
Learning Incoherent Sparse and Low-Rank Patterns from
Multiple Tasks

Jianhui Chen,
Arizona State University

Ji Liu, and
Arizona State University

Jieping Ye
Arizona State University

Abstract
We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks.
Our approach is based on a linear multi-task learning formulation, in which the sparse and low-
rank patterns are induced by a cardinality regularization term and a low-rank constraint,
respectively. This formulation is non-convex; we convert it into its convex surrogate, which can
be routinely solved via semidefinite programming for small-size problems. We propose to employ
the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the
optimization formulation, the objective function is non-differentiable and the feasible domain is
non-trivial. We present the procedures for computing the projected gradient and ensuring the
global convergence of the projected gradient scheme. The computation of projected gradient
involves a constrained optimization problem; we show that the optimal solution to such a problem
can be obtained via solving an unconstrained optimization subproblem and an Euclidean
projection subproblem. We also present two projected gradient algorithms and analyze their rates
of convergence in details. In addition, we illustrate the use of the presented projected gradient
algorithms for the proposed multi-task learning formulation using the least squares loss.
Experimental results on a collection of real-world data sets demonstrate the effectiveness of the
proposed multi-task learning formulation and the efficiency of the proposed projected gradient
algorithms.

Keywords
Multi-task learning; Low-rank and sparse patterns; Trace norm

1. INTRODUCTION
In the past decade there has been a growing interest in the problem of multi-task learning
(MTL) [Caruana 1997]. MTL aims to enhance the overall generalization performance of the
resulting classifiers by learning multiple tasks simultaneously in contrast to the single-task
learning (STL) setting. It has been applied successfully in many areas of data mining and

© 2000 ACM

Author's address: J. Chen, J. Liu and J. Ye, Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Computer
Science and Engineering, School of Computing, Informatics, and Decision System Engineering, Arizona State University, Tempe, AZ
85287, jianhui.chen@asu.edu, ji.liu@asu.edu, jieping.ye@asu.edu..

General Terms: Algorithms

NIH Public Access
Author Manuscript
ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

Published in final edited form as:
ACM Trans Knowl Discov Data. 2012 February 1; 5(4): 22. doi:10.1145/2086737.2086742.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

machine learning [Ando 2007; Ando and Zhang 2005; Bi et al. 2008; Bickel et al. 2008; Si
et al. 2010; Xue et al. 2007]. A common assumption in MTL is that all tasks are intrinsically
related to each other. Under such an assumption, certain information is allowed to be shared
across the tasks, implying what is learned from one task is beneficial to another. This is
particularly desirable when there are a number of related tasks but only a limited amount of
training data is available for learning each task.

MTL has been investigated by many researchers from different perspectives. Hidden units of
neural networks are shared among similar tasks [Caruana 1997]; task relatedness are
modeled using the common prior distribution in hierarchical Bayesian models [Bakker and
Heskes 2003; Schwaighofer et al. 2004; Yu et al. 2005; Zhang et al. 2005]; the parameters of
Gaussian Process covariance are learned from multiple tasks [Lawrence and Platt 2004];
kernel methods and regularization networks are extended to the multi-task learning setting
[Evgeniou et al. 2005]; a convex formulation is developed for learning clustered tasks
[Jacob et al. 2008; Zhou et al. 2011]; a shared low-rank structure is learned from multiple
tasks [Ando and Zhang 2005; Chen et al. 2009]; the relatedness of multiple tasks is modeled
using various structured sparsity penalties such as the tree-guided group lasso and the graph-
guided fused lasso [Kim and Xing 2010; Chen et al. 2010; Chen et al. 2010]. Recently, trace
norm regularization has been introduced into the multi-task learning domain [Abernethy et
al. 2009; Argyriou et al. 2008; Ji and Ye 2009; Obozinski et al. 2010; Pong et al. 2010] to
capture the task relationship via a shared low-rank structure of the model parameters,
resulting in a tractable convex optimization problem [Liu et al. 2009b].

In many real-world applications involving multiple (related) tasks, the underlying predictive
hypothesis structure [Ando and Zhang 2005; Shapiro 1982] may be complex, e.g., the
predictive classifiers may admit a low-rank structure as well as a (entry-wise) sparse
structure. For example, for the problems of reconstructing natural scene images via the
multi-scale approximation approaches [Gonzalez and Woods 2002], the images usually have
sparse representations (corresponding to a low-rank structure) in the form of a linear
combination of certain bases; meanwhile, the images obtained under different illumination
conditions or using different equipments may have only a small (sparse) sets of
discriminative features (corresponding to a sparse structure). Analogously, for the problem
of predicting disease progression in different geographic locations, the underlying
progression patterns for all locations may share a set of basis factors, while the progression
pattern for a specific location is also distinguished from other locations by a sparse set of
features. Moreover in collaborative filtering or recommender system, a few factors
contribute to the common taste of the individuals, while each individual's taste also relies on
the personal inclination. Therefore it is desirable to utilize both the low-rank structure
(representing the tasks relatedness) and the sparse structure (representing the task-wise
discriminative patterns) for improved generalization performance and easily interpretable
models for certain applications, e.g., the aforementioned real-world applications.

In this paper, we consider the problem of learning incoherent sparse and low-rank patterns
from multiple related tasks. We propose a linear multi-task learning formulation, in which
the model parameter can be decomposed as a sparse component and a low-rank component.
Specifically, we employ a cardinality regularization term to enforce the sparsity in the model
parameter, identifying the essential discriminative feature for effective classification;
meanwhile, we use a rank constraint to encourage the low-rank structure, capturing the
underlying relationship among the tasks for improved generalization performance. The
proposed multi-task learning formulation is non-convex and leads to an NP-hard
optimization problem. We convert this formulation into its tightest convex surrogate, which
can be routinely solved via semi-definite programming. It is, however, not scalable to large
scale data sets in practice. We propose to employ the general projected gradient scheme to

Chen et al. Page 2

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

solve the convex surrogate; however, in the optimization formulation, the objective function
is non-differentiable and the feasible domain is non-trivial. We present the procedures for
computing the projected gradient and ensuring the global convergence of the projected
gradient scheme. The computation of the projected gradient involves a constrained
optimization problem; we show that the optimal solution to such a problem can be obtained
via solving an unconstrained optimization subproblem and an Euclidean projection
subproblem separately. We also present two algorithms based on the projected gradient
scheme and analyze their rates of convergence in details. In addition, we present an example
of the proposed multi-task learning formulation using the least squares loss and illustrate the
use of the presented projected gradient based algorithms in this case. We conduct extensive
experiments on a collection of real-world data sets. Our results demonstrate the effectiveness
of the proposed multi-task learning formulation and also demonstrate the efficiency of the
projected gradient algorithms.

The remainder of this paper is organized as follows: in Section 2 we propose the linear
multi-task learning formulation; in Section 3 we present the general projected gradient
scheme for solving the proposed multi-task learning formulation; in Section 4 we present
efficient computational algorithms for solving the optimization problems involved in the
iterative procedure of the projected gradient scheme; in Section 5 we present two algorithms
based on the projected gradient scheme and analyze their rates of convergence in details; in
Section 6 we present a concrete example on the use of the projected gradient based
algorithms for the proposed multi-task learning formulation using the least squares loss; we
report the experimental results in Section 7 and the paper concludes in Section 8.

Notations
For any matrix , let aij be the (i, j)th entry of A; denote by ‖A‖0 the number of

nonzero entries in A; let ; let be the set of singular
values of A in non-increasing order, where r = rank(A); denote by ‖A‖2 = σ1 (A) and

 the operator norm and the trace norm of A, respectively; let ‖A‖∞ =
maxi,j |aij|.

2. MULTI-TASK LEARNING FRAMEWORK
Assume that we are given m supervised (binary) learning tasks, where each of the learning
tasks is associated with a predictor and a set of training data as

. We focus on linear predictors as

, where is the weight vector for the learning task.

2.1 Proposed Formulation
We assume that the m tasks are related using an incoherent rank-sparsity structure, that is,
the transformation matrix can be decomposed as a sparse component and a low-rank

component. Denote the transformation matrix by ; Z is the

summation of a sparse matrix and a low-rank matrix

 given by

(1)

as illustrated in Figure 1. The (cardinality) [Boyd and Vandenberghe 2004], i.e.,
the number of non-zero entries, is commonly used to control the sparsity structure in the

Chen et al. Page 3

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

matrix; similarity, matrix rank [Golub and Van Loan 1996] is used to encourage the low-
rank structure. We propose a multi-task learning formulation with a cardinality
regularization and a rank constraint given by

(2)

where denotes a smooth convex loss function, γ provides a trade-off between the
sparse regularization term and the general loss component, and τ explicitly specifies the
upper bound of the matrix rank. Both γ and τ are non-negative and determined via cross-
validation in our empirical studies.

The optimization problem in Eq. (2) is non-convex due to the non-convexity of the
components ‖P‖0 and rank(Q); in general solving such an optimization problem is NP-hard
and no efficient solution is known. We consider a computationally tractable alternative by
employing recently well-studied convex relaxation techniques [Boyd and Vandenberghe
2004].

