@PLOS ‘ ONE

OPEN 8 ACCESS Freely available online

Visualization and Quantification of APP Intracellular
Domain-Mediated Nuclear Signaling by Bimolecular
Fluorescence Complementation

Florian Riese, Sonja Grinschgl, Manuel T. Gersbacher, Natalie Russi, Christoph Hock, Roger M. Nitsch,
Uwe Konietzko’

Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland

Abstract

Background: The amyloid precursor protein (APP) intracellular domain (AICD) is released from full-length APP upon
sequential cleavage by either a- or B-secretase followed by y-secretase. Together with the adaptor protein Fe65 and
the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes) that function in
transcriptional regulation.

Objective: To develop a medium-throughput machine-based assay for visualization and quantification of AFT
complex formation in cultured cells.

Methods: We used cotransfection of bimolecular fluorescence complementation (BiFC) fusion constructs of APP and
Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC).

Results: Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional
fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in
fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60.
We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer’s disease mutation increases
AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP
processing through the amyloidogenic (-secretase pathway. Next, we studied the impact of posttranslational
modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to
phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the
negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative
stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC
signals.

Conclusion: We established a new method for visualization and FC quantification of the interaction between AICD,
Fe65 and Tip60 in the nucleus based on BiFC. It enables flow cytometric analysis of AICD nuclear signaling and is
characterized by scalability and low background fluorescence.
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Introduction

Even though recently modified, the leading hypothesis for the
pathogenesis of Alzheimer's disease (AD), the amyloid
cascade hypothesis, assigns a pivotal role to AB [1-4]. Various
forms of AB are released upon sequential cleavage of the
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amyloid precursor protein (APP) by the [B-secretase BACE1
and the y-secretase complex [5]. Another APP cleavage
product, generated both through the amyloidogenic -
secretase-initiated and the non-amyloidogenic a-secretase-
initiated pathway, is the APP intracellular domain (AICD). AICD
forms transcriptionally active complexes with the multidomain
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adaptor protein Fe65 and the histone acetyltransferase Tip60
(AFT complexes) [6]. These complexes localize to distinct
nuclear spots [7] that are sites of active transcription [8]. We
could furthermore demonstrate that nuclear signaling capability
of AICD is determined by the N-terminal residues that
determine the propensity for proteasomal degradation [9].
Notably, formation of AFT complexes occurs predominantly
after AICD release through the amyloidogenic processing
pathway of APP [10]. Furthermore, many familial mutations that
were found to be causative for AD were shown to have an
effect on both AR and AICD production (e.g. the Swedish APP
double mutation [10,11] as well as mutations mutations in the
y-secretase subunits presenilin 1 and 2 [12-14]). These and
other observations indicate that AICD may have a role in the
disease process alongside A [15].

Bimolecular fluorescence complementation (BiFC) is a
technique for visualization of protein-protein interactions
[16-18]. It relies on the coupling of target proteins to fragments
of fluorescent proteins, most commonly variants of yellow
fluorescent protein (YFP). By themselves, these fragments are
not fluorescent. However, upon interaction of the labeled target
proteins, they are brought into proximity and complementation
to a fully functional fluorescent protein occurs. The signal can
then be detected by microscopy and BiFC-positive cells can be
quantified by flow cytometry (FC) [19]. In the field of
neurodegenerative diseases, BiFC has so far been used to
study disease mechanisms in Alzheimer's and Parkinson’s
disease [20], such as the oligomerization of a-synuclein
[21,22]. For APP, BiFC was employed to demonstrate the
formation of APP homodimers in the endoplasmatic reticulum
and Golgi apparatus and to study the differential dimerization
properties of different isoforms and familial AD mutations of
APP [23-25]. In another set of experiments, BiFC revealed the
heterodimerization of APP with Notch2 [26,27]. Recently, BiFC
was used to show the Mint2-mediated interaction of the APP C-
terminus with Munc18 [28]. Finally, the interaction between
Fe65 and another APP-interacting protein, LRP1, was
demonstrated using BiFC [29].

In order to further study the regulation of AICD nuclear
signaling we now developed a new method for visualization
and quantification of AFT complex formation based on BiFC.
This new method overcomes several limitations of the
previously published method based on manual counting under
the microscope [10], since it is feasible for FC analysis and
therefore avoids inter-rater variability and allows a higher
throughput.

