are predicted to bind.

Development and testing of a new method to detect site
arrangement patterns

We searched for patterns in the relative positioning of TF-
binding sites. For each TF pair, we selected the top 500
segments, of length 500 bp each, where both TFs are pre-
dicted to bind (based on accessibility and STUBB scores
as aforementioned). These segments were masked for
short tandem repeats (see ‘Materials and Methods’
section). We used the FIMO program (57) to locate indi-
vidual binding sites in every selected segment and to assign
their orientations (see ‘Materials and Methods’ section).
We inspected all adjacent pairs of binding sites of a
TF pair (one site for each TF) or a single TF (for
homodimeric analysis) and tested for statistical overrepre-
sentation of (i) a particular relative orientation, (ii) a
particular range of inter-site distances and (iii) an ‘orien-
tation-specific’ distance range (Figure 1A, see ‘Materials
and Methods’ section). In particular, we tested for the four
possible relative orientations (named M13

0-to-M23
0,

M15
0-to-M25

0, M15
0-to-M23

0 and M13
0-to-M25

0, see
Figure 1B) and for four different inter-site distance
ranges (0–10, 10–25, 25–50 and 50–100 bp). For each
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relative orientation, we additionally tested for distance
biases between adjacent pairs of binding sites with that
relative orientation. We called this last test an orienta-
tion-specific distance (OSD) bias test. A TF pair was
said to have an OSD bias if its OSD bias was stronger
than its distance bias. We refer to these three types of
sequence signatures collectively as ‘site arrangement
biases’. The testing procedure is described in ‘Materials
and Methods’ section. It compares the frequency of site
pairs with the tested arrangement bias in the given se-
quences to that in background sequences and produces a
Fisher’s exact test P-value. Importantly, the statistical test
is conditional on the numbers of binding sites in the given
sequences and does not, for example, report a bias for
short inter-site distances simply because there are many
sites present. We call this new tool for detecting site ar-
rangement biases ‘iTFs’.

The SpaMo tool developed by Whitington et al. (19)
provides a related functionality, viz., to detect signatures
of TF pair interactions by examining inter-site spacing
distributions in ChIP peaks of one of the TFs. Even
though the sequences examined in our study are not
ChIP peaks but sequences where TF-pairs are computa-
tionally predicted to co-bind, it is reasonable to attempt
detecting site arrangement biases in these sequences using
SpaMo. However, SpaMo and iTFs adopt different
approaches to the task, as explained in the ‘Discussion’

section, and we sought to compare the two tools in terms
of their accuracy. To do so, we first estimated the FPR
that the significance level reported by each method corres-
ponds to. This was done by constructing 1000 randomized
data sets, each obtained by shuffling the locations of sites
in real sequences and determining what fraction of the
1000 randomized data sets yielded significant spacing
biases (see ‘Materials and Methods’ section). We then
used each tool to detect spacing biases in a set of 100
randomly selected ‘real’ data sets, corresponding to 100
different TF pairs, at a fixed FPR. These were ‘real’
data sets in the sense that they corresponded to sequences
where a TF pair is predicted to co-bind and involved no
shuffling of sites. We have no prior knowledge of which
and how many of these 100 data sets truly represent inter-
acting TF pairs. The results are shown in Figure 2 (red
curves), and we note that iTFs consistently detects spacing
biases in more data sets than SpaMo does, across the
spectrum of FPRs. For example, at an FPR of 0.05,
iTFs detects spacing biases in 18 of the 100 data sets
examined, whereas SpaMo reports an interaction signa-
ture in eight data sets, which included five where both
methods detected a spacing bias. We repeated this com-
parison for discovery of homotypic site spacing biases
(Figure 2, blue curves), and also with a different setting
of SpaMo parameters (Supplementary Figure S1), and
observed the same trends.

A catalog of predicted TF interactions based on sequence
signatures

We then performed iTFs analysis with all TFs and TF
pairs. We corrected for the multiple hypothesis testing