Define the function , where . The convex envelope [Boyd and
Vandenberghe 2004] of f on is defined as the largest convex function g such that g(Ẑ) ≤
f(Ẑ) for all . The has been known to be the convex envelope of the

 as [Boyd and Vandenberghe 2004]:

(3)

Similarly, the trace norm (nuclear norm) has been shown to be the convex envelop of the
rank function as [Fazel et al. 2001]:

(4)

Note that both the and the trace-norm functions are convex but non-smooth, and
they have been shown to be effective surrogates of the and the matrix rank
functions, respectively.

Based on the heuristic approximations in Eq. (3) and Eq. (4), we can replace the
with the , and replace the rank function with the trace norm function in Eq. (2),
respectively. Therefore, we can reformulate the multi-task learning formulation as:

(5)

Note that in Eqs. (2) and (5), the transformation matrix is denoted by Z and it is the
superposition of an entry-wise sparse matrix P and a low-rank matrix Q. The optimization
problem in Eq. (5) is the tightest convex relaxation of Eq. (2). Such a problem can be
reformulated as a semi-definite program (SDP) [Vandenberghe and Boyd 1996], and solved
using many off-the-shelf optimization solvers such as SeDuMi [Sturm 2001]; however, SDP
is computationally expensive and can only handle several hundreds of optimization
variables. Since the proposed MTL formulation in Eq. (5) is convex, it admits a globally
optimal solution; however, its (globally) optimal solution may not be unique, as the
uniqueness of the solution is dependent on the involved training data, e.g., whether the
resulting optimization formulation is strictly convex.

Chen et al. Page 4

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.2 Related Work
Our multi-task learning formulation in Eq. (5) resembles the Alternating Structure
Optimization algorithm (ASO) proposed in [Ando and Zhang 2005]. However, they differ in
several key aspects: (1) In ASO, the tasks are coupled using a shared low-dimensional
structure induced by an orthonormal constraint, and the formulation in ASO is non-convex.
Our formulation encourages the low-rank structure via a trace norm constraint and the
resulting formulation is convex. (2) In ASO, in addition to a low-dimensional feature map
shared by all tasks, the classifier for each task computes an independent high-dimensional
feature map specific to each individual task, which is in general dense and does not lead to
interpretable features. In our formulation, the classifier for each task constructs a sparse
high-dimensional feature map for discriminative feature identification. (3) The alternating
optimization algorithm in ASO can only find a local solution with no known convergence
rate. The proposed algorithm for solving the formulation in Eq. (5) finds a globally optimal
solution and achieves the optimal convergence rate among all first-order methods.

Our formulation is also closely related to the concept of dirty models for multi-task learning
[Jalali et al. 2010]. Specifically in [Jalali et al. 2010] a dirty model is proposed for the joint
learning of multiple linear regression functions via a composite structured sparsity
regularization; this model expresses the transformation matrix (of multiple regression
functions) as a superposition of two matrix parameters and regularizes them respectively via
the and the , in order to perform biased statistical estimation tailored
to certain types of data.

Recent works in [Candès et al. 2009; Chandrasekaran et al. 2009; Wright et al. 2009]
consider the problem of decomposing a given matrix into its underlying sparse component
and low-rank component in a different setting: they study the theoretical condition under
which such two components can be exactly recovered via convex optimization, i.e., the
condition of guaranteeing to recover the sparse and low-rank components by minimizing a
weighted combination of the trace norm and the .

3. PROJECTED GRADIENT SCHEME
In this section, we propose to apply the general projected gradient scheme [Boyd and
Vandenberghe 2004] to solve the constrained optimization problem in Eq. (5). The projected
gradient scheme is a first-order method; it require only the computation of the first-order
information and hence it is suitable for large scale data analysis. This type of methods has
recently attracted intense interest in machine learning and data mining areas [Bach et al.
2011; Nemirovski 1995; Liu et al. 2009b]. Specifically it has been employed for solving
mathematical formulations arising from different multi-task learning scenarios [Chen et al.
2009; Zhang et al. 2010; Liu et al. 2009a].

In Eq. (5), the objective function is non-smooth and the feasible domain is associated with a
trace norm constraint. For simplicity, we denote the optimization in Eq. (5) as

(6)

where the functions f(T) and g(T) are defined respectively as

Chen et al. Page 5

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

and the set is defined as

Note that f(T) is a smooth convex function with a Lipschitz constant Lf [Bertsekas et al.
2003] as:

(7)

g(T) is a non-smooth convex function, and is a compact and convex set [Bertsekas et al.
2003]. It is known that the smallest Lipschitz constant L̂f in Eq. (7), i.e, L̂f = min Lf, is
called the best Lipschitz constant for the function f(T); moreover, for any L ≥ L̂f, the
following inequality holds [Nesterov 1998]:

(8)

where .

The projected gradient scheme computes the global minimizer of Eq. (6) via an iteratively
updating procedure. That is, given Tk as the intermediate solution of the kth iteration, we
update Tk as

(9)

where and tk denote the appropriate projected gradient direction and the step size,
respectively. The appropriate choice of and tk is key to the global convergence of the
projected gradient scheme. The computation in Eq. (9) depends on and tk; in the
following subsections, we will present a procedure for estimating appropriate and tk, and
defer the discussion of detailed projected gradient based algorithms to Section 5. Note that

since the determination of is associated with Tk and tk, we denote by , and
the reason will become clear from the following discussion. It is worth pointing out that
throughout this paper we focus on using a smooth convex loss function in the proposed
multi-task learning formulation as described in Eq. (2) and hence the objective function (of
the proposed multi-task learning formulation) can be expressed as the combination of a
smooth component and a non-smooth component as in Eq. (6); for this case the projected
gradient scheme is applicable; when the loss function is non-smooth convex, we can resort
to the subgradient algorithms [Bertsekas 1999].

3.1 Projected Gradient Computation
For any L > 0, we consider the following construction associated with the smooth
component f(T) of the objective function in Eq. (6):

where S, . It can be verified that fL(S, T) is strongly convex with respect to the
variable T. Moreover, we denote

Chen et al. Page 6

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(10)

where g(T) is the non-smooth component of the objective function in Eq. (6). From the
convexity of g(T), GL(S, T) is strongly convex with respect to T. Since

the global minimizer of GL(S, T) with respect to T can be computed as

(11)

We can then obtain the projected gradient of f at S via

(12)

It is obvious that 1/L can be seen as the step size associated with the projected gradient
 by rewritting Eq. (12) as

(13)

Note that if the inequality f(TL,S) ≤ fL(S, TL,S) is satisfied, is called the L-gradient of
f at S [Nemirovski 1995].

3.2 Step Size Estimation

From Eq. (12), the step size associated with is given by 1/L. Denote the objective
function in Eq. (6) as

(14)

Theoretically, any step size 1/L of the value L larger than the best Lipschitz constant L̂f
guarantees the global convergence in the projected gradient based algorithms [Nemirovski
1995]. It follows from Eq. (8) that

(15)

In practice we can estimate an appropriate L (hence the appropriate step size 1/L) by
ensuring the inequality in Eq. (15). By applying an appropriate step size and the associated
projected gradient in Eq. (9), we can verify an important inequality [Beck and Teboulle
2009; Nemirovski 1995], as summarized in the following lemma.

LEMMA 3.1. Let Lf be the Lipschitz continuous gradient associated with the function f(T) as
defined in Eq. (7). Let , and let TL,S be the minimizer of GL(S, T) as defined in
Eq. (11). Then if L ≥ Lf, the following inequality holds

Chen et al. Page 7

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(16)

for any .

PROOF. Following from the convexity of f(·) and g(·), we have

(17)

(18)

where ∂g(TL,S) denotes the subgradient [Nesterov 1998] of g(·) at TL,S. It is well known that
T̂ minimizes GL(S, T) (with respect to the variable T) if and only if 0 is a subgradient of
GL(S, T) at T̂, that is,

(19)

From Eqs. (10), (14), (17) and (18), we have

where the second and third equalities follow from Eqs. (19) and (12), respectively. This
completes the proof of this lemma.

By replacing S with T in Eq. (16), we have

(20)

Note that the inequality in Eq. (16) characterizes the relationship of the objective values in
Eq. (6) using T and its updated version via the procedure in Eq. (9).

4. EFFICIENT COMPUTATION
The projected gradient scheme requires to solve Eq. (11) at each iterative step. In Eq. (11),
the objective function is non-smooth and the feasible domain set is associated with a trace
norm constraint; we show that its optimal solution can be obtained by solving an
unconstrained optimization problem and an Euclidean projection problem separately.

Denote T and S in Eq. (11) respectively as

Therefore the optimization problem in Eq. (11) can be expressed as

Chen et al. Page 8

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(21)

where ŜP and ŜQ can be computed respectively as

Note that ∇P f(S) and ∇Q f(S) denote the derivative of the smooth component f(S) with
respect to the variables P and Q, respectively. We can further rewrite Eq. (21) as

(22)

where β = L/2. Since TP and TQ are decoupled in Eq. (22), they can be optimized separately
as presented in the following subsections.

