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Abstract
Multi-task learning (MTL) aims to improve the performance of multiple related tasks by
exploiting the intrinsic relationships among them. Recently, multi-task feature learning algorithms
have received increasing attention and they have been successfully applied to many applications
involving high-dimensional data. However, they assume that all tasks share a common set of
features, which is too restrictive and may not hold in real-world applications, since outlier tasks
often exist. In this paper, we propose a Robust MultiTask Feature Learning algorithm (rMTFL)
which simultaneously captures a common set of features among relevant tasks and identifies
outlier tasks. Specifically, we decompose the weight (model) matrix for all tasks into two
components. We impose the well-known group Lasso penalty on row groups of the first
component for capturing the shared features among relevant tasks. To simultaneously identify the
outlier tasks, we impose the same group Lasso penalty but on column groups of the second
component. We propose to employ the accelerated gradient descent to efficiently solve the
optimization problem in rMTFL, and show that the proposed algorithm is scalable to large-size
problems. In addition, we provide a detailed theoretical analysis on the proposed rMTFL
formulation. Specifically, we present a theoretical bound to measure how well our proposed
rMTFL approximates the true evaluation, and provide bounds to measure the error between the
estimated weights of rMTFL and the underlying true weights. Moreover, by assuming that the
underlying true weights are above the noise level, we present a sound theoretical result to show
how to obtain the underlying true shared features and outlier tasks (sparsity patterns). Empirical
studies on both synthetic and real-world data demonstrate that our proposed rMTFL is capable of
simultaneously capturing shared features among tasks and identifying outlier tasks.
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1. Introduction
Multi-task learning [8] aims to improve the performance of multiple related tasks by
utilizing the intrinsic relationships among these tasks. Multi-task learning has been applied
successfully in a wide range of applications including object recognition [8], speech
recognition [28], handwritten digits recognition [30] and disease progression prediction [44].
A critical ingredient in these applications is how to model the shared structures among tasks.
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Existing algorithms can be broadly classified into two categories: explicit parameter sharing
and implicit structure sharing.

Under explicit parameter sharing, all the tasks explicitly share some common parameters;
examples include hidden units in neural networks [8, 5], prior in hierarchical Bayesian
models [4, 31, 36, 38], parameters of Gaussian process [18], feature mapping matrix [1],
classification weight [11] and similarity metric [28, 40]. On the contrary, algorithms under
implicit structure sharing do not explicitly impose all tasks to share certain parameters, but
they implicitly capture some common structures; for example, the algorithms in [29, 24]
constrain all tasks to share a common low rank subspace and the algorithms in [27, 2, 23, 19,
22, 17, 35, 41] constrain all tasks to share a common set of features.

One key assumption of the above multi-task learning algorithms for both categories is that
all tasks are related to each other by the presumed structures. However, this may not hold in
real-world applications, as outlier tasks often exist. Thus, simply assuming that all tasks
share a certain structure may degrade the performance. This motivates the development of
several recent multi-task learning algorithms for discovering the inherent relationship among
tasks. For example, some multi-task learning algorithms [32, 34, 14, 42, 16] cluster the
given tasks into different groups and impose the tasks in the same groups to share a certain
common structure. Multi-task learning algorithms with a composite regularization [15, 9,
10] have been proposed to capture different types of relationships using regularization.

In this paper, we consider the multi-task learning setting where the relevant tasks share a
common set of features while outlier tasks exist. We propose a Robust Multi-Task Feature
Learning algorithm (rMTFL) which simultaneously captures the shared features among
relevant tasks and detects outlier tasks. Specifically, we decompose the weight matrix W
consisting of the prediction models of all tasks into the sum of two components P and Q. We
employ the well-known group Lasso penalty on row groups of P such that the relevant tasks
capture a common set of features. In addition, we employ the same group Lasso penalty but
on column groups of Q to simultaneously identify the outlier tasks. The main contributions
of this paper include:

1. We propose a Robust Multi-Task Feature Learning formulation (rMTFL) which
simultaneously captures a common set of features among relevant tasks and
identifies outlier tasks. We propose to employ accelerated gradient descent to
efficiently solve the optimization problem involved in rMTFL, and show that the
proposed algorithm is scalable to large-size problems.