A

B

Figure 1. Schematic view of various site arrangements. (A) Types of
site arrangement bias: orientation, distance and OSD bias. (B) Naming
conventions (left panel) and instances (right panel) of relative orienta-
tions. The first two arrangements are equivalent for homotypic sites.
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Figure 2. Comparison between iTFs and SpaMo. For each method,
the graph shows the number of predicted TF pairs (of 100) with
distance bias as the significance level is varied. The X-axis shows the
FPR corresponding to each significance level as estimated from
randomized data. The thin and thick lines correspond to homotypic
and heterotypic TF pairs, respectively.
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problem, which arises from testing many TF pairs for
several distance ranges and orientations, by using a
FDR of 5%. All results presented later in the text meet
this criterion of statistical significance. In total, we found
1926 TF pairs with significant orientation, distance and/or
OSD biases at 5% FDR (Supplementary Table S3). The
FDR threshold of 5% was applied to multiple testing cor-
rection over all tests (including distance bias, orientation
bias and OSD bias) and all tested TFs pairs. However, our
statistical approach may not be able to completely
deconvolute partner combinations when multiple TFs
share similar motifs. Thus, if one TF pair has a significant
bias of any kind, other TFs with similar motifs to a
member of this pair might be expected to show the same
bias. Recognizing this issue, we associated the 1926 TF
pairs using Markov Cluster (MCL) algorithm (see
‘Materials and Methods’ section) so that each cluster rep-
resents one or more non-redundant TF-pair(s) that exhibit
similar site arrangement biases. This resulted in 711
clusters, including 446 singleton clusters; each singleton
cluster is a TF pair not similar to any other TF pair
(Supplementary Table S4). We found that TF pairs with
site arrangement biases were enriched for spatially co-ex-
pressed pairs (P-value 5E-5, see ‘Materials and Methods’
section). In the analysis described later in the text, we

selected a single TF pair with the most significant site ar-
rangement bias as a representative for its cluster. Figure
3A shows the frequencies of the three different types of
site arrangement bias revealed by our analysis.

Homotypic binding site pairs frequently show
arrangement bias

We searched, as described earlier in the text, for non-
random patterns in relative spacing and orientation of
heterotypic site pairs (sites of two different TFs) as well
as homotypic site pairs (sites of the same TF). Heterotypic
pairs tested (51 360 pairs) vastly outnumbered homotypic
pairs (321 pairs). Interestingly, we found site arrangement
biases for homotypic site pairs to be >9-fold more
common than heterotypic pairs when normalized to the
number of combinations tested. Of the 39 homotypic
pairs with any site arrangement bias 35 showed a signifi-
cant distance and/or OSD bias (at P< 1E-4, FDR=5%).
Overall, 11 homotypic pairs had an orientation bias
(P< 5.5E-4, FDR=5%) and all of these exhibited a pref-
erence for occurring in the same orientation (M13

0-to-M25
0

or M15
0-to-M23

0, see Figure 1B). Two pieces of evidence
rule out the possibility that these sequence signatures
reflect binding sites arising out of tandem duplications

A B

C D

Figure 3. Frequencies of different site arrangement biases. (A) Venn diagram of various site arrangement biases involving a total of 711 TF pairs.
(B and C) For each of the four examined distance ranges, shown are the number of TF pairs with significant OSD bias (B) and distance bias (C) in
that range. (D) Average number of partners with site arrangement biases, per TF, separated by TF families. (Only TF families with >10 TFs
included in our analysis are shown.) The number of TFs in each family is shown in parentheses.
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(61): (i) our testing procedure involved masking of
computationally detected short tandem repeats before
analyzing the sequences and (ii) direct experimental tests
(later in the text) validated a large number of our predic-
tions of homotypic interaction.

Site arrangement biases are prevalent among physically
interacting TF pairs

We examined 150 previously reported cases of physical
interactions (PPI) involving TFs (55), 13 of which were
homotypic interactions and the remaining 137 were
heterotypic TF–TF interactions. We observed six
homotypic and seven heterotypic physical interactions to
have sequence footprints in the form of site arrangement
biases (at 5% FDR) (Supplementary Table S5), a 2.3-fold
enrichment over the global frequency of site-level bias.
When we relaxed the FDR value to 15% (corresponding
to P< 0.005), 29 additional physically interacting TF pairs
(42 in total) demonstrated site arrangement biases. Results
of all 150 tests of site arrangement bias between TFs with
known PPI are available at http://veda.cs.uiuc.edu/iTFs/
B1H_Sig/html_ppi_all/. Missing interactions may repre-
sent false-positive PPIs in these previous studies or PPIs
that do not result in sequence signatures that our method
can detect.

Distance biases are often exclusive to specific relative
orientations and involve short ranges

Most of the orientation biases were also associated with
an OSD bias (Figure 3A and Supplementary Table S4). In
particular, of the 84 TF pairs with an orientation bias
(P< 5.5E-4, FDR=5%), 51 showed an OSD bias
P� 0.05 and 24 of these met the stringent criteria of
FDR �5% (Figure 3A). Moreover, we observed an
OSD bias for 312 TF pairs (of the 711 TF pair clusters
reported earlier in the text, at P< 1E-4, FDR=5%)
(Figure 3A and B), and �72% of these did not show an
orientation bias overall (P> 0.05). In other words, a pref-
erence for relative orientation is typically observed only
when there is also a spacing bias specific to that orienta-
tion and in many cases is observed only when we test for
spacing and orientation preference simultaneously. Such
specific constraints on relative spacing and orientation are
suggestive of physically interacting TF pairs, although
most such pairs have not been previously known to
interact directly.