4.1 Computation of TP

The optimal TP can be obtained by solving the following optimization problem:

It is obvious that each entry of the optimal matrix TP can be obtained by solving an
optimization problem as

(23)

Note that ŝ denotes an entry in ŜP, corresponding to t̂ in TP from the same location. It is
known [Tibshirani 1996] that the optimal t̂ to Eq. (23) admits an analytical solution; for
completeness, we present its proof in Lemma 4.1.

LEMMA 4.1. The minimizer of Eq. (23) can be expressed as

(24)

PROOF. Denote by h(t̂) the objective function in Eq. (23), and by t̂* the minimizer of h(t̂). The
subdifferential of h(t̂) can be expressed as

where the function sgn(·) is given by

Chen et al. Page 9

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

It is known that t̂* minimizes h(t̂) if and only if 0 is a subgradient of h(t̂) at the point t̂*, that
is,

Since the equation above is satisfied with t̂* defined in Eq. (24), we complete the proof of
this lemma.

4.2 Computation of TQ

The optimal TQ can be obtained by solving the optimization problem:

(25)

where the constant 1/2 is added into the objective function for convenient presentation. In
the following theorem, we show that the optimal TQ can be obtained via solving a simple
convex optimization problem.

THEOREM 4.1. Let be the SVD of ŜQ, where q = rank(ŜQ), ,

, and . Let be the minimizers of the
following problem:

(26)

Denote . Then the optimal solution to Eq. (25) is given by

PROOF. Assume that the optimal to Eq. (25) shares the same left and right singular vectors
as ŜQ. Then the problem in Eq. (25) is reduced to the problem in Eq. (26). Thus, all that

remains is to show that shares the same left and right singular vectors as ŜQ. Denote the
Lagrangian function [Boyd and Vandenberghe 2004] associated with Eq. (25) as

Chen et al. Page 10

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Since 0 is strictly feasible in Eq. (25), i.e., ‖0‖* < τ, the Slater's condition [Boyd and
Vandenberghe 2004] is satisfied and strong duality holds in Eq. (25). Let λ* ≥ 0 be the
optimal dual variable [Boyd and Vandenberghe 2004] in Eq. (25). Therefore,

Let be the SVD of and , where and

 are columnwise orthonormal, and is diagonal consisting of non-zero
singular values on the main diagonal. It is known [Watson 1992] that the subdifferentials of

 at can be expressed as

(27)

On the other hand, we can verify that is optimal to Eq.(25) if and only if 0 is a

subgradient of H(TQ, λ*) at , that is,

(28)

Let and be the null space [Golub and Van Loan 1996] of
UT and VT, respectively. It follows from Eq. (27) that there exists a point

 such that

satisfies Eq. (28), and is diagonal consisting of the singular values of
DT on the main diagonal. It follows that

corresponds to the SVD of ŜQ. This completes the proof of this theorem.

Note that the optimization problem in Eq. (26) is convex, and can be solved via an algorithm
similar to the one in [Liu and Ye 2009] proposed for solving the Euclidean projection onto
the ball.

5. ALGORITHMS AND CONVERGENCE
We present two algorithms based on the projected gradient scheme in Section 3 for solving
the constrained convex optimization problem in Eq. (6), and analyze their rates of
convergence using techniques in [Nemirovski 1995; Nesterov 1998].

Chen et al. Page 11

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.1 Projected Gradient Algorithm
We first present a simple projected gradient algorithm. Let Tk be the feasible solution point
at the k-th iteration; the projected gradient algorithm updates Tk by recycling the following
two steps: find a candidate T̂ for the subsequent feasible solution point Tk+1 via

and meanwhile ensure the step size satisfying the condition

Note that both Tk and T̂ are feasible in Eq. (6). It follows from Eq. (20) that the solution
sequence generated in the projected gradient algorithm leads to a non-increasing objective
value in Eq. (6), that is,

(29)

The pseudo-code of the projected gradient algorithm is presented in Algorithm 1, and its
convergence rate analysis is summarized in Theorem 5.1. Note that the stopping criterion in
line 11 of Algorithm 1 can be set as follows: the change of objective values in two
successive steps are smaller than some pre-specified value (e.g., 10–5).

THEOREM 5.1. Let T* be the global minimizer of Eq. (6); let L ̂f be the best Lipschitz continuous
gradient defined in Eq.(7). Denote by k the index of the iteration, and by Tk the solution
point at the kth iteration of Algorithm 1. Then we have

where L̂* = max{L0, 2L̂f}, and L0 and T0 are the initial values of Lk and Tk in Algorith m 1,
respectively.

PROOF. It follows from Eq. (12) we have

Moreover, from Eq. (16), we have

(30)

where εi+1 = F(Ti+1) – F(T*). Moving Li/2 to the left side in Eq. (30) and summing such a
reformulation from i = 0 to i = k, we have

Chen et al. Page 12

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Since Li ≥ Li–1 from line 7 in algorithm 1, and εi ≤ εi–1 from Eq. (29) for all i, we have

Moreover, it can be verified that L0 ≤ Lk ≤ 2L ̂f for all k. This completes the proof of this
theorem.

5.2 Accelerated Projected Algorithm
The proposed projected gradient method in Section 5.1 is simple to implement but
converges slowly. We improve the projected gradient method using a scheme developed by
Nesterov [Nesterov 1998], which has been applied for solving various sparse learning
formulations [Liu et al. 2009b].

We utilize two sequences of variables in the accelerated projected gradient algorithm:
(feasible) solution sequence {Tk} and searching point sequence {Sk}. At the i-th iteration,
we construct the searching point as

(31)

where the parameter αk > 0 is appropriately specified as shown in Algorithm 2. Similar to
the projected gradient method, we refine the feasible solution point Tk+1 via the general step
as:

and meanwhile determine the step size by ensuring

The searching point Sk may not be feasible in Eq. (6), which can be seen as a forecast of the
next feasible solution point and hence leads to the faster convergence rate in Algorithm 2.
The pseudo-code of the accelerated projected gradient algorithm is presented in Algorithm
2, and its convergence rate analysis is summarized in the following theorem.

THEOREM 5.2. Let T* be the global minimizer of Eq. (6); let L ̂f be the best Lipschitz continuous
gradient defined in Eq.(7). Denote by k the index of the iteration, and by Tk the solution
point at the kth iteration of Algorithm 2. Then we have

Chen et al. Page 13

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

where L̂ = max{L0, 2L̂f}, where L0 and T0 are the initial values of Lk and Tk in Algorithm 2,
respectively.

PROOF. Denote εi = F(Ti)–F(T*). Setting T = Ti, S = Si, and L = Li in Eq. (16), we have

(32)

where the left side of the inequality above follows from

Similarly, setting T = T*, S = Si, and L = Li in Eq. (16), we have

(33)

Multiplying Eq. (32) by ti–1 – 1 and summing it with Eq. (33), we have

(34)

Moreover, multiplying Eq. (34) by ti–1, we have

(35)

where the left side is obtained via the equation

from the line 15 in Algorithm 2. On the other hand, it follows from Eq. (12) we have

(36)

From Eq. (31) and the line 5 in Algorithm 2, we have

(37)

Denote

(38)

From Eqs. (36), (37) and (38), we can verify that

(39)

Moreover, we have

(40)

Chen et al. Page 14

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Substituting Eqs. (39) and (40) into Eq. (35), we obtain

(41)

Summing Eq. (41) from i = 1 to i = k, we have

Therefore, we have

(42)

where the equality follows from t–1 = 0 in Algorithm 2. From line 15 in Algorithm 2, we
have

(43)

Summing Eq. (43) from i = 1 to i = k, we have

(44)

Substituting Eq. (44) into Eq. (42), we complete the proof.

The proof of Theorem 5.2 uses standard techniques in [Nemirovski 1995; Nesterov 1998]
yet with simplification in several aspects for easy understanding. Note that the convergence
rate achieved by Algorithm 2 is optimal among all first-order methods [Nesterov 1998;
Nemirovski 1995].

6. EXAMPLE: LEARNING SPARSE AND LOW-RANK PATTERNS WITH
LEAST SQUARES LOSS

In this section, we present a concrete example of learning the sparse and low-rank patterns
from multiple tasks, i.e., the MTL formulation in Eq. (5) using the least squares loss
function; we also illustrate the use of the PG and AG algorithms in this case.
Mathematically, the specific MTL formulation can be expressed as

(45)

where , and . For simplicity in Eq.
(45) we assume that all of the m tasks share the same set of training data, and the derivation
below can be easily extended to the case where each learning task has a different set of
training data.

Chen et al. Page 15

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6.1 Efficient Computation for the Key Component
The computation of Eq. (11) is involved at each iteration of the projected gradient scheme.
For the specifical MTL formulation in Eq. (45), given the intermediate solution pair {Pi, Qi}
at the i-th iteration, the subsequent solution pair {Pi+1, Qi+1} can be obtained via

(46)

where Li specifies the step size of the i-th iteration. The optimal P̂ and Q̂ to Eq. (46) can be
obtained via solving two separate problems as below.