2. We present a theoretical bound to measure how well rMTFL can approximate the
underlying true evaluation, and give bounds to measure the error between the
weights estimated from rMTFL and the underlying true weights. Moreover, by
assuming that the underlying true weights are above the noise level, we present a
sound theoretical result to show how we can obtain the underlying true shared
features and outlier tasks (sparsity patterns).

3. We perform empirical studies using both synthetic and real-world data. Our
experiments demonstrate the efficiency of the proposed algorithm. Results also
demonstrate the effectiveness of rMTFL for capturing shared features among tasks
and identifying outlier tasks simultaneously.

Organization
The remainder of this paper is organized as follows: In Section 2, we introduce our proposed
rMTFL formulation. In Section 3, we present the proposed optimization algorithm for
rMTFL. In Section 4, we provide a detailed theoretical analysis on rMTFL. In Section 5, we
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discuss related work. Experimental results are presented in Section 6 and we conclude the
paper in Section 7.

Notations
Scalars, vectors, matrices and sets are denoted by lower case letters, bold face lower case
letters, capital letters and calligraphic capital letters, respectively. xi and xij denote the i-th
entry of a vector x and the (i, j)-th entry of a matrix X. xi (xi) denotes the i-th row (column)

of a matrix X.  denotes a submatrix composed of the rows of X indexed by .  and 
denote the (j, k)-th entry and the j-th column of a matrix Xi. Euclidean and Frobenius norms
are denoted by ‖ · ‖ and ‖ · ‖F. ℓp,q-norm of a matrix X is defined as

 and the inner product of X and Y is denoted by 〈X,Y〉. ℕm is
defined as the set {1, …, m} and N(μ, σ2) denotes a normal distribution with mean μ and
standard deviation σ.

2. The Proposed Formulation
Assume that we are given m learning tasks associated with the training data {(X1, y1),…,
(Xm,ym)}, where Xi ∈ ℝd × ni is the data matrix of the i-th task with each column as a
sample; yi ∈ ℝni is the response of the i-th task (yi has continuous values for regression and
discrete values for classification); d is the data dimensionality; ni is the number of samples
for the i-th task. The data has been normalized such that the (j, k)-th entry of Xi denoted as

 satisfies

(1)

We consider learning a linear function

for each task and decomposing the weight matrix W = [w1, …, wm] ∈ ℝd × m into the sum of
two components P and Q (Please refer to Figure 1 for illustration). We make use of different
regularization terms on P and Q to exploit relationships among tasks. Formally, our rMTFL
model is formulated as:

(2)

where the first regularization term on P captures the shared features among tasks and the
second term on Q discovers the outlier tasks; λ1 and λ2 are nonnegative parameters to
control these two terms. Specifically, the first regularization term is based on the well-
known group Lasso penalty on row groups of P which restricts the rows of the optimal
solution P* to consist of all zero or nonzero elements [2]. Thus, all related tasks should
select a common set of features. However, the assumption that all tasks share the same set of
features may not hold in real applications, as outlier tasks often exist. To address this issue,
we introduce the second regularization term based on the same group Lasso penalty but on
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column groups of Q to discover these outlier tasks. Similarly, the columns of the optimal
solution Q* consist of all zero or nonzero elements, with the nonzero columns
corresponding to outlier tasks. Intuitively, if the i-th column of Q* is nonzero, then the i-th
column of W* is also nonzero, thus the i-th task does not share a common set of features
with other tasks, identified as an outlier task; meanwhile, for the remaining tasks
corresponding to the zero columns of Q*, they share a common set of features captured by
the nonzero rows of P* (see Figure 1).

3. Optimization Algorithm
In this section, we show how to solve the rMTFL formulation in Eq. (2) efficiently. Denote

(3)

where l(P, Q) is the empirical loss function and r(P, Q) is the regularization term. We note
that the objective function in Eq. (2) is a composite function of a differential term l(P, Q)
and a non-differential term r(P, Q). Denote

(4)

which is the first order Taylor expansion of l(P, Q) at (R, S), with the squared Euclidean
distance between (P, Q) and (R, S) as the regularization term. The traditional gradient
descent algorithm obtains the solution at the k-th iteration (k ≥ 1) by (Pk, Qk) = arg minP,Q
TPk–1, Qk–1,ηk (P,Q) + r(P, Q) with a proper step size ηk. Here we propose to employ the
accelerated gradient descent [25, 26] to solve the optimization problem, which generates the
solution at the k-th iteration (k ≥ 1) by computing the following proximal operator [20, 19,
21, 12, 37, 3]:

(5)

where R1 = P0,S1 = Q0 and Rk+1 = Pk + αk(Pk − Pk – 1), Sk + 1 = Qk + αk(Qk − Qk–1) for k ≥
1; ηk (k ≥ 1) is set by finding the smallest nonnegative integer mk such that with ηk = 2mk

ηk–1:

(6)

We note that (Rk+1,Sk +1) is in fact a linear combination of (Pk,Qk) and (Pk –1,Qk –1). The
coefficient αk plays an important role in the convergence of the algorithm. As suggested by

[6], we set αk = (tk–1 − 1)/tk, where t0 = 1 and  for k ≥ 1. According to
the theoretical analysis in [6], we present the following convergence result for rMTFL:

Theorem 1. Let (Pk, Qk) be generated by Eq. (5) with a properly chosen ηk satisfying Eq.
(6). Then for any k ≥ 1,
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(7)

where f(·, ·) and (P*,Q*) are respectively the objective function and the optimal solution in
Eq. (2).

3.1 Implementation details
There are two issues that remain to be addressed: how to compute the proximal operator in
Eq. (5) and how to select a proper initial value η0.

Due to the decomposable property of Eq. (5), we can cast Eq. (5) into the following two
separate proximal operator problems:

where ∇Rl(Rk,Sk) and ∇Sl(Rk,Sk) are the partial derivatives of l(R,S) with respect to S and
R at (Rk,Sk). The above proximal operator problems admit closed form solutions with time
complexity of O(dm)[19]:

where  and  denote the i-th row of
Uk and the j-th column of Vk, respectively.

An appropriate choice for η0 is the Lipschitz constant L of the gradient of l(P,Q). However,
the Lipschitz constant L is unknown and calculating it is computationally expensive. Next,
we show how to estimate its lower and upper bounds. Denote by  a block

diagonal matrix with  as the i-th block. Then the Lipschitz constant L is just
the squared maximum singular value of D. According to matrix norm properties [13], we
can bound L as follows:

(8)

We note that D is a block diagonal matrix and it is sparse when m (the number of tasks) is
large, which makes the bounds of L very tight. If we set η0 as the upper bound of L, then we
do not need line search, because when ηk ≥ L, Eq. (6) is always satisfied [6]. Otherwise, line
search is necessary. Although setting η0 as the upper bound of L can eliminate line search, it
may increase the outer iterative steps. On the contrary, it leads to a smaller outer iterative
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steps by setting η0 as the lower bound of L. In our experiments, we use the lower bound of L
to initialize η.

4. Theoretical Analysis
4.1 Basic Assumption

We assume that the responses are given by a linear model plus Gaussian noise1, i.e.,

(9)

where W* is the true weight matrix decomposed as the sum of two underlying true
components P* and Q*:

(10)

(11)

are respectively the training data and responses of the i-th task;

(12)

(13)

are the i.i.d. normal noise and the true evaluation, respectively. Thus, we have

(14)

We also define

(15)

as the index sets for the nonzero and zero rows of P.

4.2 Theoretical Bounds
The following theorem provides a key property of the optimal solution of Eq. (2), which is
critical for our subsequent theoretical analysis:

Theorem 2. Let (P̂, Q̂) be an optimal solution of Eq. (2) for m ≥ 2 and n, d ≥ 1. Let Xi and yi
be defined in Eq. (11); let δi and  be defined in Eq. (12) and Eq. (13), respectively. We
assume that the data is normalized as in Eq. (1). Choose the regularization parameters λ1 and
λ2 as

1For notation simplicity, we assume that the number of training samples of all tasks are the same. However, the following theoretical
analysis can be easily extended to the case with different training sample sizes for different tasks.
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(16)

where t is a positive scalar. Then with probability of at least ,
for any P,Q ∈ ℝd × m, we have

(17)

Based on Theorem 2, we present some performance bounds of our rMTFL model in Eq. (2).
We first introduce some notations to unclutter the equations. Let X ∈ ℝdm × mn be a block
diagonal matrix with Xi ∈ ℝd × n (i ∈ ℕm) as the i-th block. Define a vectorization operator

‘vec’ over an arbitrary matrix A ∈ ℝd × m such that . Then, Eq. (17)
can be rewritten as

(18)

where . Next, we make the following assumption about the training
data and the weight matrix, which generalizes the restricted eigenvalue assumption in [7].