Most distance biases recovered were in the 0–10 bp
distance range. In total, we found 472 TF pairs with
significant distance biases (P< 1E-4, FDR=5%,
Figure 3C). These included 417 TF pairs with a preference
for an inter-site spacing of 0–10 bp; of these, 17 TF pairs
additionally had a preference for the range 10–25 bp, and
one, (homotypic site bias for longitudinals lacking,
isoform LOLA-PI), also showed a bias for 25–50 bp
spacing. Although we did not directly examine the period-
icity of the preferred distance range for a TF pair, as was
done in an earlier study (32), the observation of a distance
bias in multiple ranges suggests the presence of such a
‘helical phasing’ phenomenon (62), where sites are
spaced by some offset plus an integral number of helical

turns. Sixty-six TF pairs had a significant preference for
10–25 bp distance range, of which more than half were
exclusive to this range, with the most significant bias
exhibited by the TF pair (JIM, knirps-like (KNRL)). We
observed five TF pairs with 25–50 bp distance bias, of
which all but one were exclusive to this range. Only two
TF pairs were found with 50–100 bp distance bias. Inter-
site spacing biases for different ranges may reflect different
underlying interactions between TFs, e.g. the frequently
observed short-range bias (0–10 bp) may be a signature
of direct physical interactions of TFs bound to adjacent
sites. Spacing preferences for a longer range (e.g. 25–50 bp
or 50–100 bp) might reflect chromatin-mediated inter-
actions or DNA looping. Indirect cooperation via nucleo-
some displacement has been experimentally examined in a
number of systems; these experiments generally suggest
that cooperativity occurs within a distance corresponding
to either a complete (147 bp) or half (74 bp) nucleosome
(63,64) and thus is likely to be associated with weaker
constraints on inter-site spacing and longer spacing.
A second mechanism of cooperative interaction, coopera-
tive transcriptional activity, has been suggested to act
over an even longer distance (4) and would be less likely
to be recovered in our analysis. Supplementary Table S6
summarizes several instances of TF pairs with different
types of site arrangement biases. We asked whether
TF pairs exhibiting spacing bias in the shortest range
(0–10 bp) were more frequently associated with orienta-
tion biases, which might suggest a steric constraint
related to their proximal localization on the DNA. We
did not find significant evidence for this phenomenon
(data not shown).

Frequency of site arrangement bias varies by TF family

For each TF, we recorded the number of partner TFs
with site arrangement biases. We found Medea (MED),
Trithorax-like (TRL) and Jing interacting gene regulatory
1 (JIGR1) to have the greatest number of partners
(Supplementary Table S7). TRL (also called GAGA
factor) is widely known to be a chromatin remodeling
factor (65–67) and as a ‘pioneer factor’ (68,69), and its
motif has been found to be a determinant of context-
specific DNA binding of other TFs (70). Figure 3D
shows the average number of partners with site arrange-
ment biases, for each major DNA binding domain.
Homeodomain TFs were predicted to have small numbers
of partners on average (P=8E-11, see Supplementary
Note 1), and none of the 39 TFs with> 10 predicted
partners were from this family. (Also see Supplementary
Figure S2 for a similar analysis that was performed without
clustering of similar TF pairs; the general trend was
observed here also.) It is interesting that one group of
homeodomains, the Drosophila HOX genes, are known
to exhibit latent (i.e. altered) specificities in some dimeric
complexes (71), which may explain why those dimers were
not detected by this method. If this phenomenon occurs
with other homeodomains, it may contribute to a lower
number of detected interactions for this family. On the
other hand, TFs with ZF-C2H2 and MADF domains
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had a strong tendency to exhibit site arrangement biases
(P=2E-10 and 8E-4, respectively).

Site arrangement biases predict direct TF–TF interactions
and cooperative DNA binding

We hypothesized that specific patterns of TF-binding site
spacing and orientation could reflect PPIs between the
corresponding pairs of TFs. These physical interactions
could allow cooperative binding to DNA, but only when
the sites are arranged such that each TF can bind both its
site and the other TF. We experimentally examined direct
PPIs for 27 predicted TF pairs with various site arrange-
ment biases (Figure 4A). Each pair was tested for direct
physical interaction using a variation of the LUMIER
method (58,59), modified to analyze direct binding
in vitro. Coding regions for each TF were fused to either
luciferase (luc) or MBP, expressed using an in vitro bac-
terial transcription and translation system and incubated
together. PPIs were tested by measuring recovery of the
luc-tagged protein following purification of the MBP-
tagged protein. All combinations are normalized to a
negative control interaction test replacing the luc-tagged
TF with the luc protein alone. Based on our experience
studying dimeric bHLH proteins (M.H.B. and
H.N.P., unpublished results), we set a higher cutoff
[Luminescence Intensity Ratio (LIR) of 7] than used in
previous studies (58,59); with this cutoff, we observed no
examples of proteins interacting with dozens of additional
negative control interactions (unpublished results). Several
negative control tests with the TF clock (CLK) are
included here (Figure 4B and Supplementary Table S8).
Of the 27 tested pairs, 10 were previously reported as