Methods

Plasmid vectors
For generation of pUKBK-C-APP-YC155, the YC-BiFC

fragment was PCR amplified from pBiFC-bFos-YC155
(courtesy of Tom  Kerppola [30]) using primers
agtcggcgcegcecccgtccggegtgcaaaatee and

tgcagtttaaacttacttgtacagctcgtccatgccg and cloned to the C-
terminus of full length APP using the restriction enzymes Ascl
and Pmel, as described previously for the modular pUKBK
vector system [31]. An alternative APP-YC155 construct
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featuring a shorter linker peptide between APP and the YC155
fragment, pUKBK-C-APP-YC155sl, was designed using
primers agtcggcgcgceccatgaaccacgacaagcagaag and
tgcagtttaaacttacttgtacagctcgtccatgccg and restriction enzymes
Ascl and Pmel. For generation of vector pUKBK-C-myc-Tip60-
YN155 (with a C-terminal location of YN155), a YN155
fragment was produced by PCR with primers
agtcggcgcegeccagatccatcgecaccatggtgag and
tgcagtttaaacctaggccatgatatagacgttgtggctg on  pBiFC-bJun-
YN155 (courtesy of Tom Kerppola [30]). The resulting PCR
product was then cloned into expression vector pUKBK-C-myc-
Tip60 by restriction enzymes Ascl and Pmel. For N-terminal
localization of YN155 to Tip60, vector pUKBK-C-YN155-Tip60
was created following the same strategy but using primers
cagttctagagctagcggecgcectcggecgecaccatggtgagcaaggg and
cagttccggacaggtcctcctegcetgatcagcttctgctcggecatgatatagacgttgt
gg and restriction cloning with Xbal and BspEl. Vector pUKBK-
C-APP-YN155 was cloned from pUKBK-C-APP-YC155 and
pUKBK-C-myc-Tip60-YN155 using restriction enzymes Ascl
and Pmel. Finally, pUKBK-C-SwAPP-YC155 harboring the
Swedish mutation of APP (K595N/M596L) [32] and pUKBK-C-
APP-YC155 Y682F were generated by site-directed
mutagenesis. The expression vectors for APP-Citrine, CFP-
Tip60, HA-Fe65 and HA-X11a were described previously [7].

Cell culture

HEK293 cells (DSMZ) were cultured in DMEM (Gibco)
supplemented with 10% fetal bovine serum (Invitrogen). For FC
analysis, 400,000 HEK293 cells per well were seeded in 12-
well plates and cultivated in 5% CO, at 37°C. On the next day,
transfections with equal vector amounts were performed using
Lipofectamine 2000 (Invitrogen) following the manufacturer’s
protocol. Three hours post transfection, medium was changed
to DMEM/F12 supplemented with 25mM HEPES (Gibco). For
oxidative stress experiments, H,0, (Merck) was added at this
point. On the following day, cells were kept in ambient air for 10
hours at 30°C to promote fluorescence maturation prior to FC
analysis. For confocal imaging, 50,000 cells per well were
seeded on 4-well object trays coated with poly-L-ornithine (50
pug/ml, Sigma) and fibronectin (5 pug/ml, Sigma). Transfections
were performed as described above.

Flow cytometry

For preparation of single cell suspensions, cells were
washed with PBS (Gibco), trypsinized, pelleted, resuspended
in PBS and strained through a nylon mesh cap (Falcon). Cell
preparation and analysis were carried out consecutively for
every sample alternating the experimental and control
condition. Per sample, 150,000 cells were analyzed on a
Cytomics FC500 (Beckman Coulter) with excitation at 488 nm
and registration with the 525BP Fl1-filter. Cells were defined as
BiFC positive if they fell in a rectangular gate that eliminates
99.9% of control condition cells (Lipofectamine 2000 alone).

Western blotting

Cells remaining from the FC analysis were harvested and
used for correction of possible variations in expression of the
different APP constructs. Cells lysates were separated by SDS-
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PAGE on 10-20% tricine gels (Invitrogen) followed by Western
blotting. Raw BiFC-FC cell counts were then normalized to the
band-intensity ratio between APP (APP C-terminal antibody,
Sigma, 1:4000) and BActin (Abcam, 1:1000) or GAPDH
(Meridian Life science, 1:4000). Bands were visualized with
HRP-coupled secondary antibodies (GE-Healthcare) and by
ECL (Pierce), measured with the LAS-3000 camera system
(Fujifilm Life Sciences) and analyzed using the Multi Gauge
V3.0 software (Fujifilm Life Sciences).

