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Abstract
Performing daily activities without assistance is important to maintaining an independent
functional lifestyle. As a result, automated activity prompting systems can potentially extend the
period of time that adults can age in place. In this paper we introduce AP, an algorithm to
automate activity prompting based on smart home technology. AP learns prompt rules based on
the time when activities are typically performed as well as the relationship between activities that
normally occur in a sequence. We evaluate the AP algorithm based on smart home datasets and
demonstrate its ability to operate within a physical smart environment.
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There will be dramatic growth in the aging population over the next 40 years1 as well as
shortages in healthcare resources and personnel2. Given the prohibitive costs of formal
healthcare and institutionalization, along with older adults’ desire to ‘age in place’3, there is
a mounting need for the development of assistive technologies to extend the amount of time
individuals can live independently in their homes. In recent years, rapid advancements have
been made in the development of assistive smart environment technologies geared toward
increasing older adults’ functional independence and improving health outcomes and well-
being. These technologies include socially and physically assistive robots4.5, unobtrusive in-
home monitoring6, complex activity recognition7, home telecare8, and reminder systems9.

As the general population ages, the number of older adults with mild cognitive impairment
(MCI) is growing10. MCI has been defined as an intermediate state between normal aging
and dementia11 and is characterized by impairments greater than expected for age in
memory and other cognitive abilities with relative sparing of functional abilities. Despite
intact abilities to carry out basic functional tasks, people with MCI often experience
difficulty carrying out instrumental activities of daily living (lADLs), which are cognitively
complex functional tasks like using the telephone, preparing meals, taking medications, and
managing money12. Activities dependent on memory, executive functioning, and working
memory such as medicine use and financial management tend to be most difficult for
individuals with MCI13,14; however, in order to function independently at home, individuals
need to be able to complete these lADLs15.

When individuals with cognitive impairment fail to initiate or complete everyday lADLs,
caregivers are often responsible for monitoring lADLs and providing reminders or prompts
as needed. Broadly defined, ‘prompts’ are any form of verbal or non-verbal intervention
delivered to an individual on the basis of time, context, or acquired intelligence that helps in
successful completion of an activity9. These are time consuming and burdensome tasks that
are often associated with negative effects for the caregiver’s own health16. Smart
environment technologies that help people with MCI carry out their lADLs by detecting
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when assistance is needed and automatically delivering reminders or prompts have the
potential to reduce caregiver burden and allow aging adults to retain their functional
independence longer.

A smart environment is any physical environment (for instance, home, workplace, shopping
mall, hospital) that senses the state of the resident and the physical surroundings and acts in
order to ensure the well-being of the resident and the environment17. Research in smart
environments has gained popularity in the last decade and the potential use of smart home
technology for health monitoring in an individual’s own home is viewed as
‘extraordinary’18. The goal of the CASAS (Center for Advanced Studies in Adaptive
Systems) smart home project at Washington State University is to design a ‘smart home in a
box’ that is simple to install and performs key functions such as activity recognition,
monitoring, and prompting that customize behavior to the resident with little or no effort on
the part of the resident.

In this paper, we describe a new method to perform smart home-based automated activity
prompting that customizes its behavior to the resident with no input on their part.
Specifically, our technology utilizes data collected from an individual’s home to learn rules
for prompting the individual to initiate important daily activities such as taking medicine,
exercising, calling their children, or any other activity for which data is available. Reminder
systems have long been in existence and range from simple alarm clocks to complex
systems that are based on rules, planning or machine learning. Rule-based reminder systems
allow a user to specify rules based on time, context and preferences19,20. More adaptive
reminder systems integrate reinforcement learning21, which requires a pre-specified
complete schedule of activities but can make adjustments without direct user feedback.
Other approaches use dynamic Bayesian networks22, Markov decision processes23, and
Markov-based planning24 to coordinate and give time prompts for these pre-scheduled
activities. Active learning has been employed as well25 to interactively manage calendar
synchronization.

While reminder systems have been widely explored, few take into account an individual’s
behavioral patterns to provide context-aware prompts, despite the fact that studies indicate
activity-aware prompts offer significant advantages over traditional time-based prompts26.
Our unique contribution to the area of prompting systems is to design an approach that is
completely automated, based on activity recognition. We assume that sensor data is
collected in a home while an individual performs his or her daily routine. We also assume
there are instances of the activities requiring prompting (when the individual correctly
performed the activity or were prompted by a caregiver to initiate the activity). Our
algorithm, called AP for Activity Prompting, learns rules that define when the activities
normally occur and utilizes these rules to automate prompting. We evaluate our algorithm
based on real data collected in CASAS smart environments.