interacting based on high-throughput PPI assays. The
three homotypic LOLA isoforms are counted as one.
Twelve more interacting pairs were novel predictions
(Table 1) chosen based on a strong cutoff for statistical
significance (P� 2E-6) and required to be from clusters
(Supplementary Table S4) of size 1 or 2. Five additional
pairs were selected that are representatives of larger
clusters and that are known to act in the well-
characterized anterior-posterior embryonic patterning
network. In all, 6 of the 10 tested pairs with previous
PPI data tested positive in our assay (Figure 4B and
Supplementary Table S8). The negatives may either be
false positives in the high-throughput assay or may not
be active for interaction when expressed in vitro and in
the absence of potential DNA-binding sites. Of the 17
predicted interactions without previous supporting data,
we obtained experimental support for 11. The positive
interactions included both heterotypic and homotypic
interactions. In addition, pairs that were part of large
and small clusters were both in the positive set. As
described earlier in the text, some negatives may be
proteins that do not directly interact or do not fold
properly in vitro. Alternatively, some pairs may interact
too weakly to remain stably associated in this assay, but
strongly enough to promote cooperative binding to
properly spaced binding sites on DNA. The >50%
success in experimental confirmation is striking, given
that previous benchmarking of various PPI methods

against literature interactions is between 20 and 40%
(20). This observation may partly reflect a small sample
size but may also indicate that adapting the quantitative
readout of the LUMIER assay with consistently high
protein expression levels obtained with in vitro expression
provides a more robust and consistent method for detect-
ing protein interactions. Furthermore, compared with
other classes of proteins, such as membrane proteins or
components of large complexes, TFs may be particularly
well-suited for in vitro expression methods. The demon-
stration that >65% of the tested TF–TF interactions cor-
respond to direct in vitro binding suggests that a
substantial percentage of the constrained binding site
arrangements identified in this study reflect interactions
between TFs.

Two TFs that physically interact in vitro are expected to
exhibit higher affinity cooperative binding to DNA if the
binding sites are arranged such that the two TF molecules
can simultaneously bind their target sites and each other
(72,73). For four homotypic and one heterotypic inter-
action described earlier in the text, we tested this predic-
tion by determining whether properly spaced pairs of
binding sites exhibited higher binding affinity than indi-
vidual sites or the same sites with altered spacing. For
each pair tested, we identified two adjacent DNA-
binding sites with preferred spacing from a putative tran-
scriptional regulatory region (Supplementary Figure S3).
The TFs and target regulatory sequences chosen were all
part of the anterior–posterior patterning network. For
each region, we confirmed that it was directly bound by
the relevant TFs as predicted in existing ChIP data sets
and by our computational predictions based on TF-
binding motifs and accessibility (Supplementary Figure
S4). Assays were performed using a variation of a previ-
ously described oligo-binding assay (60) by mixing luc-
tagged TFs with biotin labeled DNA sites (‘probes’) and
a variety of unlabeled competitor DNA sites (Figure 5A).
Differences in affinity are reflected in the ability of differ-
ent competitors to prevent TF binding to the probe and
recovery of the associated luciferase activity with
streptavidin beads (Figure 5B and Supplementary Table
S9). For all binding reactions, the wild-type sequence con-
taining both binding sites was the most effective competi-
tor, reducing luciferase recovery to near background
levels. As expected, point mutations that disrupt both pre-
dicted binding sites (�AB in Figure 5A and B) signifi-
cantly reduced competition, confirming that these sites
are the primary TF-binding sites. We treated this sample
as representative of competition via non-specific DNA
binding and report the amount of uncompleted TF
bound to probe as a fraction of this value. For heterotypic
pairs, point mutations that disrupt one of the binding
sites (�A or �B), reduced competition compared with
wild-type, indicating that the two sites mediate coopera-
tive binding to the wild-type sequence. Two additional
experiments support this conclusion. First, when the
individual sites are provided on separate DNA molecules
(�A+�B), they are unable to compete as well as
both sites on the same molecule. Second, if both sites
are on the same molecule, but the spacing between
the sites is increased by five bases (+5), they also are
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A