Computation of P̂ The optimal P̂ can be obtained via solving

(47)

Based on the results in Section 4.1, the optimization problem in Eq. (47) can be further
decomposed into entry-wise subproblems in the form of Eq. (23), which admits an analytical
solution (Lemma 4.1).

Computation of Q̂ The optimal Q̂ can be obtained via solving

(48)

Based on the results in Section 4.2, the optimal solution to Eq. (48) can be obtained via the
following two steps:

—Compute the SVD of , where ,

, and .

—Compute the optimal solution to the following problem

The optimal Q̂ can be constructed as , where .

6.2 Estimation of the Lipschitz Constant
An appropriate step size 1/L in Eq. (13) is important for the global convergence of the
projected gradient based algorithms and its value can be estimated via many sophisticated
line search schemes [Boyd and Vandenberghe 2004] in general. In Algorithm 1 (lines 6 ~ 7)
and Algorithm 2 (lines 9 ~ 10), the value of L is updated until the inequality in Eq. (15) is
satisfied; however, this updating procedure may incur overhead cost in the computation.

Denote the smooth component of the objective function in Eq. (45) by

Chen et al. Page 16

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(49)

It can be verified that any Lipschitz constant Lf of the function f(P, Q) can satisfy Eq. (15).
Note that the gradient of f(P, Q) with respect to P and Q can be expressed as

To avoid the computational cost of estimating the lipschitz constant for f(P, Q), we directly
estimate its best value (the smallest lipschitz constant), as summarized in the following
lemma.

LEMMA 6.1. Given and , the best Lipschitz constant L̂f of the function

f(P, Q) in Eq. (49) is no larger than , where σX denotes the largest singular value of X.

PROOF. For arbitrary , we have

(50)

Similarly, for arbitrary , we have

(51)

Therefore it follows from Eq. (7) that

(52)

This completes the proof.

6.3 Main Algorithms
The pseudo-codes of the PG and AG algorithms for solving Eq. (45), i.e., Eq. (5) with the
least squares loss, are presented in Algorithm 3 and Algorithm 4 respectively. The main
difference between PG and AG lies in the construction of SPi and SQi: in line 4 of Algorithm
3, SPi and SQi are set as the pair of feasible points from the previous iteration; in line 6 of
Algorithm 4, SPi and SQi are set as the a linear combination of the feasible points from the
previous and the current iterations, which are not necessarily feasible in Eq. (45). The
different construction leads to different rates of convergence, i.e., in Algorithm 3

and in Algorithm 4.

7. EMPIRICAL EVALUATIONS
In this section, we evaluate the proposed multi-task learning formulation (MixedNorm) in
comparison with other seven representative methods; we also conduct numerical studies on
the proposed projected gradient based algorithms. The employed optimization algorithms
are implemented in MATLAB.

Chen et al. Page 17

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We employ six benchmark data sets in our experiments. One of them is AR Face Data
[Martinez and Benavente 1998]: we use a subset consisting of 1400 face images
corresponding to 100 persons. The other three are LIBSVM multi-label data sets1: for Scene
and Yeast, we use the entire data sets; for MediaMill, we generate several subsets by
randomly sampling 8000 data points with different numbers of labels. References and
Science are Yahoo webpages data sets [Ueda and Saito 2002]: we preprocess the data sets
following the same procedures in [Chen et al. 2009]. All of the benchmark data sets are
normalized and their statistics are summarized in Table I. Note that in our multi-task
learning setting, each task corresponds to a label and we employ the least squares loss
function for the following empirical studies.

7.1 Demonstration of Extracted Structures
We apply the proposed multi-task learning algorithm on synthetic data and face data to
demonstrate the extracted sparse and low-rank structures.

Demonstration on Synthetic Data—We apply the proposed multi-task learning
algorithm on a synthetic data and also demonstrate the extracted sparse and low-rank
structures. The synthetic data is constructed as follows: set the task number m = 30, the
training sample size of each task , and the training sample dimensionality d = 100;

generate the entries of the training data (of the task) from
; generate the entries of the sparse component P = [p1, · · · , pk] (of size k × d) from
 and then set the entries of its first 10 rows and its first 30 columns as zero;

generate the entries of the low-rank component Q = [q1, · · · , qk] (of size k × d) from
 and then set its smallest 20 singular values as zero; construct the response vector of

each task as , where the entries in are generated from
. By this construction, we have 30 related tasks, where each task has 60 training

samples of feature dimensionality 100; moreover, the transformation matrix for all 30 tasks
consists of a sparse component as well as a low-rank component.

In the left column of Figure 2, we present the ground truth of the sparse and low-rank
structures; in the right column we present the extracted sparse and low-rank structures via
solving Eq. (45) with γ = 150 and τ = 50. From the first row of the plots in Figure 2, we can
observe that the extracted sparse structure (right plot) is similar to the ground truth of the
sparse structure (left plot), i.e., most of the entries in the first 10 columns and the first 30
rows of the sparse component are zero; moreover from the second row of the plots, we can
observe that the patterns of the extracted low-rank structure (right plot) is similar to the
patterns of the ground truth of the low-rank structure (left plot), i.e., they have a similar
number of non-zeros singular values. Our observation empirically demonstrates the potential
of the proposed multi-task learning formulation for extracting sparse and low-rank structures
(of multiple tasks).

Demonstration on AR Face Data—We use a subset of AR Face Data for this
experiment. The original size of these images is 165 × 120; we reduce the size to 82 × 60.
We convert the face recognition problem into a multi-task learning problem, where one task

corresponds to learning a linear classifier, i.e., , for recognizing the faces
of one person. By solving Eq. (45), we obtained (sparse structure) and (low-rank
structure); we reshape and and plot them in Figure 3. We only plot p1 and q1 for
demonstration. The first two plots in Figure 3 are obtained by setting γ = 11, τ = 0.08 in Eq.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/

Chen et al. Page 18

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/

(45): we obtain a sparse structure of 15.07% nonzero entries and a low-rank structure of
rank 3; similarly, the last two plots are obtained by setting γ = 14, τ = 0.15, we obtain a
sparse structure of 5.35% nonzero entries and a low-rank structure of rank 7. We observe
that the sparse structure identifies the important detailed facial marks, and the low-rank
structure preserves the rough shape of the human face; we also observe that a larger sparse
regularization parameter leads to higher sparsity (lower percentage of the non-zero entries)
and a larger rank constraint leads to structures of higher rank.

7.2 Performance Evaluation
We compare the proposed multi-task learning formulation with other seven representative
algorithms including the multi-task relationship learning (MTRL) algorithm [Zhang and
Yeung 2010], the multi-task learning with a sparse matrix-normal penalty (MTL[Ω&Σ])
algorithm [Zhang and Schneider 2010], the alternating structure optimization (ASO)
algorithm [Ando and Zhang 2005], the least squares with trace norm regularization
(TraceNorm) [Ji and Ye 2009; Pong et al. 2010], the least squares with one norm
regularization (O-neNorm) [Tibshirani 1996], the independent support vector machines
(IndSVM) [Schölkopf and Smola 2002], and the ridge regression (RidgeReg). Note that in
[Zhang and Schneider 2010], the authors propose various configurations of their MTL
learning formulation; in our experiments, we focus on the most general one, i.e.,
MTL(Ω&Σ), in which the two covariance matrices are automatically learned.

In this experiment, we employ Average AUC (the averaged area under the curve), Macro F1
(the global calculation of F1 regardless of the tasks), and Micro F1 (the averaged F1 scores
of all tasks) as the performance measures [Yang and Pedersen 1997]. The reported
experimental results are averaged over five random repetitions of the data sets into training
and test sets of a ratio 1 : 9. In this experiment, we stop the iterative procedure of the
algorithms if the change of the objective values in two consecutive iterations is smaller than
10–5 or the iteration numbers larger than 105. The experimental setup is summarized as
below. Note that in our experiments, OneNorm, RidgeReg, and IndSVM represent the single
task learning (STL) algorithms; they are employed as baseline algorithms; the comparison
among MixedNorm, OneNorm, and TraceNorm is used to verify the effectiveness of the
combination of OneNorm and TraceNorm.

1. MixedNorm (the proposed multi-task learning formulation with the least squares
loss) The trace-norm constraint parameter is tuned in

, where and k is the label
number; the one-norm regularization parameter is tuned in

.

2. MTRL (the multi-task relationship learning formulation) The two regularization
parameters (λ1 and λ2) in MTRL are tuned in the range

.

3. MTL(Ω&Σ) (the multi-task learning formulation with a sparse matrix-normal

penalty) Following [Zhang and Schneider 2010], we set . The two
regularization parameters λ and are tuned in the range

.

4. TraceNorm (the formulation of the least squares loss with the trace-norm
constraint) The trace-norm constraint parameter is tuned in

Chen et al. Page 19

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

 where and k denotes the
label number.

5. ASO (the alternating structure optimization algorithm) The regularization
parameter is tuned in

; the

dimensionality of the shared subspace is tuned in , where and k
denotes the label number.

6. OneNorm (the formulation of the least squares loss with the one-norm
regularization) The one-norm regularization parameter is tuned in

7. IndSVM (independent support vector machines) The regularization parameter is

tuned in .