Immunocytochemistry

Immunocytochemistry was performed as described
previously [7] using HA-antibody (Roche, 1:100) and Cy5-
linked secondary antibody (Jackson, 1:250). To label
subcellular compartments, anti-calnexin (Stressgen) and anti-
TGN46 antibodies (Sigma) were used at a dilution of 1:100.
DAPI (Sigma) was used to counterstain nuclei.

Confocal microscopy
Images were acquired on a TCS/SP2 confocal microscope
(Leica) as described previously [7].

Results

AFT-BiFC design

Classical fluorescence fusion constructs are suitable to
demonstrate the subcellular localization of AFT complexes in
nuclear spots using confocal microscopy (Figure 1A). However,
flow cytometers measure total cellular fluorescence and cannot
discern fluorescence of nuclear AFT complexes and APP-
Citrine residing in the ER/Golgi apparatus. The recently
developed fluorescence resonance energy transfer -
fluorescence assisted cell sorting (FRET-FACS) might be a
way to resolve this problem [33] as only two fluorescent
proteins in close proximity will emit a FRET signal. We decided
to base our assay on the BiFC technique that relies on splitting
YFP into two halves and fusing them to the proteins under
scrutiny. Reconstitution of a fully functional fluorescent protein
occurs only when both BiFC-fusion proteins are in close
proximity. We fused the YFP halves to the APP C-terminus and
Tip60, ensuring that only upon nuclear translocation of AICD-
Fe65 complexes and association with Tip60 a fluorescent
signal will be generated (Figure 1B). Thus, a fluorescence
signal should report bona fide AICD nuclear signaling. A crucial
step in the design of BiFC constructs is the positioning of the
BiFC fragments YN and YC relative to the labeled proteins [16].
In our case, the positioning of one half of YFP to the APP C-
terminus was determined by our interest in studying AICD
nuclear translocation. For localization with respect to Tip60, we
tested both a YN-Tip60 and a Tip 60-YN construct. We
furthermore tested two different APP-YC constructs that
differed in their length of linker between APP and YC (data not
shown). For optimal fluorescence yield and lowest background
a pairing of APP-YC (with the longer linker consisting of 38
amino acids) and the Tip 60-YN (C-terminal positioning) were
chosen. BiFC requires a maturation phase at 30°C to
reconstitute YFP. We therefore performed a maturation time
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series to identify the timepoint when full maturation is reached,
which was at 600 minutes (Figure 1C).

Subcellular localization

As previously described [30], bFos-YC and bJun-YN
cotransfection results in an exclusively nuclear BiFC signal
(Figure 2A). In contrast to this widespread nuclear localization,
cotransfected APP-YC, Fe65 and Tip 60-YN show a nuclear
spot-like distribution (Figure 2B) as known from cotransfection
of classical full length fluorescent protein fusion constructs
(Figure 1A). In some cases, AFT-BiFC could also be detected
outside the nucleus (Figure 2C). Confocal analysis of the AFT-
BiFC signal location revealed that in 56.4% of cells it was
exclusively nuclear, 39.4% nuclear and extranuclear, and 4.2%
were found to be exclusively extranuclear (n=312 fluorescent
cells from nine confocal images). This means that AFT-BiFC
has only a 4% error rate regarding fluorescent signals
emanating from cells not harboring nuclear AFT complexes. In
contrast to AFT-BiFC, cotransfection of APP-YC and APP-YN
led to perinuclear BIiFC, compatible with the known
dimerization of APP (Figure 2D). The BiFC signal from APP
dimers was found to colocalize with the endoplasmatic
reticulum (Figure 2E) and the Golgi network (Figure 2F).

AFT-BiFC flow cytometry

Our AFT-BIiFC system generates fluorescence only upon
formation of AFT complexes, i.e. in the presence of all three
interaction partners (Figure 3A). In the absence of Fe65
cotransfection, virtually no fluorescence is observed by
microscopy or detected by FC (Figure 3 A-C). Likewise,
replacement of Fe65 by another AICD-binding protein, HA-
X11a, does not lead to a BiFC signal (Figure 3A) in line with
HA-X11a trapping AICD outside of the nucleus [7]. Since
background fluorescence was low and the signal was specific
to AFT complex formation, we extended our system to
quantification by FC. FC analysis verified our confocal results
that Fe65 is required for production of a BiFC signal from APP-
YC and Tip 60-YN and that this function is specific for Fe65
(Figure 3B and 3C). Identification of around 6% cells as BiFC-
positive is consistent with our experience with classical
fluorescent protein-coupled constructs (Figure 1A) generating
approximately 5% cells with AFT complexes. We did not
observe toxicity in cells harboring AFT complexes when
measuring LDH release (data not shown). Additionally, we did
not observe differences in the times required to reach a defined
cell count during FC measurements between the tested
conditions. We conclude that AFT-BiIFC complex formation
does not result in relevant cytotoxicity.