B

Figure 4. Experimental validation of predicted TF–TF interactions. (A) Predicted site arrangement signatures. For each pair of motifs (first and
third column), the second column shows the predicted distance bias. The ‘.rev’ extension next to the motif names indicates that the motif is in reverse
complement orientation. (B) Measurement of direct in vitro interaction between TF pairs. TF pairs (listed on Y-axis) were expressed as fusions to
MBP or luciferase (Luc). The recovery of Luc-tagged protein following an MBP pull-down is reported as the LIR with a threshold of LIR=7 for
positive interactions. Interactions are color coded to indicate those that were predicted to interact in the current study (iTFs), those acting in the
anterior-posterior patterning network (AP), those have been previously reported in high-throughput PPI assays and positive or negative controls
(CTRL+, CTRL�).
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Table 1. TF pairs with binding site biases selected for experimental validation

0-10bp 10-25bp 
CIdx Mo�f1 Mo�f2 Family Ori. type Ori. Dist. OSD Dist. OSD 

477 

CG12155 TRL  

(MADF) 
(GAGA)

—>  <—
<—  —>
—>  —>
<—  <—

2.3e-05
0.25 
1 
0.96

1e-05

7e-07
0.03 
- 
0.2

0.1

0.06 
0.06 
- 
0.6

621 

MES2 MES2 

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

0.39 
0.22 
0.79 
0.79

2e-06

0.02 
0.002
0.002
0.002

0.04

0.1 
0.1 
0.3 
0.3

628 

TTK-PF TTK-PF 

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.67 
0.99 
0.0066 
0.0066

3e-09

0.08 
0.02 
9e-09
9e-09

0.3

0.4 
0.4 
0.4 
0.4

655 

PFK PFK

(bHLH) 
(bHLH)

—>  <—
<—  —>
—>  —>
<— <—

0.94 
0.69 
0.048 
0.048

7e-05

- 
- 
5e-08
5e-08

0.07

- 
- 
0.05 
0.05

684 

TRL  KEN 

(GAGA) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.00043
0.0041
1 
1

5e-13

3e-09
2e-06
6e-04
-

0.009

0.07 
0.005 
0.5 
0.6

405 

CG11504 CG11504 

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

0.89 
0.98 
0.0016
0.0016

2e-14

0.002
0.005 
8e-11
8e-11

1e-05

0.4 
- 
1e-07
1e-07

368 

KR  OVO 

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.96 
0.035 
0.64 
0.42

-

- 
- 
- 
-

7e-04

- 
5e-07
0.2 
-

231 

VIS  VIS  

(Homeobox)
(Homeobox)

—>  <—
<—  —>
—>  —>
<—  <—

0.67 
0.48 
0.39 
0.39

8e-08

0.004
0.02 
3e-05
3e-05

-

- 
- 
- 
-

231 

ACHI  ACHI  

(Homeobox)
(Homeobox)

—>  <—
<—  —>
—>  —>
<—  <—

0.66 
0.44 
0.44 
0.44

4e-07

0.02 
0.04 
2e-05
2e-05

-

- 
- 
- 
-

400 

TRL  LOLA-PI  

(GAGA) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.97 
0.58 
0.032 
0.37

8e-08

0.07 
8e-04
0.005 
0.001

0.03

0.1 
0.03 
0.08 
0.8

570 

TRL  Z

(GAGA) 
(NA)

—>  <—
<—  —>
—>  —>
<—  <—

6.3e-05
0.16 
1 
0.99

4e-15

2e-15
2e-05
0.02 
0.6

0.004

0.03 
0.2 
0.4 
0.03

469 

Z  Z

(NA) 
(NA)

—>  <—
<—  —>
—>  —>
<—  <—

0.97 
0.9 
0.0024
0.0024

4e-07

0.1 
0.001
1e-04
1e-04

3e-04

0.5 
0.003
0.003
0.003

2# 

BTD  BTD  

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

1 
1 
5.7e-18
5.7e-18

2e-22

- 
- 
7e-31
7e-31

3e-08

0.6 
0.5 
8e-12
8e-12

534# 

TLL  TLL 

(zf-C4) 
(zf-C4)

—>  <—
<—  —>
—>  —>
<—  <—

0.87 
0.98 
0.0044
0.0044

0.001

- 
- 
1e-06
1e-06

0.05

0.3 
0.6 
0.03 
0.03

18# 

HKB  HKB  

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

1 
1 
6e-12
6e-12

3e-23

0.01 
0.04 
2e-23
2e-23

1e-07

0.2 
0.01 
1e-06
1e-06

(continued)
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unable to compete as well as the wild-type sequence. Thus,
the sites must also be properly spaced for cooperative
binding.

Similar results are observed with the heterotypic inter-
action between KR and OVO. In this experiment, one TF
is luc-tagged, whereas the other is not. The binding site for
the tagged TF is, as expected, required for binding. In
addition, affinity for this TF is also reduced when the

site for the other TF is either disrupted or is placed an
additional five bases away, demonstrating the mutual
influence of each TF on DNA binding to properly
spaced sites. The KR and OVO pair was just below our
cutoff in the in vitro pull down assay. It is likely that these
TFs have a weaker physical interaction that is nonetheless
sufficient to promote cooperative binding to properly
spaced sites.