8. RidgeReg (ridge regression) The regularization parameter is tuned in

.

The averaged performance (with standard deviation) of the competing algorithms are
presented in Table II and Table III. We have the following observations: (1) MixedNorm
achieves the best performance among the competing algorithms on all benchmark data sets
in this experiment, which gives strong support for our rationale of improving the
generalization performance by learning the sparse and low-rank patterns simultaneously
from multiple tasks; (2) TraceNorm outperforms OneNorm on Scene and Yeast data sets,
which implies that the shared low-rank structure may be important for image and gene
classification tasks; meanwhile, OneNorm outperforms TraceNorm on MediaMill and yahoo
web-page data sets, which implies that sparse discriminative features may be important for
multimedia learning problems; (3) the multi-task learning algorithms in our experiments
outperform or perform competitively compared to OneNorm, IndSVM and RidgeReg, which
verifies the effect of improved generalization performance via multi-task learning.

7.3 Sensitivity Study
We conduct sensitivity studies on the proposed multi-task learning formulation, and study
how the training ratio and the task number affect its generalization performance.

Effect of the training ratio—We use Scene data for this experiment. We vary the

training ratio in the set and record the obtained generalization performance for
each training ratio. The experimental results are depicted in Figure 4. We can observe that
(1) for all compared algorithms, the resulting generalization performance improves with the
increase of the training ratio; (2) MixedNorm outperforms other competing algorithms in all
cases in this experiment; (3) when the training ratio is small (e.g., smaller than 0.5), multi-
task learning algorithms can significantly improve the generalization performance compared
to IndSVM and RidgeReg; on the other hand, when the training ratio is large, all competing
algorithms achieve comparable performance. This is consistent with previous observations
that multi-task learning is most effective when the training size is small.

Effect of the task number—We use MediaMill data for this experiment. We generate 5
data sets by randomly sampling 8000 data points with the task number set at 20, 40, 60, 80,
100, respectively; for each data set, we set the training and test ratio at 1 : 9 and record the

Chen et al. Page 20

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

average generalization performance of the multi-task learning algorithms over 5 random
repetitions. The experimental results are depicted in Figure 5. We can observe that (1) for all
compared algorithms, the achieved performance decreases with the increase of the task
numbers; (2) MixedNorm outperforms or performs competitively compared to other
algorithms with different task numbers; (3) all multi-task learning algorithms outperform
IndSVM and RidgeReg. Note that the learning problem becomes more difficult as the
number of the tasks increases, leading to decreased performance for both multi-task and
single-task learning algorithms. We only present the performance comparison in terms of
Macro/Micro F1; we observe a similar trend in terms of the average AUC in the
experiments.

7.4 Comparison of PG and AG
We empirically compare the projected gradient algorithm (PG) in Algorithm 1 and the
accelerated projected gradient algorithm (AG) in Algorithm 2 using Scene data. We present
the comparison results with γ = 1, τ = 2 and γ = 6, τ = 4 in Eq. (45); for other parameter
settings, we observe similar trends in our experiments.

Comparison on convergence rate—We apply PG and AG for solving Eq. (45)
respectively, and compare the relationship between the obtained objective values and the
required iteration numbers. The experimental setup is as follows: we terminate the PG
algorithm when the change of objective values in two successive steps is smaller than 10–5

and record the obtained objective value; we then use such a value as the stopping criterion in
AG, that is, we stop AG when AG attains an objective value equal to or smaller than the one
attained by PG. The experimental results are presented in Figure 6. We can observe that AG
converges much faster than PG, and their respective convergence speeds are consistent with
the theoretical convergence analysis in Section 5, that is, PG converges at the rate of

and AG at the rate of , respectively.

Comparison on computation cost—We compare PG and AG in terms of computation
time (in seconds) and iteration numbers (for attaining convergence) by using different

stopping criteria . We stop PG and AG if the stopping criterion is satisfied, that is,
the change of the objective values in two successive steps is smaller than 10–i. The
experimental results are presented in Table IV and Figure 7. We can observe from these
results that (1) PG and AG require higher computation costs (more computation time and
larger numbers of iterations) for a smaller value of the stopping criterion (higher accuracy in
the optimal solution); (2) in general, AG requires lower computation costs than PG in this
experiment; such an efficiency improvement is more significant when a smaller value is
used in the stopping criterion.

7.5 Discussion on Computation Cost of MixedNorm
The proposed multi-task learning formulation (MixedNorm) is formulated as a mathematical
programm which minimizes a non-smooth objective function subject to a trace norm
constraint. We employ the projected gradient based algorithms to solve MixedNorm
(described in Algorithms 3 and 4). From the pseudo-codes, we can observe that the key
component for solving MixedNorm lies in the computation of Eq. (46), i.e., Eq. (11) with
the least squares loss. Moreover, it follows from Section 6.1 that the dominant computation
cost for solving Eq. (46) includes an SVD operation as well as an singular value projection.

To illustrate the trade-off between the computation cost and the generalization performance,
we conduct a comparison among MixedNorm, OneNorm, RidgeReg, and IndSVM in terms

Chen et al. Page 21

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

of the obtained average AUC and the required computation time (in seconds). From Table
V, we can observe that MixedNorm requires more computation time; however it leads to
significantly better performance in terms of average AUC. It is worth pointing out that our
algorithms are implemented in Matlab, while the LIBMSVM package [Chang and Lin 2011]
(for solving IndSVM) is implemented in C and highly optimized as well.

7.6 Automated Annotation of the Gene Expression Pattern Images
We apply the proposed multi-task learning formulation for the automated annotation of the
Drosophila gene expression pattern images from the FlyExpress2 database. Note that for this
biological application, we focus on comparing the performance of MixedNorm and its
special cases, i.e., OneNorm and TraceNorm; we also use the single task learning
algorithms, i.e., OneNorm, IndSVM, and RidgeReg, as baselines. The Drosophila gene
expression pattern images capture the spatial and temporal dynamics of gene expression and
hence facilitate the explication of the gene functions, interactions, and networks during
Drosophila embryogenesis [Fowlkes et al. 2008; Lécuyer et al. 2007]. To provide text-based
pattern searching, the gene expression pattern images are annotated manually using a
structured controlled vocabulary (CV) in small groups based on the genes and the
developmental stages as shown in Table VI. However, with a rapidly increasing number of
gene expression pattern images, it is desirable to design computational approaches to
automate the CV annotation process.

We preprocess the Drosophila gene expression pattern images (of the standard size 128 ×
320) from the FlyExpress database following the procedures in [Ji et al. 2009]. The
Drosophila images are from 16 specific stages, which are then grouped into 6 stage ranges
(1 ~ 3, 4 ~ 6, 7 ~ 8, 9 ~ 10, 11 ~ 12, 13 ~ 16). We manually annotate the image groups
(based on the genes and the developmental stages) using the structured CV terms. Each
image group is then represented as a feature vector based on the bag-of-words and the soft-
assignment sparse coding. Note that the SIFT features [Lowe 2004] are extracted from the
images with the patch size set at 16 × 16 and the number of visual words in sparse coding set
at 2000. The first stage range only contains 2 CV terms and we do not report the
performance for this stage range. For other stage ranges, we consider the top 10 and 20 CV
terms that appear most frequently in the image groups and treat the annotation of each CV
term as one task. We generate 10 subsets for this experiment, and randomly partition each
subset into training and test sets using the ratio 1 : 9. Note that the parameters in the
competing algorithms are tuned following the experimental setting in Section 7.2.

We report the averaged AUC (Avg. AUC), Macro F1 (Mac. F1), and Micro F1 (Mic. F1)
over 10 random repetitions in Table VII (for 10 CV terms) and Table VIII (for 20 CV
terms), respectively. We can observe that MixedNorm achieves the best performance among
the five algorithms on all subsets. In particular, MixedNorm outperforms its special cases,
i.e., OneNorm and TraceNorm; MixedNorm also outperforms other single-task learning
algorithms: IndSVM and RidgeReg. The experimental results demonstrate the effectiveness
of learning the sparse and low-rank patterns from multiple tasks for improved generalization
performance.

8. CONCLUSION
We consider the problem of learning sparse and low-rank patterns from multiple related
tasks. We propose a multi-task learning formulation in which the sparse and low-rank
patterns are induced respectively by a cardinality regularization term and a low-rank

2http://www.flyexpress.net/

Chen et al. Page 22

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.flyexpress.net/

constraint. The proposed formulation is non-convex; we convert it into its tightest convex
surrogate and then propose to apply the general projected gradient scheme to solve such a
convex surrogate. We present the procedures for computing the projected gradient and
ensuring the global convergence of the projected gradient scheme. Moreover, we show that
the projected gradient can be obtained via solving two simple convex subproblems. We also
present two detailed projected gradient based algorithms and analyze their rates of
convergence. Additionally, we illustrate the use of the presented projected gradient
algorithms for the proposed multi-task learning formulation using the least squares loss. Our
experiments demonstrate the effectiveness of the proposed multi-task learning formulation
and the efficiency of the proposed projected gradient algorithms. In the future, we plan to
conduct a theoretical analysis on the proposed multi-task learning formulation and apply the
proposed algorithm to other real-world applications.