Assumption 1. For a matrix pair ΓP ∈ ℝd × m and ΓQ ∈ ℝd × m, let r and c (1 ≤ r ≤ d, 1 ≤ c ≤
m) be the upper bounds of | (P*)| and | (Q*T)|, respectively, and let β1 and β2 be positive
scalars. We assume that there exist positive scalars κ1(r) and κ2(c) such that

(19)

(20)

where the set (r, c) is defined as

(·) is defined in Eq. (15) and | | denotes the number of elements in the set .

Note that Assumption 1 is related to the restricted eigenvalue assumption which is a critical
condition in [7]. Some previous studies on multi-task learning [22, 10] also make use of
similar assumptions. Our main theoretical result is summarized in the following theorem for
performance bounds.

Theorem 3. Let (P̂, Q̂) be an optimal solution of Eq. (2) for m ≥ 2 and n, d ≥ 1 and take the
regularization parameters λ1 and λ2 as in Eq. (16). Then under Assumption 1, the following

results hold with probability of at least :
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(21)

(22)

(23)

If in addition, the following conditions hold:

(24)

(25)

then with the same probability, the following two sets

(26)

(27)

estimate the true sparsity pattern (P*) and (Q*T), respectively. That is,

(28)

(29)

Theorem 3 provides important theoretical guarantee for rMTFL. Specifically, these bounds
not only measure how well our rMTFL model can approximate the true evaluation values
defined in Eq. (9) [Eq. (21)], but also measure how well our rMTFL model can approximate
the true weight matrices (P*,Q*,W* = P* + Q*) [Eq. (22) and Eq. (23)]. Moreover, under
the assumption that the underlying true weights are above the noise level [Eq. (24) and Eq.
(24)], we can also estimate the true sparsity patterns (i.e., (P*), (Q*T)) with high
probability [Eq. (26) and Eq. (27)].

5. Related Work
Previous studies in [15, 9, 10] also decompose the weight matrix into two components;
rMTFL differs from these work in several aspects:

1. rMTFL employs different regularization terms from the algorithms in [15, 9, 10].
The regularization terms in rMTFL not only have intuitive explanations for feature
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selection and outlier tasks detection (see Figure 1 and detailed explanation in
Section 2), but also have sound theoretical guarantee (see Section 4).

2. rMTFL has the mechanism of detecting outlier tasks, unlike the algorithms in [15,
9]. Although the algorithm in [10] has the ability to detect the outlier, it focuses on
capturing the low rank structure among tasks, while rMTFL has advantages on high
dimensional multi-task feature learning problems. Specifically, in terms of the
evaluation performance, the main difference between our Theorem 2 and Lemma

4.3 in [10] is that the bound of rMTFL is based on , while the
bound of RMTL in [10] is based on ║Q(L ̂ − L)║tr. In practical multi-task learning
problems, the dimensionality is often high and the underlying selected features are
few, that is, the number of elements in (P) can be small, which indicates that

 is small, leading to a tight bound in Theorem 2. However, in the
scenario of a large number of tasks, the relevant tasks may share a low rank
subspace, resulting in a small value of ║Q(L ̂ −L)║tr. Therefore, rMTFL has an
advantage of identifying a few shared features for high dimensional data, while
RMTL in [10] focuses on discovering low rank subspace among a large number of
tasks. Our experimental results in Section 6.4 demonstrate that rMTFL outperforms
RMTL in the high dimensional scenario, and RMTL is preferred when the number
of tasks is large but the dimensionality is low.

3. Unlike the analysis in [10], we provide theoretical bounds to measure the error
between the estimated weights of rMTFL and the underlying true weights.
Moreover, we have theoretically shown under what conditions we can obtain the
underlying true shared features and outlier tasks (sparsity patterns). In addition,
both Theorem 2 and Theorem 3 work with probability of at least

 which is higher than 
presented in Lemma 4.3 and Theorem 4.1 of [10].