Table 1. Continued

0-10bp 10-25bp 
CIdx Mo�f1 Mo�f2 Family Ori. type Ori. Dist. OSD Dist. OSD 

27# 

HKB  FTZ-F1 

(zf-C2H2) 
(zf-C4)

—>  <—
<—  —>
—>  —>
<—  <—

0.7 
0.93 
0.0042
0.81

4e-08

0.1 
0.01 
7e-04
1e-04

0.005

0.02 
0.05 
0.6 
0.06

307# 

CIC TTK-PF 

(HMG_box) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.066 
0.16 
0.84 
0.96

8e-07

0.001
0.002
0.2 
0.005

-

- 
- 
- 
-

510* 

TRL  TRL  

(GAGA) 
(GAGA)

—>  <—
<—  —>
—>  —>
<—  <—

1 
1 
7e-15
7e-15

3e-22

0.3 
0.1 
2e-27
2e-27

1e-12

0.02 
0.03 
2e-11
2e-11

83* 

CAUP  CAUP  

(Homeobox)
(Homeobox)

—>  <—
<—  —>
—>  —>
<—  <—

0.18 
0.66 
0.72 
0.72

-

- 
- 
- 
-

2e-06

0.004
0.1 
2e-04
2e-04

N/A*  

ARA  ARA  

(Homeobox)
(Homeobox)

—>  <—
<—  —>
—>  —>
<—  <—

0.55 
0.81 
0.22 
0.22

0.04

0.04 
- 
- 
-

0.2

0.6 
0.5 
0.1 
0.1

367* 

LOLA-PI LOLA-PI 

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

0.69 
0.51 
0.15 
0.15

3e-10

0.004
0.01 
1e-07
1e-07

3e-14

8e-04
3e-07
1e-06
1e-06

627* 

ADF1  ADF1 

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

1 
0.98 
1.4e-05
1.4e-05

1e-05

0.009 
0.02 
0.003
0.003

0.7

- 
0.6 
0.2 
0.2

N/A*  

MED  MAD  

(MH1) 
(MH1)

—>  <—
<—  —>
—>  —>
<—  <—

0.69 
0.49 
0.085 
0.82

1e-04

0.2 
0.4 
0.003
0.001

0.05

0.3 
0.09 
0.01 
0.9

N/A*  

CG8281 CG8281 

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

0.48 
0.77 
0.26 
0.26

0.003

0.08 
- 
9e-04
9e-04

0.02

0.08 
0.01 
0.4 
0.4

538* 

CG12155 CG12155 

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

- 
- 
0.091 
0.091

4e-04

- 
- 
5e-05
5e-05

0.02

- 
- 
0.002
0.002

41* 

JIGR1 JIGR1  

(MADF) 
(MADF)

—>  <—
<—  —>
—>  —>
<—  <—

0.23 
0.74 
0.48 
0.48

6e-07

7e-04
0.06 
3e-04
3e-04

5e-06

0.07 
0.08 
2e-05
2e-05

566* 

CI  CI

(zf-C2H2) 
(zf-C2H2)

—>  <—
<—  —>
—>  —>
<—  <—

- 
- 
0.14 
0.14

0.003

- 
- 
2e-05
2e-05

-

- 
- 
- 
-

The first column indicates the cluster number (from Supplementary Table S4) that the TF pair belongs to. The cluster number for TF
pairs with site arrangement biases at >5% FDR is indicated as ‘not available’ (N/A). The TF pairs with previously known PPI are
marked by ‘*’ and the TF pairs with some literature evidence are marked by ‘#’. For each TF pair, the motifs are shown in the second
and the third columns. The fourth column represents the protein family of the two TFs. The fifth column displays all four possible
relative orientations. In the case of homotypic interactions, the last two orientations are the same. The sixth column shows the
significance (uncorrected P-value) of orientation bias. The next four columns present the uncorrected P-values for distance (abbreviated
as ‘Dist.’) and OSD biases for denoted distance ranges. All P< 0.005 are in bold.
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A