Acknowledgments
This work was supported by NSF IIS-0812551, IIS-0953662, CCF-1025177, and NIH LM010730.

REFERENCES
Abernethy J, Bach F, Evgeniou T, Vert J-P. A new approach to collaborative filtering: Operator

estimation with spectral regularization. Journal of Machine Learning Research. 2009; 10:803–826.

Ando RK. BioCreative II gene mention tagging system at IBM Watson. Proceedings of the Second
BioCreative Challenge Evaluation Workshop. 2007

Ando RK, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled
data. Journal of Machine Learning Research. 2005; 6:1817–1853.

Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning. Machine Learning. 2008;
73(3):243–272.

Bach, F.; Jenatton, R.; Mairal, J.; Obozinski, G. Convex optimization with sparsity-inducing norms in
optimization for machine learning.. In: Sra, S.; Nowozin, S.; Wright, SJ., editors. Optimization for
Machine Learning. MIT Press; 2011.

Bakker B, Heskes T. Task clustering and gating for bayesian multitask learning. Journal of Machine
Learning Research. 2003; 4:83–99.

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal of Imaging Science. 2009; 2:183–202.

Bertsekas DP. Nonlinear Programming. Athena Scientific. 1999

Bertsekas DP, Nedic A, Ozdaglar AE. Convex Analysis and Optimization. Athena Scientific. 2003

Bi J, Xiong T, Yu S, Dundar M, Rao RB. An improved multi-task learning approach with applications
in medical diagnosis. ECML. 2008

Bickel S, Bogojeska J, Lengauer T, Scheffer T. Multi-task learning for HIV therapy screening. ICML.
2008

Boyd, S.; Vandenberghe, L. Convex Optimization. Cambridge University Press; 2004.

Candés EJ, Li X, Ma Y, Wright J. Robust principal component analysis? Journal of ACM. 2009;
58(1):1–37.

Caruana R. Multitask learning. Machine Learning. 1997; 28(1):41–75.

Chandrasekaran V, Sanghavi S, Parrilo PA, Willsky AS. Sparse and low-rank matrix decompositions.
SYSID. 2009

Chang C-C, Lin C-J. Libsvm: A library for support vector machines. ACM Transactions on Intelligent
Systems and Technology. 2011; 2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

Chen J, Tang L, Liu J, Ye J. A convex formulation for learning shared structures from multiple tasks.
ICML. 2009

Chen X, Kim S, Lin Q, Carbonell JG, Xing EP. Graph-structured multi-task regression and an efficient
optimization method for general fused lasso. CoRR abs/1005.3579. 2010

Chen et al. Page 23

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chen X, Lin Q, Kim S, Carbonell JG, Xing EP. An efficient proximal-gradient method for single and
multi-task regression with structured sparsity. CoRR abs/1005.4717v3. 2010

Chen X, Pan W, Kwok JT, Carbonell JG. Accelerated gradient method for multi-task sparse learning
problem. ICDM. 2009

Evgeniou T, Micchelli CA, Pontil M. Learning multiple tasks with kernel methods. Journal of Machine
Learning Research. 2005; 6:615–637.

Fazel M, Hindi H, Boyd S. A rank minimization heuristic with application to minimum order system
approximation. ACC. 2001

Fowlkes CC, Hendriks CLL, Keränen SV, Weber GH, Ruübel O, Huang M-Y, Cha Toor S, Depace
AH, Simirenko L, Henriquez C, Beaton A, Weiszmann R, Celniker S, Hamann B, Knowles DW,
Biggin MD, Eisen MB, Malik J. A quantitative spatiotemporal atlas of gene expression in the
drosophila blastoderm. Cell. 2008; 133(2):364–374. [PubMed: 18423206]

Golub, GH.; Van Loan, CF. Matrix computations. Johns Hopkins University Press; 1996.

Gonzalez, RC.; Woods, RE. Digital Image Processing. Prentice Hall; 2002.

Jacob L, Bach F, Vert J-P. Clustered multi-task learning: A convex formulation. NIPS. 2008

Jalali A, Ravikumar P, Sanghavi S, Ruan C. A dirty model for multi-task learning. NIPS. 2010

Ji S, Ye J. An accelerated gradient method for trace norm minimization. ICML. 2009

Ji S, Yuan L, Li Y-X, Zhou Z-H, Kumar S, Ye J. Drosophila gene expression pattern annotation using
sparse features and term-term interactions. KDD. 2009

Kim S, Xing EP. Tree-guided group lasso for multi-task regression with structured sparsity. ICML.
2010

Lawrence ND, Platt JC. Learning to learn with the informative vector machine. ICML. 2004

Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P,
Krause HM. Global analysis of mRNA localization reveals a prominent role in organizing cellular
architecture and function. Cell. 2007; 131(1):174–187. [PubMed: 17923096]

Liu J, Ji S, Ye J. Multi-task feature learning via efficient ℓ2,1-norm minimization. UAI. 2009a

Liu, J.; Ji, S.; Ye, J. SLEP: Sparse Learning with Efficient Projections. Arizona State University;
2009b.

Liu J, Ye J. Efficient euclidean projections in linear time. ICML. 2009

Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision. 2004; 60(2):91–110.

Martinez, A.; Benavente, R. The AR face database. Tech. rep. 1998.

Nemirovski, A. Efficient Methods in Convex Programming. Lecture Notes; 1995.

Nesterov, Y. Introductory Lectures on Convex Programming. Lecture Notes; 1998.

Obozinski G, Taskar B, Jordan M. Joint covariate selection and joint subspace selection for multiple
classification problems. Statistics and Computing. 2010; 20(2):231–252.

Pong TK, Tseng P, Ji S, Ye J. Trace norm regularization: Reformulations, algorithms, and multi-task
learning. SIAM Journal on Optimization. 2010; 20:6.

Schölkopf, B.; Smola, AJ. Learning with kernels : support vector machines, regularization,
optimization, and beyond. The MIT Press; 2002.

Schwaighofer A, Tresp V, Yu K. Learning gaussian process kernels via hierarchical bayes. NIPS. 2004

Shapiro A. Weighted minimum trace factor analysis. Psychometrika. 1982; 47(3):243–264.

Si S, Tao D, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE
Transactions on Knowledge and Data Engineering. 2010; 22(7):929–942.

Sturm JF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software. 2001; 11-12:653–625.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B. 1996; 58:267–288.

Ueda N, Saito K. Single-shot detection of multiple categories of text using parametric mixture models.
KDD. 2002

Vandenberghe L, Boyd S. Semidefinite programming. SIAM Review. 1996; 38(1):49–95.

Chen et al. Page 24

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Watson GA. Characterization of the subdifferential of some matrix norms. Linear Algebra and its
Applications. 1992; 170:33–45.

Wright J, Peng Y, Ma Y, Ganesh A, Rao S. Robust principal component analysis: Exact recovery of
corrupted low-rank matrices by convex optimization. NIPS. 2009

Xue Y, Liao X, Carin L, Krishnapuram B. Multi-task learning for classification with dirichlet process
priors. Journal of Machine Learning Research. 2007; 8:35–63.

Yang Y, Pedersen JO. A comparative study on feature selection in text categorization. ICML. 1997

Yu K, Tresp V, Schwaighofer A. Learning Gaussian processes from multiple tasks. ICML. 2005

Zhang J, Ghahramani Z, Yang Y. Learning multiple related tasks using latent independent component
analysis. NIPS. 2005

Zhang X, Saha A, Vishwanathan SVN. Regularized risk minimization by nesterov's accelerated
gradient methods: Algorithmic extensions and empirical studies. CoRR abs/1011.0472. 2010

Zhang Y, Schneider J. Learning multiple tasks with a sparse matrix-normal penalty. NIPS. 2010

Zhang Y, Yeung D-Y. A convex formulation for learning task relationship in multi-task learning. UAI.
2010

Zhou J, Chen J, Ye J. Clustered multi-task learning via alternating structure optimization. NIPS. 2011

Chen et al. Page 25

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
Illustration of the transformation matrix Z in Eq. (1), where P denotes the sparse component
with the zero-value entries represented by white blocks, and Q denotes the low-rank
component.

Chen et al. Page 26

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Demonstration of the sparse and low-rank structures: the left column corresponds to the
ground truth (of the sparse structure and the low-rank structure), and the right column
corresponds to the extracted (sparse and low-rank) structures from Eq. (45); the first row
shows the sparse components, and the second row shows the singular values of the low-rank
components.

Chen et al. Page 27

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Extracted sparse (first and third plots) and low-rank (second and fourth plots) structures on
AR face images with different sparse regularization and rank constraint parameters in Eq.
(45): for the first two plots, we set γ = 11, τ = 0.08; for the last two plots, we set γ = 14, τ =
0.15.

Chen et al. Page 28

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Performance comparison of eight multi-task learning algorithms with different training
ratios in terms of average AUC (top plot), Macro F1 (middle plot), and Micro F1 (bottom
plot). The index on the x-axis corresponds to the training ratio varying from 0.1 to 0.9.