Quantitative AFT-BiFC applications

In order to provide proof-of-principle that quantification of
AICD nuclear signaling with our BiFC-based method is possible
not only for on/off-situations but also for more gradual
differences, we compared wildtype APP-YC with Swedish APP-
YC. The Swedish double mutation, which is known to cause a
familial form of AD in humans [32], favors B-secretase cleavage
of APP over a-secretase cleavage [11]. We previously showed
that nuclear AICD in AFT complexes is predominantly
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Figure 1. AFT complex formation and the BiFC principle. (A) Spherical nuclear AFT complexes in HEK293 cells cotransfected
with APP-Citrine, CFP-Tip60 and HA-Fe65 (arrow). Cells that lack CFP-Tip60 accumulate neither AICD-Citrine nor HA-Fe65 in the
nucleus (arrowhead). Nuclei were counterstained with DAPI. Length of bar: 20 um. (B) Schematic depiction of the BiFC-based AFT
complex detection system, where APP and Tip60 are fused to YFP halves. Since Fe65 serves as an adaptor between APP and
Tip60, fluorescence complementation only occurs in the presence of all three proteins. (C) Fluorescence maturation in AFT-BiFC.
Fluorescence maturation at 30°C was allowed for increasing time periods before FC quantification (n=3 per timepoint, error bars
represent SEM). If samples were maintained at 37°C, no maturation occurred (samples labeled 37°C).

doi: 10.1371/journal.pone.0076094.g001
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Figure 2. Subcellular localization of BiFC signals. HEK293 cells were imaged by confocal microscopy. (A) Cotransfection of
bFos-YC and bJun-YN generates a BiFC signal distributed throughout the cell nucleus. (B) Cotransfection of APP-YC, HA-Fe65 and
Tip 60-YN results in multiple spherical nuclear BiFC signals from AFT complexes. (C) In some cells, cotransfection also results in
formation of extranuclear BiFC signals (arrow), which is consistent with an interaction of Tip60 and AICD/Fe65 also outside the
nucleus as previously reported by us [8]. (D) Cotransfection with APP-YC and APP-YN results in perinuclear fluorescence (E+F).
Colocalization of the APP/APP-BIFC signal with calnexin and TGN46 is consistent with the localization of APP/APP-dimers in the
ER/Golgi. Nuclei were counterstained with DAPI. Length of bar: 13 ym (A, C, E, F) or 10 ym (B, D).

doi: 10.1371/journal.pone.0076094.g002

generated through B-secretase activity and that the Swedish signaling [10]. Consistent with these findings, we measure a
double mutation consequently increases AICD nuclear significant increase of AFT-BiFC positive cells with our novel
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Figure 3. AFT-BiFC requires the presence of Fe65. (A) After cotransfection of APP-YC, Tip 60-YN and HA-Fe65 the BiFC signal
can be detected in a subset of cells in the confocal microscope. In contrast, cotransfection of APP-YC and Tip 60-YN alone does not
lead to fluorescence complementation, which indicates absence of direct interaction between AICD and Tip60. Transfection of APP-
YC and Tip 60-YN together with the AICD-binding protein MINT1/X11 that traps AICD in the cytosol also does not generate a BiFC
signal. Lower panels show BiFC overlay with DAPI nuclear staining. Length of bar: 60 pm. (B) Representative BiFC-FC scatter plots
of individual samples. Percentages refer to gated cells. Fluorescence intensity and forward scatter are depicted in arbitrary units. (C)
BiFC-FC quantification of HEK293 cells cotransfected with APP-YC and Tip 60-YN together with or without HA-Fe65 or with
MINT1/X11 (n=6 vs. 5 vs. 6, error bars represent SEM, *** p<0.005, U-test). The approximately 1% BiFC-positive cells in the APP-
Tip60 and APP-X11-Tip60 conditions are most likely due to background autofluorescence of HEK cells as well as fluorescence
complementation mediated by endogenous Fe65.