B C

Figure 5. Experimental validation of cooperative DNA binding for five selected TF pairs. (A) Schematic of assay to measure relative binding to pairs
of DNA-binding sites. A biotinylated DNA probe with a wild-type (wt) DNA sequence containing a pair of binding sites for one (homotypic) or two
(heterotypic) TFs is mixed with an excess of competitor DNA with either the wild-type or a variant DNA sequence. For homotypic interactions, a
TF is labeled with luciferase (Luc). For heterotypic interactions, a second TF is labeled with MBP. The amount of Luc-tagged TF recovered with
streptavidin beads reflects the relative affinity of the different competitor sequences for the tagged TF. Some of the DNA sequence variants tested
include mutations that disrupt one (�A or �B) or both (�AB) of the TF-binding sites as well as insertions or deletions that change the spacing
between the two sites. (B and C) DNA-binding site measurements for five homo or heterotypic TF–TF interactions. In each experiment, the
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In the aforementioned experiment, we tested the effect
of increasing the binding site spacing by five base pairs,
which should place the binding site on the opposite side of
the DNA molecule and minimize the possibility of main-
taining protein-protein interactions. However, for some
TF interactions, the distribution of spacing preferences
recovered in the computational analysis suggests that the
preferred spacing between binding sites may be highly
constrained (e.g. KR and OVO in Supplementary Figure
S3). Therefore, the DNA-binding experiment was
repeated with five to seven different spacings between
binding site pairs (Figure 5C and Supplementary Table
S10). In all cases, the original sequence exhibited the
highest affinity. In the case of (huckebein(HKB), HKB),
there was a gradual decrease in affinity as the spacing was
increased or decreased by one, three and five bases. In
contrast, two other cases (TLL and luc-KR with OVO)
exhibited a steep drop-off in affinity when even one add-
itional base was added or subtracted. These results further
support the model that our TF interaction predictions
reflect, at least in part, physical interactions between
TFs that promote cooperative binding to properly
spaced binding site pairs. Both our computational and
experimental results suggest that different TF pairs may
exhibit greater or lesser restrictions on the spacings
between their DNA-binding sites.

DISCUSSION

In this work, we examined sequence signatures such as
preferred orientation and/or spacing between binding
sites that reflect pairwise TF relationships. Site arrange-
ment biases may be a signature of PPI and are likely to be
important in understanding the mechanisms of transcrip-
tional regulation and the cis-regulatory code.

In a recent study, Whitington et al. (19) developed a
program called SpaMo to search a TF’s ChIP peaks for
overrepresentation of a secondary motif and its arrange-
ment relative to the primary motif. SpaMo tests the sig-
nificance of a specific displacement between the primary
motif in the ChIP-seq peaks and the nearest occurrence of
the secondary motif, with a null hypothesis that assumes a
uniform distribution on such displacements. This assump-
tion is suspect in many real situations; for instance, if the
secondary motif occurs more or less frequently in the
genome, then shorter or longer displacements are more
likely just by chance. The problem becomes more
pronounced when one compares the significance of a dis-
placement across many secondary motifs. Moreover,
SpaMo ignores multiple occurrences of the primary
motif in input BRs. Homotypic clustering of TF-binding
sites (motifs) is well documented for several TFs in fruit fly

and human (34,35). Ignoring this phenomenon might
cause miscalculation of displacements, thus missing or
falsely predicting a displacement bias. In addition,
SpaMo does not distinguish different modes of orientation
bias (e.g. M13

0-to-M35
0 from M15

0-to-M23
0) that may be

important for heterotypic interactions. Our site arrange-
ment bias discovery tool, iTFs, is designed to answer a
statistical question similar to that tackled by SpaMo but
also addresses the technical issues identified earlier in the
text. First, iTFs does not assume a uniform distribution of
site displacement. Instead, it creates a background (‘null’)
distribution by shuffling the location of binding sites in
each sequence, preserving the number of binding sites in
that sequence. (This choice is supported by our observa-
tion that binding sites of any single TF do not exhibit any
location bias within the 500 bp segments analyzed; see
Supplementary Figure S5.) It then compares the distribu-
tion of inter-site spacing in the BRs to this empirical null
distribution. Thus, site arrangement preferences are
evaluated after conditioning on the number of sites in
the input sequences, removing any potential bias owing
to over/under representation of a particular motif.
Second, iTFs, in contrast to SpaMo, considers all
adjacent pairs of primary and secondary motif occur-
rences, thereby accounting explicitly for the phenomenon
of homotypic site clustering. Finally, iTFs not only separ-
ately assesses all modes of orientation bias but also
examines the orientation biases in conjunction with
spacing biases.
In addition to the development of a novel statistical

method, a major contribution of our work is the scale of
our analysis. Although ChIP data sets may result in more
accurate predictions of TF interaction, these data sets are
currently limited to �50 (i.e. �7% of all) Drosophila TFs
(74). By using BRs predicted by motif scanning and acces-
sibility data sets, we were able to greatly expand the inter-
action map to include 322 TFs and all possible pairings
thereof. This allows us a much wider perspective of the
diverse nature and extent of TF–TF interactions in the
Drosophila genome than had been reported earlier and
also offers specific global insights. We find, for instance,
that homotypic interactions are particularly common, that
short (0–10 bp) range spacing biases are the most preva-
lent type of interaction signature (detectable by our
approach) and that spacing biases are often tied to
specific relative orientations, suggesting cooperative
DNA binding. Notably, a recent large-scale analysis of
human TFs by SELEX-seq identified a number of
factors that bind as homodimers with particular site
spacing preferences (75). Several of our predictions of
interacting TFs were experimentally validated,
demonstrating both direct physical interaction between