Chen et al. Page 29

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
Performance comparison of the eight competing multi-task learning algorithms with
different numbers of tasks in terms of Macro F1 (top plot) and Micro F1 (bottom plot).

Chen et al. Page 30

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
Convergence rate comparison between PG and AG: the relationship between the objective
value of Eq. (45) and the iteration number (achieved via PG and AG, respectively). For the
left plot, we set γ = 1, τ = 2; for the right plot, we set γ = 6, τ = 4.

Chen et al. Page 31

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
Comparison of PG and AG in terms of the computation time in seconds (left column) and
the iteration number (right column) with different stopping criteria. The x-axis indexes the
stopping criterion from 10–1 to 10–10. Note that we stop PG or AG when the change of the
objective value in Eq. (45) is smaller than the value of the stopping criterion. For the first
row, we set γ = 1, τ = 2; for the second row, we set γ = 6, τ = 4.

Chen et al. Page 32

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 33

Table I

Statistics of the benchmark data sets.

Data Set Sample Size Dimension Task Number Type

Face 1400 19800 100 image

Scene 2407 294 6 image

Yeast 2417 103 14 gene

MediaMill1 8000 120 80 multimedia

MediaMill2 8000 120 100 multimedia

References 7929 26397 15 text

Science 6345 24002 22 text

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 34

Table II

Average performance (with standard derivation) comparison of eight competing algorithms on three data sets
in terms of average AUC (top section), Macro F1 (middle section), and Micro F1 (bottom section). All
parameters of the eight methods are tuned via cross-validation, and the reported performance is averaged over
five random repetitions.

Data (n, d, m) Scene (2407, 294, 6) Yeast (2417, 103, 14) References (7929, 26397, 15)

Average AUC

MixedNorm 91.602 ± 0.374 79.871 ± 0.438 77.526 ± 0.285

MTRL 90.821 ± 0.512 78.437 ± 0.610 75.133 ± 0.410

MTL(Ω&Σ) 90.217 ± 1.139 78.515 ± 0.393 76.249 ± 0.277

TraceNorm 90.205 ± 0.374 76.877 ± 0.127 71.259 ± 0.129

ASO 86.258 ± 0.981 64.519 ± 0.633 75.960 ± 0.104

OneNorm 87.846 ± 0.193 65.602 ± 0.842 75.444 ± 0.074

IndSVM 84.056 ± 0.010 64.601 ± 0.056 73.882 ± 0.244

RidgeReg 85.209 ± 0.246 65.491 ± 1.160 74.781 ± 0.556

Macro F1

MixedNorm 60.602 ± 1.383 55.624 ± 0.621 37.135 ± 0.229

MTRL 58.873 ± 0.814 53.913 ± 0.785 36.492 ± 0.575

MTL(Ω&Σ) 59.212 ± 0.671 54.854 ± 0.803 36.218 ± 0.157

TraceNorm 57.692 ± 0.480 52.400 ± 0.623 35.562 ± 0.278

ASO 56.819 ± 0.214 45.599 ± 0.081 34.462 ± 0.315

OneNorm 55.061 ± 0.801 42.023 ± 0.120 36.579 ± 0.157

IndSVM 54.253 ± 0.078 38.507 ± 0.576 31.207 ± 0.416

RidgeReg 53.281 ± 0.949 42.315 ± 0.625 32.724 ± 0.190

Micro F1

MixedNorm 64.392 ± 0.876 56.495 ± 0.190 59.408 ± 0.344

MTRL 63.958 ± 0.324 55.127 ± 0.922 58.112 ± 0.322

MTL(Ω&Σ) 63.219 ± 0.769 54.235 ± 0.318 58.118 ± 1.246

TraceNorm 61.172 ± 0.838 54.172 ± 0.879 57.497 ± 0.130

ASO 59.015 ± 0.124 45.952 ± 0.011 55.406 ± 0.198

OneNorm 59.951 ± 0.072 47.558 ± 1.695 58.798 ± 0.166

IndSVM 57.450 ± 0.322 52.094 ± 0.297 54.875 ± 0.185

RidgeReg 56.012 ± 0.144 46.743 ± 0.625 53.713 ± 0.213

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 35

Table III

Average performance comparison of eight competing algorithms on three data sets in terms of average AUC,
Macro F1, and Micro F1. See the caption of Table II for detailed explanations.

Data (n, d, m) Science (6345, 24002,22) MediaMill1 (8000, 120, 80) MediaMill2 (8000, 120, 100)

Average AUC

MixedNorm 75.746 ± 1.423 72.571 ± 0.363 65.932 ± 0.321

MTRL 73.389 ± 0.417 71.447 ± 0.185 64.980 ± 0.522

MTL(Ω&Σ) 75.165 ± 0.439 70.625 ± 0.570 64.303 ± 0.241

TraceNorm 71.478 ± 0.293 69.469 ± 0.425 60.882 ± 1.239

ASO 75.535 ± 1.591 71.067 ± 0.315 65.444 ± 0.424

OneNorm 74.456 ± 1.076 70.453 ± 0.762 64.219 ± 0.566

IndSVM 70.220 ± 0.065 67.088 ± 0.231 57.437 ± 0.594

RidgeReg 69.177 ± 0.863 66.284 ± 0.482 56.605 ± 0.709

Macro F1

MixedNorm 38.281 ± 0.011 9.706 ± 0.229 7.981 ± 0.011

MTRL 36.320 ± 0.421 8.625 ± 0.507 7.112 ± 0.303

MTL(Ω&Σ) 38.198 ± 0.348 8.225 ± 0.108 6.785 ± 0.624

TraceNorm 36.447 ± 0.055 8.562 ± 0.027 6.765 ± 0.039

ASO 36.278 ± 0.183 8.023 ± 0.196 6.150 ± 0.023

OneNorm 37.981 ± 0.200 8.579 ± 0.157 6.447 ± 0.133

IndSVM 35.175 ± 0.177 6.207 ± 0.410 5.175 ± 0.177

RidgeReg 35.066 ± 0.196 7.724 ± 0.190 5.066 ± 0.096

Micro F1

MixedNorm 52.619 ± 0.042 61.426 ± 0.062 60.117 ± 0.019

MTRL 51.212 ± 0.165 60.217 ± 0.311 59.443 ± 0.508

MTL(Ω&Σ) 52.612 ± 1.192 59.578 ± 0.631 59.848 ± 1.140

TraceNorm 49.124 ± 0.409 59.090 ± 0.117 58.317 ± 1.010

ASO 49.616 ± 0.406 59.415 ± 0.005 59.079 ± 1.720

OneNorm 52.733 ± 0.394 60.594 ± 0.026 59.221 ± 0.390

IndSVM 48.574 ± 0.265 57.825 ± 0.272 56.525 ± 0.317

RidgeReg 47.454 ± 0.255 57.752 ± 0.210 56.982 ± 0.455

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 36

Table IV

Comparison of PG and AG in terms of computation time (in seconds) and iteration number using different
stopping criteria.

γ = 1, τ = 2 γ = 6, τ = 4

stopping criteria
iteration time iteration time

PG AG PG AG PG AG PG AG

10–1 2 2 0.6 0.4 3 3 0.5 0.4

10–2 4 4 0.6 0.4 5 4 0.6 0.5

10–3 17 15 0.6 0.5 722 110 8.4 1.6

10–4 9957 537 116.1 6.5 1420 144 16.2 1.9

10–5 19103 683 223.7 8.3 1525 144 17.3 1.9

10–6 21664 683 253.0 8.3 1525 259 17.4 3.1

10–7 31448 1199 367.9 14.3 1527 271 18.3 3.3

10–8 44245 1491 521.3 18.4 1570 287 19.7 3.5

10–9 58280 1965 690.5 23.0 2062 365 23.1 4.2

10–10 73134 3072 885.4 35.9 2587 365 29.1 4.4

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 37

Table V

Comparison of the proposed multi-task learning algorithm and the representative single task learning
algorithm in terms of average AUC and computation time (in seconds). Note that data size corresponds to
sample size, feature dimensionality, and task number.

Scene Reference

Data Size 2406 × 294 × 6 7929 × 26397 × 15

Measures Average AUC Computation Time Average AUC Computation Time

MixedNorm 91.602 0.5460 77.526 159.868

OneNorm 87.846 0.4836 75.444 141.257

RidgeReg 85.209 0.2496 65.491 80.200

IndSVM 84.056 0.2946 73.882 5.479

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 38

Table VI

Sample images and the associated controlled vocabulary (CV) terms in FlyExpress database.

Stage Range 7 ~ 8 11 ~ 12

Gene Pfrx Ran

Images Groups

CV Terms anterior endoderm anlage
dorsal ectoderm primordium

head mesoderm primordium P4
mesectoderm primordium

posterior endoderm primordium P2
procephalic ectoderm anlage

trunk mesoderm primordium P2
ventral ectoderm primordium P2

ventral nerve cord anlage
visual anlage

anterior midgut primordium
brain primordium

posterior midgut primordium
ventral nerve cord primordium

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 39

Table VII

Performance comparison of five competing algorithms for the gene expression pattern images annotation (10
CV terms) in terms of average AUC (top section), Macro F1 (middle section), and Micro F1 (bottom section).
All parameters of the six methods are tuned via cross-validation, and the reported performance is averaged
over five random repetitions. Note that n, d, and m denote the sample size, dimensionality, and term (task)
number, respectively.