Methods
Our AP activity prompting system is designed as part of a larger CASAS smart home
project. We define a smart environment as an intelligent agent that utilizes information
collected about the resident and the physical surroundings to improve the experience of the
individual in the environment17. We design the CASAS smart home to be easily installed
and usable without customization. The CASAS ‘smart home in a box’ kit fits within a single
small box (Figure 1). The box contains wireless infrared motion sensors and magnetic door
sensors that are placed throughout the home. The sensors generate event messages when
motion or door usage is detected. Messages are collected via the CASAS mesh network,
processed by the CASAS publish/subscribe middleware, and stored in an SQL (Structured
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Query Language) database on a small, low-power computer. To date, we have installed over
30 smart home kits. Installation takes approximately two hours and removal is completed in
30 minutes.

In order to learn activity prompt timings directly from sensor data, the AP activity
prompting algorithm operates together with another software agent, called AR (Activity
Recognition). Sensor events occurring in the environment are passed to AR, which assigns
an activity label to the event. These activity labels are passed to AP, which provides the
context necessary to decide if a prompt is necessary. Both systems are trained on labeled
sensor data. AR learns classifiers for predicting the activity label of a sensor event. AP
learns patterns for predicting when an activity will occur relative to other activities and time
landmarks. Here we describe the AR and AP algorithms.

Activity Recognition (AR)
Any smart environment that focuses on the needs of its residents requires information about
the activities that are being performed by the resident. At the core of these systems, then, is
activity recognition, which is a challenging and well-researched problem27,28. Activity
recognition plays a critical role with prompting. First, some activities requiring prompting
are correlated with other activities (for instance, washing dishes occurs after eating,
medicine should be taken during dinner). Secondly, an intelligent prompter needs to
recognize when the prompted activity has been performed and suppress further prompting in
these situations.

The goal of activity recognition is to map a sequence of sensor data to a corresponding
activity label. The CASAS activity recognition software, called AR, provides real-time
activity labeling as sensor events arrive in a stream. To do this, we formulate the learning
problem as that of mapping the sequence of the k most recent sensor events to a label that
indicates the activity corresponding to the last (most recent) event in the sequence. The
sensor events preceding the last event define the context for this last event.

Data collected in a smart home consists of events generated by the sensors. These are stored
as a 4-tuple: <Date, Time, Sensorld, Message>. For example, consider the following
sequence of sensor events.

2011–06–15 03:38:23.271939 BedMotionSensor ON

2011–06–15 03:38:28.212060 BedMotionSensor ON

2011–06–15 03:38:29.213955 BedMotionSensor ON

These events could be mapped to a ‘Sleep activity’ label. To provide input to the classifiers,
we define features describing data point i that correspond to a sensor event sequence of
length k. The vector x, includes values for 25 features (Table 1). Each label yi corresponds
to the activity label associated with the last sensor event in the window. A collection of xi
and the corresponding yi are fed into a classifier to learn the activity models in a
discriminative manner, i.e., a classifier is learned that map a sensor event sequence to a
corresponding activity label. Although a fixed window size k could be identified that works
well for a given data set, AR dynamically adjusts the window size based on the most likely
activities that are being observed and the activity duration that is typical for those activities.

Our AR algorithm uses a support vector machine (SVM) method for real-time activity
recognition29. A support vector machine identifies a hyperplane (or set of hyperplanes)
which separates points into different classes with the largest possible distances between the
hyperplanes and the data points. Researchers have reported results from alternative machine
learning models30–34, including Bayes classifiers, hidden Markov models, decision trees,
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and conditional random fields. In an earlier experiment35 we tested multiple models for their
ability to recognize activities in real time from streaming data. We found that SVMs
consistently achieved the strongest performance in those cases and thus use SVMs as the
basis for the activity recognition approach described in this paper. In addition, SVMs offer
advantages in terms of determining the degree of fit between a data point and a class, which
can be useful when identifying anomalous points. However, SVMs are costly in terms of
training time and thus methods are needed to reduce these costs.