doi: 10.1371/journal.pone.0076094.g003
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system when comparing Swedish APP with wildtype APP
(Figure 4A). Next, we were interested if BiFC can detect the
influence of posttranslational modifications, specifically
phosphorylation, on AICD nuclear signaling. The YS2ENPTY
motif of AICD is essential for binding of many adaptor proteins
including Fe65. Tyrosine 682 can be phosphorylated by several
tyrosine kinases to differently affect the binding of adaptors
[34]. We introduced the Y682F mutation in order to prevent
phosphorylation at this position. In comparison to wildtype
APP, this resulted in increased AICD nuclear signaling (Figure
4B). Finally, we tested whether challenging cell metabolism by
oxidative stress alters nuclear AFT complex formation. We
measured BiFC signals from cells expressing wildtype APP-YC
with or without exposure to H,0,. At a concentration of 50 uM,
we found no difference in the percentage of BiFC-positive cells
with or without correction for APP and GAPDH levels (Figure
4C). Western blot analysis revealed similar GAPDH band
intensities in both conditions (Figure 4C’) and total cell counts
during FC were likewise similar indicating no overt cytotoxicity.
At a H,0, concentration of 200 uM, the percentage of BiFC-
positive cells was reduced (Figure 4D). At this concentration,
we observed lower APP and GAPDH band intensities on
Western blots (Figure 4D’) and reduced total FC counts (data
not shown) indicating H,O,-induced cell death. Nevertheless,
the reduction in BiFC signal remained robust even after
correction for APP and GAPDH levels (Figure 4D).

Discussion

AICD functions as regulator of transcription for several genes
[35]. Even though the precise mechanism remains to be
elucidated, it likely involves the nuclear complex formation of
AICD with Fe65 and the histone acetyltransferase Tip60, which
are localized to the RNA polymerase Il complex via the
Mediator subunit MED12 [36]. Consistent with this notion, AFT
complexes were found to localize to sites of active transcription
[8]. Since the gene-regulatory function of AICD should itself be
tightly regulated, we established a BiFC-based assay that
allows the visualization of AFT complexes and their
quantification by FC. With this new system, the regulatory
effects of APP mutations, posttranslational APP modifications
or general manipulations of cell metabolism on AICD nuclear
signaling can be analyzed in a medium-throughput fashion.

In order to obtain BiFC constructs with high fluorescence
yield and minimal background several plasmid variants were
cloned. For APP a longer linker (38 amino acids) between its
C-terminus and the YC-coding sequence was optimal, possibly
because the interaction between AICD and Tip60 is indirect
and mediated by Fe65. A hinge sequence may thus facilitate
bringing the two BIiFC fragments in sufficient proximity.
Similarly, we found a stronger signal of the APP-YC/Tip60-YN
pairing over APP-YC/YN-Tip60, indicating that in AFT
complexes the AICD C-terminus is closer to the Tip60 C-
terminus than to its N-terminus. In terms of subcellular
localization of AFT complexes, our AFT-BiFC constructs
demonstrate the same nuclear distribution in distinct spots as
we have reported for AICD fusions to full-length fluorescent
proteins and endogenous AICD [8,10]. This is clearly distinct
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from the homogenous nuclear distribution of bFos-YC/bJun-YN
dimers [30]. Transcription has been described to occur in
around 2000 nuclear loci called transcription factories [37,38].
Dimers of fos/jun are transcription factors that localize to
transcription factories. We hypothesize that, due to the large
number of genes reported to be regulated by fos/jun,
microscopic resolution of single transcription factories in the
microscope is probably not possible. In contrast, AFT
complexes regulate a smaller number of genes thus enabling
visualization of single sites.

In contrast to perinuclear BIiFC signals arising from
homodimers of APP in the ER/Golgi [23,24,26], AFT
complexes predominantly localize to the nucleus.
Nevertheless, in around 40% of the cells we also observed an
AFT-BiFC signal originating from perinuclear sites. This is in
line with our recent experiments showing a leptomycin B-
dependent shuttling of Tip60 between nucleus and cytosol and
a localization of AFT complexes to neuronal processes [8].