4. Each step of the optimization method in [10] involves SVD operation with a time
complexity of O(min(d2m, m2d)), thus it does not scale to large-size problems (e.g.,
the number of tasks and the dimensionality are large). As we show in Section 3.1,
the optimization method of rMTFL has a much lower time complexity of O(dm)
and hence can be applied to large-size problems.

6. Experiments
6.1 Competing Algorithms and Data Sets

Competing Algorithms—We compare our rMTFL algorithm on multi-task regression
problems with seven representative algorithms: ridge multi-task regression (ridge), ℓ1-norm
multi-task regression (lasso), trace-norm multi-task regression (trace), ℓ1,2-norm multi-task
regression (L1,2), dirty model multi-task regression (DirtyMTL) [15], sparse structures and
low rank multi-task regression (SLR) [9] and robust multi-task regression (RMTL) [10]. All
eight algorithms employ a quadratic loss function. Matlab codes of the rMTFL algorithm are
available online [43].

Synthetic data—The synthetic data is generated as follows: we set the number of tasks m
= 30 and each task has ni = 200 samples in d = 200 dimension; each entry of the data matrix
Xi ∈ ℝd × ni(i ∈ ℕm) is sampled from the distribution N(0,25) and it is normalized such that
Eq. (1) is satisfied; each entry of the ground truth weight matrices P ∈ ℝd × m and Q ∈
ℝd × m is generated from the distribution N(0,64); we set the first 160 rows of P and the first
20 columns of Q as zero vectors; the elements of the noise vector δi ∈ ℝni(i ∈ Nm) are
sampled from the distribution N(0,1); the response yi ∈ ℝni(i ∈ ℕm) is computed via
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. Under this setting, we have constructed 20 related tasks and 10 outlier
tasks.

Real-world Data—We adopt two data sets for our multitask regression evaluation: School
data2 and MRI data.

The School data set is from the Inner London Education Authority (ILEA), consisting of
examination records of 15362 students (samples) from 139 secondary schools in years 1985,
1986 and 1987. Each sample is represented by 27 binary attributes which include year,
gender, examination score, etc., plus 1 bias attribute (In our experiments, the bias attribute is
not used). The response (target) is the examination score. So we have 139 tasks with each
task corresponding to one school.

The MRI data set is from the ANDI database. It contains MRI data of 675 patients
preprocessed using FreeSurfer3. The MRI data include 306 features which can be
categorized into 5 types: cortical thickness average, cortical thickness standard deviation,
volume of cortical parcellation, volume of white matter parcellation, and surface area. The
response (target) is the Mini Mental State Examination (MMSE) score coming from 6
different time points: M06, M12, M18, M24, M36, and M48. We remove the samples which
fail the MRI quality controls and with missing entries. After the preprocessing above, we
have 6 tasks with each task corresponding to a time point and the sample sizes
corresponding to 6 tasks are 648, 642, 293, 569, 389 and 87, respectively.

6.2 Experimental Setting
In our experiments, we terminate all the algorithms when the relative change of the two
consecutive objective function values is less than 10−5. We randomly split the samples (both
synthetic and real-world data sets) from each task into training and test samples with
different training ratios. We evaluate eight multi-task regression algorithms on the test data
set, using normalized mean squared error (nMSE) and averaged means squared error
(aMSE) as the regression performance measures [39, 10, 42]. For each training ratio, both
nMSE and aMSE are averaged over 10 random splittings of training and test sets. All
parameters of the eight algorithms are tuned via 3-fold cross validation.

6.3 Synthetic Data Experiments
We set the training ratio of synthetic data generated in Section 6.1 as 20% and 30%,
respectively. Experimental results (averaged nMSE and aMSE) are shown in Figure 2. We
observe that rMTFL outperforms all the other competing algorithms, which demonstrates
the effectiveness of rMTFL for high dimensional problems with outlier tasks.

6.3.1 Illustration of Outlier Tasks Detection—Next, we further demonstrate the
outlier tasks detection capability of rMTFL. We firstly generate another synthetic data set
following the same procedure in Section 6.1, except that each task has ni = 20 samples.