We use the LibSVM implementation36 with the one-vs-one paradigm and a radial basis
function kernel with default parameter settings. The one-vs-one paradigm learns a set of
classifiers that distinguish every pair of classes. The classifier with the highest output
function assigns the identified class label to the data point. Experiments conducted by Hsu
and Lin37 reveal that the one-vs-one paradigm is one of the most practical multi-class SVM
approaches. Though we test our methodology in this paper using an SVM, our methodology
can make use of any classifier.

Representing prompt rules
The goal of our automated prompting system is to automatically learn rules that describe
when an activity is typically initiated. Once the rules are learned, they can be used to issue
prompts at the appropriate time or context. Activities that are part of an individual’s regular
routine are usually initiated based on wall-clock time or based on activity context. As an
example of the first pattern, one of our smart home residents requested reminders to ‘pick up
her grandchildren from school at 3pm every Tuesday afternoon’. However, she also needed
a reminder to ‘take her medicine while eating breakfast’, which is an example of the second
type of prompting pattern.

AP learns patterns for each prompting activity, PA, as a function of another reference
activity, RA, with which it is highly time-correlated. AP models the relative time offset
between initiation of RA and PA as a Gaussian distribution with a corresponding mean and
standard deviation. The specific format for an activity pattern is thus:

<activity> [<relative_activity> <mean (s)> <standard_deviation (s)>]+

where the “+” means one or more relative activities.

Consistent with the earlier discussion, the possible relative activities for PA include all other
activities the resident performs, combined with periodic clock-based activities. The periodic
clock-based activities include the start of each year, month, day, week, and hour, as well as
the start of each specific month of the year (January, February, .., December) and each
specific day of the week (Sunday, .., Saturday). This way, activity timings can be learned
both for activities that occur at regular times and activities whose occurrence is relative to
another activity. Each activity pattern is represented by the name of the prompted activity
PA, the name of the relative activity RA, the mean time delay in seconds between RA and
PA, and the time standard deviation in seconds. For example, if the activity ‘Pick up
grandchildren’ takes place every Tuesday around 2:40pm (+/− 5 minutes), the associated
prompt pattern would be represented as:

Pick_up_grandchildren Activity_Tuesday 52800 300

If the individual picked up her grandchildren every Tuesday and Thursday around 2:40pm,
then the pattern would be:

Pick_up_grandchildren Activity_Tuesday 52800

300 Activity_Thursday 52800 300
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On the other hand, if the individual needs a reminder to take medicine about ten minutes (+/
− 5 minutes) after breakfast begins each morning, then the corresponding pattern would be:

Take_Medicine Eat_Breakfast 600 300

Learning prompt rules
For each prompting activity PA, AP learns a prompt rule using a two-step process: consider
patterns based on a single relative activity, and then consider patterns based on multiple
relative activities. All of these possibilities are evaluated (as described below) and the
highest-ranked pattern is chosen for the prompting rule. First, we consider the method for
evaluating patterns based on a single relative activity. AP must select a relative activity other
than PA from among the activities the resident performs, along with the periodic clock-
based activities described earlier. An ideal relative activity RA is one that always occurs
before each instance of the prompting activity PA and always at the same (ideally small)
time before PA. Therefore, the score for a relative activity RA should increase proportional
to the number of times it co-occurs with PA, should decrease proportional to the variance in
the time delay between each RA and PA, and should decrease proportional to the absolute
time delay between each RA and PA. Therefore, each potential relative activity RA is
evaluated according to three properties: (i) the likelihood that activity PA occurs after each
activity RA, (ii) the confidence in the distribution of the occurrence times of PA relative to
RA, and (iii) the mean delay between RA and PA.

Combining all these factors, we arrive at the following promptability measure P:

[1]

Property 1 is essentially the probability that RA occurs before each instance of PA. We
estimate this probability from the dataset. Given m instances of relative activity RA in the
sensor data, and n instances of activity PA occurring between two consecutive RAs, we
estimate the occurrence likelihood as n/m. This forms the first factor of our overall
promptability score P [1] for RA as the relative activity for PA.