A major drawback of many BiFC applications is background
fluorescence, i.e. fluorescence complementation in the
absence of the condition that is expected to bring the labeled
proteins into proximity [16]. With our system, virtually no
background fluorescence is observed, most likely due to the
indirect interaction between AICD-YC and Tip 60-YN that
requires the adaptor protein Fe65 for fluorescence
complementation. Since the assay depends on protein
expression and fluorescence maturation, it does not allow for
real-time imaging of AFT complex formation. In contrast to our
previously published method for AFT complex quantification
[10], the use of BiFC-FC that we report here does not rely on
manual counting of AFT complex positive cells thus eliminating
interrater variability. It also allows for a higher number of
samples and number of cells per sample to be analyzed.
Furthermore, with the possibility to subsequently normalize FC
results to protein levels by Western blotting, variations in
transfection efficiency can be easily controlled.

The validity of our novel BiFC assay for quantification is
further underlined by the finding that the Swedish APP double
mutation increases AFT nuclear signaling relative to wildtype
APP. The Swedish double mutation increases APP cleavage
by B-secretase, which was shown to be the predominant
pathway leading to AICD nuclear signaling [10,39,40]. The
relatively lower increase in AFT complex-positive cells (approx.
22%) that we measure with our assay when compared to
manual counting (approx. 42%) [10] may point to a lower
sensitivity of our system. This may at least in part be explained
by the lower fluorescence intensity of EYFP-BiFC compared to
full-length Citrine, which enables unequivocal identification of
even weakly fluorescent nuclear AFT spots in the microscope.
With our BiFC assay, we thus corroborate our previous finding
that the Swedish APP double mutation increases AICD nuclear
signaling [10]. We thereby provide further evidence that familial
AD mutations also influence functions mediated by AICD.

Posttranslational modifications sculpt the function of proteins.
Tyrosine 682 in the Y®2ENPTY motif is crucial for the binding
of Fe65 and other adaptor proteins. Phosphorylation of this
residue by src, abl, trkA, and EGFR tyrosine kinases was
reported to enhance the binding of SH2-domain containing
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Figure 4. Quantitative AFT-BiFC applications. BiFC-FC quantification of HEK293 cells cotransfected with HA-Fe65, Tip 60-YN
and different APP-YC constructs. (A) Swedish APP-YC increases nuclear AFT complex formation compared to wildtype APP (n=23
vs. 21 from two independent experiments, FC counts corrected for APP/BActin). (B) Mutation of tyrosine 682 to phenylalanine
results in more AICD nuclear signaling (n=23 vs. 22 from two independent experiments, FC counts corrected for APP/BActin). (C)
Oxidative challenge with 50 yM H,0, does not affect nuclear AFT complex formation. Data were analyzed with or without correction
for APP/GAPDH expression levels to correct for putative confounding toxic effects of H,O, (n=22 vs. n=22 from two independent
experiments). (C’) Representative Western blot of BiFC samples showing similar APP and GAPDH levels in both conditions
indicating no toxic effect of H,0, at this concentration. (D) Oxidative challenge with 200 uM H,O, decreases nuclear AFT complex
formation with or without correction for APP/GAPDH levels (n=20 vs. 20 from two independent experiments). (D’) Representative
Western blot of BiFC samples showing decreased APP and GAPDH levels in the 200 uM H,O, condition indicative of oxidative
stress-induced cell death. For (A-D) Data were pooled from two independent experiments by setting the mean of wildtype APP-YC
to 100%. Lipofectamine treatment alone (0.5% fluorescent cells) was used for gating. Error bars represent SEM, * p<0.05, ***
p<0.001 (A, D) or p<0.005 (B), n.s. non-significant, t-test.

doi: 10.1371/journal.pone.0076094.9g004
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adaptor proteins while abolishing binding of Fe65 [34,41-44].
Consequently, our BiFC assay revealed increased nuclear
signaling when Tyrosine 682 was mutated to phenylalanine to
prevent phosphorylation. Tyrosine 682 therefore seems to be
phosphorylated in HEK293 cells resulting in diminished AICD
nuclear signaling. We conclude that signals such as NGF,
acting via trkA receptors [45], prevent AICD-Fe65 interaction
and thus inhibit AICD nuclear signaling, whereas tyrosine
phosphatases should increase signaling.

Elevated markers of oxidative damage are found in affected
brain areas in AD [46]. Using our BiFC assay we could show
that increasing oxidative stress to a point that results in cell
death also diminishes AICD nuclear signaling. However, our
data does not allow us to discern whether reduced AICD
nuclear signaling under conditions of oxidative stress is
causative for cell death or if both, reduced AICD signaling and
cell death, are parallel consequences of oxidative stress.

In conclusion, we report here a novel BiFC-based assay for
visualization and quantification of AICD nuclear signaling
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