Then, we set  and run rMTFL on this
synthetic data until the relative change of the two consecutive objective function values is
less than 10−5. Figure 3 shows the results of P and Q obtained by rMTFL. Specifically, there
are 164 zero rows in P and 21 zero columns in Q. These results demonstrate the capability of
rMTFL in simultaneously capturing the shared features among tasks (the nonzero rows of P)
and discovering outlier tasks (the nonzero columns of Q).

2http://www.cs.ucl.ac.uk/staff/a.argyriou/code/
3www.loni.ucla.edu/ADNI/
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6.3.2 Scalability Studies on rMTFL—We conduct scalability studies on two algorithms
which are capable of identifying outlier tasks: rMTFL and RMTL [10], when the dimension
and the number of tasks increase. We firstly fix m = 20 and let the dimension d increase as
{50i},i = 0,…,5. Then we run rMTFL and RMTL on the synthetic data generated following
the same procedure in Section 6.1. The computational time (CPU time) vs. dimension plot is
shown in the left subfigure of Figure 4. Similarly, we fix d = 100 and let the number of tasks
m increase as {10i},i = 0, …, 5. Then we run rMTFL and RMTL and show the
computational time (CPU time) vs. the number of tasks plot as in the right subfigure of
Figure 4. We observe that, the CPU time of both rMTFL and RMTL increases when the
dimension d (or the number of tasks m) increases. However, the CPU time of RMTL
increases significantly faster than rMTFL. Because the SVD computation with a time
complexity of O(min(d2m,m2d)) involved at each step of RMTL is computationally much
more expensive than the computation of the ℓ1,2-norm proximal operator with a time
complexity of O(dm) involved at each step of rMTFL. This demonstrates the superior
scalability of rMTFL over RMTL.

6.4 Real-world Data Experiments
For the School data set, we respectively set the training ratio as 16%, 24%, 32%, and for the
MRI data set, we respectively set the training ratio as 15%,20%,25%. Table 1 and Table 2
show the experimental results in terms of averaged nMSE and aMSE.

From these results, we have the following observations: (1) rMTFL outperforms all the other
algorithms on the MRI data set. This may be due to the fact that for the MRI data set, the
dimension (d = 306) is high especially when compared with the number of tasks (m = 6). (2)
For the School data set, the multi-task learning algorithms based on trace norm (low rank)
regularization (trace, SLR, RMTL) outperform the multi-task learning algorithms based on
ℓ1,q-norm (feature selection) regularization (lasso, L1,2, DirtyMTL, rMTFL). This may be
due to the fact that the number of tasks (m = 139) of the School data set is larger compared
with dimension (d = 27). In this case, restricting all tasks to share a low rank subspace is
more reasonable than restricting all tasks to share a few common features. (3) On both data
sets, the performance of rMTFL is the best among the feature selection based multi-task
learning algorithms (lasso, L1,2, DirtyMTL, rMTFL). This may be due to rMTFL's
capability of simultaneously discovering the shared features and identifying outlier tasks.

6.4.1 Outlier Tasks Detection—The proposed rMTFL algorithm is capable of capturing
the shared features among tasks and detecting outlier tasks. We next evaluate the outlier
tasks detection performance on the MRI data set. Firstly, we run rMTFL on the whole MRI
data set and observe that the fourth task is identified as an outlier task. Then, we remove the
fourth task, obtaining a new multi-task regression problem with the remaining 5 tasks.
Finally, we run ℓ1,2-norm multi-task regression on this ‘clean’ multi-task regression
problem. We call this two-stage procedure as 2S-rMTFL. The test errors (nMSE and aMSE)
on the MRI data set are shown in Figure 5. We can clearly see that after removing the outlier
tasks, 2S-rMTFL outperforms L1,2 and rMTFL, which demonstrates the effectiveness of
rMTFL in detecting outlier tasks.

7. Conclusions
In this paper, we propose a Robust Multi-Task Feature Learning algorithm (rMTFL) to
simultaneously capture the shared features among multiple related tasks and detect outlier
tasks. We analyze the theoretical properties of rMTFL. Our analysis shows how well rMTFL
can approximate the true evaluation, and measure how well rMTFL can approximate the
underlying true weights. Moreover, we show that rMTFL can obtain the true sparsity
patterns if the underlying true weights are above the noise level. In addition, the
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optimization problem involved in rMTFL can be solved efficiently, and rMTFL scales to
large-size problems. In the future work, we will extend our rMTFL algorithm to multitask
learning problems with general loss functions and apply rMTFL to other real-world
applications.
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Appendix
To prove the theorems presented in Section 4.2, we first provide some basic lemmas and
then give the detailed proof.