Property 2 measures the variance in the delay between the two activities. Again, we want
minimal variance, so this factor will be in the denominator of [1]. There are two
contributions to the variance in the delays. The first contribution is the actual variance in the
distribution of the delays between each co-occurrence of RA and PA. Over all such
occurrences of PA preceded by RA, AP models the time delay (in seconds) between the two
activities as a Gaussian and computes the corresponding mean μ and standard deviation σ
for these delays. We use the standard error as an estimate of the confidence (smaller the
better) that PA follows μ seconds after RA. This comprises the second factor in P below,
which decreases P based on increased distribution error. The second contribution to the
delay error involves the (m-n) occurrences of RA that are not followed by an occurrence of
PA. We estimate this contribution to the distribution error as the standard error based on a
variance of one and a sample size of (m-n). This comprises the third factor in P below,
which decreases P based on increased distribution error due to the absence of a PA after RA.

Property 3 prefers a smaller mean delay time μ. Therefore, we include the fourth factor in P
below, which decreases P as the mean delay increases.

The resulting promptability measure (P) estimates the correlation between the two activities
and thus represents how well RA plays the role of the relative activity for PA. If m=0 or
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n=0, we set P=0. If σ=0, we set σ=1. If μ=0, we set μ=1. If (m-n)=0, we set (m-n)=1. The
relative activity with the highest P value, along with its associated mean and standard
deviation, are output as the activity’s pattern. If two relative activities have the same P
value, we prefer the one with the smaller mean.

The second step in the process is to consider rules where the prompt activity PA occurs
relative to several other relative activities, not just one. While prompt patterns can be
learned as a function of multiple relative activities, considering all subsets of activities as
potential patterns is not computationally tractable. However, AP does consider such patterns
involving subsets of the months of the year (January, February, …, December), the days of
the week (Sunday, Monday, …, Saturday), and the hours of the day, since many activities
are scheduled relative to specifc sets of months, days or hours (for instance, leaving for work
at 7am Monday through Friday). To accomplish this, we consider three additional relative
activities: month-of-year, day-of-week and hour-of-day, where their promptability P values
are computed as the sum of the above-average P values of each individual month, day or
hour within the set. If one of these multiple relative activity patterns wins out over all the
others, then the output pattern consists of all the individual month, day or hour relative
activities whose frequency is in the upper half of the range of normalized frequencies. So,
using our example of leaving for work at 7am Monday through Friday, we would consider
the day-of-week relative activity by summing the above-average P values for each
individual day of the week. AP would detect that the frequencies for Sunday and Saturday
are low, and these days are thus not included. Therefore, the final pattern would look as
follows (assuming 7am +/− 15 minutes):

Leave_for_Work Activity_Monday
25200 900

Activity_Tuesday
25200 900

Activity_Wednesday
25200 900

Activity_Thursday 25200
900

Activity_Friday
25200 900

Monitoring and prompting
In monitoring mode, AP determines if a prompt should be issued for one of the activities
based on the current time, the activity context, and the prompting rules that were learned.
When a prompt is needed then AP sends a message to the CASAS middleware with a
prompt command and (optionally) the prompt message. The CASAS middleware then
handles issuing the prompt to the appropriate device, such as a touch-screen computer
located in the home or a mobile device (Figure 2).

In order to determine if a prompt should be issued, AP needs two pieces of information: the
current date and time and occurrences of activities as detected by AR. The CASAS
middleware issues a chime each minute which updates AP on the current date and time and
can use this to monitor appropriate time-based relative activities. The CASAS middleware
also forwards AR-generated activity labels that AP uses to determine if a prompted activity
PA has been performed or if its relative activity RA has been initiated.

If the prompter detects the occurrence of a relative activity RA that is referenced in the
pattern of one of the prompt activities PA, the prompter then watches for the beginning of
PA. If PA does not occur within (μ–σ) seconds, where μ and σ are the mean and standard
deviation time delay based on the pattern, then the prompter issues a first prompt for the user
to execute this activity PA. If another σ seconds go by without activity PA being observed
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by AR, then the prompter issues a second prompt for PA. Finally, if yet another σ seconds
go by without observing activity PA, the prompter issues a third and final prompt for PA,
and then returns to watching for the next occurrence of the relative activity.