Figure 5. Continued
biotinylated DNA probe is the wild-type (wt) sequence or not included (‘no probe’). The competitor DNA used is indicated on the X-axis. For
�A+�B, the competitors with mutations in the individual TF-binding sites were used together, each at the concentration used for the individual
competitor DNAs in the other samples. The recovered luciferase activity in the presence of the different competitors is shown on the Y-axis.
The luciferase activity recovered using a competitor sequence with mutations in both TF-binding sites (�AB) was selected as representative of
non-specific DNA competition; all other samples were reported as a fraction of the value of this sample. Changes in either the individual TF-binding
sites or in the spacing between the binding sites result in reduced binding to the competitor DNA and an increased recovery of Luc-TF with the
biotin-labeled DNA.
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TF molecules and increased affinity when the interacting
molecules are bound to DNA with the preferred spacing
between their sites. The approach of searching selected
genomic sequence sets for specific patterns of TF motif
arrangements provides an approach to identify interacting
TFs that is completely orthogonal to previous genome-
wide searches for PPIs in Drosophila and has the key
advantage that it immediately associates a sequence signa-
ture with a putative TF–TF combination. An additional
advantage of this approach is that it may detect some
examples of cooperative binding that rely on PPIs that
are too weak to detect in the absence of coordinated
binding to DNA. In some cases, allosteric changes in
DNA structure may promote cooperative DNA binding
by TFs in parallel or even independent of TF–TF inter-
actions (76–78). Although these interactions may not be
detected with in vitro TF–TF interaction assays, they can
still be discovered by this approach if they are associated
with a biased arrangement of TF-binding sites.
There are a few limitations to our computational

scheme for predicting TF ‘interactions’. Two such limita-
tions, arising from TFs with similar binding specificities,
were discussed and addressed in ‘Results’ section. The
problem of multiple TFs with similar binding motifs will
also apply to SpaMo but is more substantial in our study
because of the larger set of high-quality TF motifs cur-
rently available in Drosophila. We also note that our test
of TF pair interaction is based on the overlap between
their predicted high-affinity BRs, rather than experimen-
tally determined (ChIP-based) BRs. Therefore, our
method may miss a cooperative relationship when one
or both TF cooperatively bind to lower affinity sites.
The high-affinity BRs have better functional predictive
value—computational predictions of TF occupancy
tend to be more accurate at extreme scores. However,
the TF–TF interactions detected in high-affinity regions
may also contribute to co-binding to lower affinity sites.
In addition, as noted in ‘Results’ section, some of the
detected homotypic site-spacing biases could be an
artifact of site creation by tandem duplication. However,
we sought to address this concern by masking out short
tandem repeats, and our experimental validations also
confirmed that the detected signatures reflect homodimeric
interactions. Another limitation of our method arises out
of the need to predict individual binding sites computa-
tionally, which introduces error in the collection of site
pairs examined statistically. Finally, our test may be less
sensitive to spacing biases in longer ranges (e.g. 50–100 bp)
because we only consider adjacent site pairs: if two motifs
occur frequently enough that the average spacing between
their adjacent occurrences is less than, say, 50 bp, the
strength of a spacing bias for the 50–100 bp range will
be diluted. One way to address the last two limitations
may be to include non-adjacent site pairs in the statistical
test, but doing so naively may introduce a large number of
spurious pairs and reduce statistical power. Proper con-
sideration of non-adjacent site pairs in our framework is
an important topic for future work.
The large, though still incomplete, collection of TF

motifs in Drosophila allows us to provide evidence for
pervasive interactions between TFs in the regions of the

genome accessible during embryogenesis. We found
spacing biases for the shortest range (0–10 bp) to be the
common case and also noted that spacing biases were
most conspicuous when examining site pairs in a specific
relative orientation. Both of these findings reaffirm
existing knowledge about TF interactions. Our sequence
signature discovery schemes are based on statistical and
computational methods of predicting TF-binding profiles,
which heavily rely on TF binding specificity information.
As large collections of TF-binding specificities in insects,
vertebrates and plants continue to grow, this approach
will become increasingly powerful across a wide range of
species. We provide the site arrangement bias discovery
tool (iTFs) as an online service at http://veda.cs.uiuc.
edu/iTFs. Application of this method should reveal
whether our evidence for widespread cooperative
binding by TFs is generalizable to other developmental
stages and other organisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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