Lemma 1. For any matrix pair P,P̂ ∈ ℝd × m, we have the following inequality:

(30)

Proof. According to Eq. (15),we have

It follows that

(31)

We note that . Substituting Eq. (31) into Eq.
(30), we verify Lemma 1.

Lemma 2. Let δi be I.I.D. random variables with δi ～ N(0,σ2), i ∈ ℕn and . Then
we have

is a standard normal random variable, i.e., υ ～ N(0,1).

Proof. Since δi are I.I.D. random variables with δi ～ N(0, σ2), i∈ ℕn, υ must be a normal
random variable. Next, we need to show that the mean (E) and variance (V) of υ are
respectively 0 and 1, as given below:
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Lemma 3. Let χ2(d) be a chi-squared random variable with d degrees of freedom. Then, the
following holds:

Proof. By the Wallace inequality [33], we obtain

(32)

where N is a standard normal random variable and . Lemma 3 follows

directly from Eq. (32) and inequality .

Proof of Theorem 2
Proof. Since (P̂, Q̂) is an optimal solution of Eq. (2), the following holds for any P and Q:

Substituting Eq. (14) into the above inequality, we have

(33)

where Z = [X1δ1, …,Xmδm] ∈ ℝd × m with its (j,i)-th entry given by

(34)
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and  denotes the (j, k)-th entry of data matrix Xi for the i-th task. It follows from Eq. (1)
that

(35)

are i.i.d. standard normal random variables (see Lemma 2), i.e., υji ～ N(0,1). Thus,

is a chi-squared random variable with dm degrees of freedom, and it follows from Lemma 3:

which is equivalent to the following:

(36)

Under the event in Eq. (36), we bound  as

(37)

Similarly, under the event in Eq. (36), we have

(38)

Combine Eq. (33), Eq. (37), Eq. (38) and Lemma 1, we verify Theorem 2.

Proof of Theorem 3
Proof. Let ΓP = P̂ − P, ΓQ = Q̂ − Q. Setting P = P*, Q = Q*, P* and Q* are the true weight
matrices in Eq. (10), we have XT vec(P + Q) = XT vec(P* + Q*) = vec(F*). Following Eq.
(18), we obtain

(39)

Under Assumption 1, we have
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(40)

(41)

Substituting Eq. (40) and Eq. (41) into Eq. (39), we obtain

which directly leads to Eq. (21).

Following Assumption 1, we have

which imply that

(42)

(43)

Substituting Eq. (42) and Eq. (43)) into Eq. (40) and Eq. (41), and considering Eq. (21), we
can easily verify Eq. (22) and Eq. (23).

To prove Eq. (28), we need to show the following two:

(44)

(45)

We first prove (a) by contradiction. Assume there exists a j1 such that .
Then according to the definitions of  and (P*), we have

which contradicts with the following fact:
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(46)

We thus verify (a). Similarly, if we assume there exists a j2 such that , then
using the condition in Eq. (24) and the definition of  in Eq. (26), we have

which contradicts with Eq. (46), thus (b) holds. Combining (a) and (b), we verify Eq. (28).
Similarly, we can prove Eq. (29).□
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Figure 1.
Illustration of weight matrix decomposition for rMTFL, where squares with white
background denote zero entries. There are 5 tasks, where the fourth task is an outlier task.
Please refer to the text for detailed explanation.
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Figure 2.
Averaged test error (nMSE and aMSE) vs. training ratio for synthetic data.
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Figure 3.
Figures of P, Q and W = P + Q generated from rMTFL on the synthetic data. Black points
correspond to zero entries. Note that the figures are clockwise rotated 90 degrees.
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Figure 4.
CPU time vs. dimension (left) and number of tasks (right) plots for rMTFL and RMTL. The
CPU time is averaged over 10 independent runs.
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Figure 5.
Test errors (nMSE and aMSE) on the MRI data set. See the texts for more details.
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