The prompts are sent to the CASAS middleware and consist of the activity name and the
prompt repetition level (1, 2 or 3). The system assumes that these prompt messages will be
appropriately handled by another process, which will most likely play the audio file named
<activity>_<level>. mp3, and then provide a pop-up alert to the user with pre-specified
response buttons (for instance, ‘OK’, ‘Later’, ‘No’). The text, image and audio files can be
provided in advance by the user or the user can decide to use messages that are
automatically generated by AP. Finally, AP will cancel prompts if AR detects the activity
has been initiated or the user selects an appropriate response.

Results
We validate the ideas described in this paper on sensor event datasets collected in CASAS
smart homes. First, we want to evaluate the ability of AP to learn prompting rules that
reflect accurate times when the activity would be expected to occur. Second, we want to
evaluate the ease with which AP operates in the CASAS environment. To address the first
goal we test the AP algorithm on sensor event datasets collected from three smart apartment
testbeds (Figure 3). Each of the smart apartments housed one older adult (age 65+) resident
with no evidence of cognitive impairment. During the six months that we collected data in
each of the apartments, the residents lived in the apartments and performed their normal
daily routines.

Human annotators tagged sensor events with the corresponding activities to provide ground
truth for our evaluation, after looking at a visualization of the data and interviewing
residents to gain insights on their daily activities. The 12 activities that were annotated
(Table 2), and an activity occurrence is defined as an uninterrupted sequence of sensor
events annotated with that activity. The AR activity recognition algorithm was tested using
three-fold cross validation for each of the datasets B1, B2 and B3, and reporting accuracy as
a ratio between the number of data points correctly classified to the total number of data
points.

To evaluate AP’s prompting performance, for each dataset we used the first 2/3 of the data
to learn the prompt rules and tested the prompt timings on the remaining data. For each
dataset we report performance in terms of True Positives (the individual performed the
prompted activity at the time predicted by the prompting rule), False Positives (the
individual did not perform the prompted activity at the predicted time), and False Negatives
(the individual performed the prompted activity at a time not predicted by the prompting
rule). We do not report True Negatives, because they are difficult to define in this context.

In order to generate a baseline for comparison, we implemented two alternative mechanisms
for generating prompts. The first is a time-based prompt (TB), which is a prompting strategy
that has been considered by other researchers27. Using the time-based strategy, the start time
for each prompting activity PA is estimated based on a Gaussian distribution over the
number of seconds the activity is initiated past midnight. The second, activity-based
approach (AB) utilizes only activity sequence information, similar to an approach that was
introduced by researchers to predict UNIX commands38. In this approach, a relative activity
RA is identified for each prompting activity PA, where RA is the activity that occurs most
often just prior to PA. A Gaussian distribution is then used to model the relative time
between the initiations of the two activities. In both cases, initial prompts would be
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delivered at the distribution mean minus one standard deviation, then at the distribution
mean, and then at the distribution mean plus one standard deviation.

In all three datasets, the AP approach results in more true positives and fewer false negatives
than either the TB or AB approaches (Table 3). The TB approach had fewer false positives
than AP or AB, mainly because TB can only predict activities once per day. So, while TB
will perform poorly for activities that occur more than once per day, TB will also avoid
more false positives when activities occur only once per day or less often. AP has fewer
false positives than AB in datasets B1 and B2, but more false positives in dataset B3.
Overall, most actual occurrences of an activity are correctly predicted by AP, but the
patterns learned by AP tend to over-generalize (i.e., more false positives). The activity
occurrences that AP did not predict would occur seem to be mostly due to the high variance
in the start time of most activities.

In our final experiment we integrate AP into the CASAS middleware and test the prompt
learning and generation ability in a physical smart environment setting. In this case, we
introduced two activities that are performed on a regular basis: ‘LeaveLab’ and
‘PrepareForMeeting’. In this setting AP received sensor messages from the CASAS
middleware as well as chimes for each minute that passed. When the time arrived to prompt
for one of the selected activities, AP sent a prompt message with the corresponding activity
name to the CASAS middleware. CASAS, in turn, sent the corresponding prompt text and
audio files to the touch screen device (Figure 2). The users in the lab were able to select a
response on the touch screen if desired. AP correctly repeated the prompts until the activity
was detected through AR, all of the prompts had been issued, or it heard a message to cancel
the prompt through the middleware because of a user response. This experiment
demonstrates that the AP system can successfully work with the smart home components to
interact with residents in delivering a customized prompt. Although the prompt was
delivered to a touch screen in this experiment, it can be delivered to other media as well,
including mobile devices. We will evaluate the effectiveness of the technology for
prompting in a mobile setting as part of our future work.