Stage Range (n, d, m) 4 ~ 6 (925, 2000,
10)

7 ~ 8 (797, 2000,
10)

9 ~ 10 (919 , 2000 ,
10)

11 ~ 12 (1622,
2000, 10)

13 ~ 16 (2228,
2000, 10)

Avg. AUC

MixedNorm 75.44 ± 0.87 75.55 ± 0.42 77.18 ± 0.50 83.82 ± 0.93 85.54 ± 0.25

OneNorm 74.98 ± 0.12 73.80 ± 0.55 75.80 ± 0.24 82.78 ± 0.27 84.77 ± 0.20

TraceNorm 73.04 ± 0.79 74.06 ± 0.46 76.71 ± 0.72 81.77 ± 1.10 83.64 ± 0.27

IndSVM 71.00 ± 0.53 72.13 ± 0.70 73.58 ± 0.48 79.01 ± 0.58 82.06 ± 1.04

RidgeReg 72.46 ± 0.15 72.51 ± 0.82 73.10 ± 0.38 80.83 ± 0.67 82.02 ± 0.15

Mac. F1

MixedNorm 43.71 ± 0.32 48.31 ± 0.56 53.11 ± 0.56 61.11 ± 0.58 61.81 ± 0.40

OneNorm 42.24 ± 0.14 47.40 ± 0.23 51.04 ± 0.10 59.36 ± 0.60 61.02 ± 0.10

TraceNorm 41.38 ± 0.36 46.51 ± 0.67 51.13 ± 0.95 61.05 ± 0.78 60.15 ± 0.45

IndSVM 40.88 ± 0.49 46.73 ± 0.51 50.28 ± 0.65 59.82 ± 0.83 59.62 ± 0.94

RidgeReg 41.65 ± 0.45 46.91 ± 0.94 50.69 ± 0.77 59.46 ± 0.95 60.59 ± 0.79

Mic. F1

MixedNorm 46.98 ± 0.90 62.73 ± 0.93 63.46 ± 0.07 69.31 ± 0.37 67.13 ± 0.41

OneNorm 44.55 ± 0.38 60.02 ± 0.56 61.78 ± 0.10 68.54 ± 0.17 66.30 ± 0.55

TraceNorm 43.88 ± 0.73 61.29 ± 0.78 61.33 ± 1.04 68.68 ± 0.27 66.37 ± 0.26

IndSVM 42.05 ± 0.61 60.09 ± 0.78 60.57 ± 0.75 67.08 ± 0.99 65.95 ± 0.80

RidgeReg 43.63 ± 0.41 59.95 ± 0.75 60.59 ± 0.66 66.87 ± 0.11 65.67 ± 1.10

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 40

Table VIII

Performance comparison of five competing algorithms for the gene expression pattern images annotation (20
CV terms).

Stage Range (n, d, m) 4 ~ 6 (1023, 2000,
20)

7 ~ 8 (827, 2000,
20)

9 ~ 10 (1015, 2000,
20)

11 ~ 12 (1940,
2000, 20)

13 ~ 16 (2476,
2000, 20)

Avg. AUC

MixedNorm 76.27 ± 0.53 72.03 ± 0.63 73.97 ± 1.10 82.27 ± 0.42 82.16 ± 0.16

OneNorm 75.13 ± 0.03 70.95 ± 0.14 72.49 ± 1.00 81.73 ± 0.36 81.03 ± 0.08

TraceNorm 74.69 ± 0.39 69.43 ± 0.46 71.59 ± 0.79 81.53 ± 0.16 80.88 ± 1.10

IndSVM 73.82 ± 0.78 69.74 ± 0.19 70.84 ± 0.85 80.86 ± 0.56 79.94 ± 0.19

RidgeReg 74.66 ± 1.44 70.77 ± 0.62 69.36 ± 1.44 80.40 ± 0.43 78.29 ± 0.42

Mac. F1

MixedNorm 31.90 ± 0.11 31.13 ± 0.68 32.28 ± 1.13 43.48 ± 0.39 43.44 ± 0.60

OneNorm 30.48 ± 0.12 30.07 ± 0.56 30.50 ± 1.13 41.89 ± 0.24 42.64 ± 0.47

TraceNorm 29.22 ± 0.31 30.24 ± 0.78 31.28 ± 0.54 42.07 ± 0.67 41.11 ± 0.52

IndSVM 29.47 ± 0.46 28.85 ± 0.62 30.03 ± 1.68 41.63 ± 0.58 40.80 ± 0.66

RidgeReg 28.92 ± 1.24 28.76 ± 0.95 29.94 ± 1.84 41.51 ± 0.39 40.84 ± 0.40

Mic. F1

MixedNorm 42.50 ± 0.63 57.04 ± 0.13 57.37 ± 0.71 61.97 ± 0.51 56.75 ± 0.40

OneNorm 40.80 ± 0.48 56.55 ± 0.22 56.82 ± 0.04 60.59 ± 0.32 55.87 ± 0.11

TraceNorm 41.26 ± 1.16 56.47 ± 0.27 55.37 ± 0.38 59.27 ± 0.93 54.08 ± 0.51

IndSVM 39.24 ± 0.82 55.40 ± 0.15 55.75 ± 1.70 58.33 ± 0.53 53.61 ± 0.36

RidgeReg 38.46 ± 0.41 56.08 ± 0.46 54.23 ± 0.85 59.13 ± 0.67 53.75 ± 0.31

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 41

Algorithm 1

Projected Gradient (PG) Method

1: Input: T0, L 0 ∈ R, and max-iter.

2: Output: T.

3: for i = 0,1, · · · , max-iter do

4: while (true)

5: Compute T̂ = TLi,Ti via Eq. (11).

6: if F(T̂) ≤ GLi (Ti,T)̂ then exit the loop.

7: else update Li = Li × 2.

8: end-if

9: end-while

10: Update Ti+1 = T̂ and Li+1 = Li.

11: if the stopping criterion is satisfied then exit the loop.

12: end-for

13: Set T = Ti+1.

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 42

Algorithm 2

Accelerated Projected Gradient (AG) Method

1: Input: T0, L 0 ∈ R, and max-iter.

2: Output: T.

3: Set T1 = T0, t–1 = 0, and t0 = 1.

4: for i = 1, 2, · · · , max-iter do

5: Compute α = (ti–2– 1)/ti–1.

6: Compute S = (1 + αi)Ti – αiTi–1

7: while (true)

8: Compute T̂ = TLi,S via Eq. (11).

9: if F(T̂) ≤ GLi (S, T̂) then exit the loop

10: else update Li = Li × 2.

11: end-if

12: end-while

13: Update Ti+1 = T̂ and Li+1 = Li.

14: if the stopping criterion is satisfied then exit the loop.

15:
 Update ti =

1
2 (1 + 1 + 4ti−1

2).

16: end-for

17: Set T = Ti+1.

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 43

Algorithm 3

Projected Gradient Algorithm (PG) for Solving Eq. (45)

1: Input: P0, Q0, L = 2 σX
2 , and max-iter.

2: Output: P, Q.

3: for i = 0, 1, · · · , max-iter do

4: Set Li = L, SPi = Pi, SQi = Qi.

5: Compute Pĩ = SPi – ∇P f (P, Q)|P=SPi,Q=SQi
,

6: Q̃i = SQi – ∇Q f (P, Q)|P=SPi,Q=SQi
.

7: Compute P̂ via Eq. (47) and Q̂ via Eq. (48).

8: Set Pi+1 = P̂, Qi+1 = Q̂.

9: if the stopping criterion is satisfied then exit the loop.

10: end-for

11: Set P = Pi+1, Q = Qi+1.

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 44

Algorithm 4

Accelerated Projected Gradient Algorithm (AG) for Solving Eq. (45)

1: Input: P0, Q0, L = 2 σX
2 , and max-iter.

2: Output: P, Q.

3: Set P1 = P0, Q1 = Q0, t–1 = 0 and t0 = 1.

4: for i = 1, 2, · · · , max-iter do

5: Compute αi = (ti–2 – 1)/ti–1.

6: Set Li = L, SPi = (1 + αi)Pi – αiPi–1, SQi = (1 + αi)Qi – αiQi–1.

7: Compute Pĩ = SPi – ∇P f (P, Q)|P=SPi,Q=SQi
,

8: Q̃i = SQi – ∇Q f (P, Q)|P=SPi,Q=SQi
.

9: Compute P̂ via Eq. (47), and Q̂ via Eq. (48).

10: Set Pi+1 = P̂, Qi+1 = Q̂.

11: if the stopping criterion is satisfied then exit the loop.

12:
 Update ti =

1
2 (1 + 1 + 4ti−1

2).

13: end-for

14: Set P = Pi+1,Q = Qi+1.

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2013 September 25.