Discussion
The results of our experiments indicate that activities can be predicted when data is available
that is consistent with the normal desired behavioral routine. The need for activity
prompting is particularly great for individuals with memory impairment. However, such
individuals are less likely to have a a large corpus of complete, normal routine data from
which activity timings can be learned. For practical use, a data-driven activity prediction
system would need to be implemented before memory difficulties arise in order to obtain the
necessary data. Alternatively, a caregiver could prompt the individual through a desired
routine on a daily basis until sufficient complete data is collected. The amount of data that is
required to identify activities and learn their timings depends on the number of activities
being monitored and the normal variation in an individual’s routine. Anecdotally, we have
found that two weeks of complete data is sufficient for modeling the set of activities
analyzed in this paper.

This work represents one of the first attempts to perform data-driven automation of activity
prompting. There are a number of methods that can be explored to refine the approach that is
described here. We note, for example, that the number of false positives generated by AP is
high, which might be regulated by only issuing prompts with a high confidence value based
on activity occurrence frequency. Furthermore, the learned rules are based on two main
factors: selection of a relative activity and modeling of time offsets between the predicted
activity and the relative activity. In many situations there could be a number of additional
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factors including time offset from secondary relative activities, the state of the environment,
and external events such as weather and holidays. We will explore alternative learning and
forecasting algorithms that can identify likely activity occurrence times from this larger set
of influencing features.

Another factor that influences performance is the robustness of activity recognition. In this
paper, we evaluated AR and AP in single-resident homes. The task of activity recognition
becomes more challenging in homes with multiple residents and pets. The performance of
an activity recognition algorithm will also depend upon the number, the complexity, and the
similarity of activities that need to be distinguished and tracked. We will continue to refine
and evaluate activity recognition in increasingly complex settings. We will also consider the
usefulness of AR and AP using smart phone sensors instead of, or in addition to, smart home
environmental sensors.

Predicting the timing of activities in order to deliver automated prompts is a relatively new
area of investigation. In addition to designing techniques to address this problem, work is
also needed to define appropriate performance measures. In this study we evaluated
performance using historic data and based on whether the activity was performed at the
predicted time or not. In the future we will consider measures that offer greater sensitivity
such as the actual time difference between activity prompt and activity performance and the
direction of the error (overly-anticipatory or overly-delayed prompts). We also intend to test
AP in homes with older adult residents to evaluate the usefulness of the prompt timings and
delivery mechanisms.

Conclusions
In this paper we introduce an algorithm to automate the creation of rules to prompt
individuals for activity initiation. Such prompts can be valuable for individuals who have
difficulty remembering important daily activities or who want to introduce new healthy
behaviors into their routine. Unlike previous approaches, AP automatically creates prompt
rules from data that identify prompt timings based on the wall-clock time the activity is
typically performed together with its temporal relation to other activities. Because AP is part
of a larger smart home project, it utilizes sensor events and activity recognition software to
learn the rules, to issue the automated prompts, and to monitor whether the prompted
activities are performed.

We evaluate the performance of AP on smart home datasets and find that our automated
prompt timings outperform prompts that are based solely on wall-clock time or on activity
sequences. We also demonstrate how AP can be integrated and used within the larger
CASAS smart home system to automatically generate prompts in a physical smart
environment setting.
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Figure 1.
CASAS ‘smart home in a box’ kit (left) and smart home installation site (right)
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Figure 2.
CASAS prompts can be sent to a touch-screen device (left) or to a mobile device (right). The
text and audio content can be automatically generated, and the user may choose to respond
to the prompt or ignore it
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Figure 3.
The sensor layouts (black circles) and doors (black rectangles) for the three apartments:
B1(top left), B2 (top right), and B3 (bottom)

Holder and Cook Page 14

Gerontechnology. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Holder and Cook Page 15

Table 1

The feature vector describing a data point

Feature # Value

1..16 #Times each sensor generated an event
in the sequence (1 6 unique sensors)

17..20 Time of day at the beginning of the
sequence (morning, afternoon, evening,
night)

21..24 Time of day at the end of the sequence

25 Time duration of the entire sequence
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