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Abstract
Current approaches for treating peripheral nerve injury have resulted in promising, yet insufficient
functional recovery compared to the clinical standard of care, autologous nerve grafts. In order to
design a construct that can match the regenerative potential of the autograft, all facets of nerve
tissue must be incorporated in a combinatorial therapy. Engineered biomaterial scaffolds in the
future will have to promote enhanced regeneration and appropriate reinnervation by targeting the
highly sensitive response of regenerating nerves to their surrounding microenvironment.

Introduction
Currently there is a great disparity in functional outcomes between engineered biomaterials
for nerve repair and the clinical standard of care, nerve autografts [1]. This disparity has led
to a multitude of approaches to target the complexity of nerve regeneration. Biomaterials are
currently being tailored to address these issues because currently marketed nerve guidance
conduits (NGCs) cannot match the performance of autografts in large nerve defects (greater
than 10 mm in rats, or greater than 30 mm in humans) [2]. Yet, an engineered construct
capable of promoting neuronal survival, as well as axon extension and guidance is needed to
provide equivalent functional outcomes to an autograft. This “off the shelf” alternative is
desirable to prevent harvesting tissue that results in donor site morbidity and to improve
upon the limitations of autograft recovery, where less than 25% of patients regain proper
motor function and less than 3% regain sensation [3]. Current approaches focus on the
sensitivity of regenerating axons to the surrounding environment, which includes surface
topography, biochemical cues, and electrical activity. Surface topography has been well
established as a mediator of axonal guidance and extension [4]. Thus, many groups have
focused on incorporating architecture that mimics the native nerve into engineered
constructs to better orient regenerating nerves and promote appropriate reinnervation.
Neuronal survival and axon extension has been improved by functionalizing biomaterial
scaffolds with neurotrophic factors (NFs) and extracellular matrix (ECM) proteins (or
peptides derived from these proteins). Research in this field has shown the inclusion of
factors found within native nerve tissue, using either natural or synthetic biomaterial
scaffolds, yielded enhanced regenerative capacity. The inherent electrical activity of nerve
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has prompted the development of electrically conductive biomaterials that may promote
increased axonal regeneration with electrical stimulation. Alone, each of these strategies
may improve regeneration across moderate gaps, yet many studies described in this review
have focused on combination therapies that incorporate of two or more of these elements
(Figure 1). This review details current research in this field, in which the development of
multi-faceted biomaterial scaffolds may improve the functional outcomes to the level of
autografts or improve beyond autograft levels.

Engineering physical and topographical cues for neural guidance
Native nerve architecture includes an elongated, fascicular morphology that enables axonal
guidance following injury through the formation of the Bands of Büngner. Bands of
Büngner are formed by proliferating Schwann cells that help guide regenerating axons to
target organs. Commercially available NGCs are often hollow tubes or nerve wraps that lack
this native architecture, thus many groups have focused on developing materials that provide
guidance within conduits connecting the proximal and distal nerve stumps after injury.
Ribeiro-Resende et al. attempted to promote the generation of artificial Bands of Büngner
through aligned collagen and poly-ε-caprolactone (PCL) filament constructs. Seeded with
Schwann cells, these aligned microfilaments were capable of promoting enhanced, oriented
outgrowth of dorsal root ganglia (DRG) neurites in vitro [5]. This study also found through
combination of topographical cues, as well as what they termed “polarizing” differentiation
factors, nerve growth factor (NGF), neuregulin-1, and transforming growth factor-β (TGF-
β), they achieved increased Schwann cell orientation, which in turn provided better axonal
guidance. The Hoffman-Kim group has focused on mimicking the native Bands of Büngner
architecture through the development of Schwann cell imprinted molds [6]. Cell
topographical molds were created from aligned Schwann cell substrates that were also
capable of promoting highly aligned neurite outgrowth from DRG neurons in vitro. This
group further developed conduits based off of this Schwann cell-mimicking topography that
influenced DRG neurite extension, as well as cell migration patterns, which may prove
useful in vivo [7].

Many groups have developed highly aligned, porous biomaterial scaffolds of natural [8–11]
and synthetic materials [12–14] that aim to provide longitudinally, aligned substrates to
guide regenerating axons. In addition to intraluminal porosity and topography, the effect of
conduit porosity is important as increased porosity may decrease axonal regeneration toward
the distal nerve segment. Oh et al. observed that conduits with nanopores increased
longitudinal regeneration, whereas microporous conduits caused regeneration into the pores
[15]. In vivo, Daly et al. showed aligned conduits aided regeneration of axons through the
use of ultra-structured, grooved collagen fibers. Intraluminal collagen fibers with laser-
fabricated, microgrooves reduced axonal mismatch with the distal nerve stumps compared to
unstructured collagen fibers or hollow collagen conduits; however, functional recovery has
yet to be tested [16].

One of the most popular methods of creating aligned biomaterial substrates is through
electrospinning. In vitro, electrospun scaffolds have been shown to promote cell migration
and guide neurite extension from DRGs [17]. Electrospun scaffolds are commonly
fabricated from synthetic materials, such as PCL [18–20], poly-acrylonitrile (PAN) [21], and
poly-L-lactic acid (PLLA) [22], and natural materials, such as silk, collagen, and blends of
silk and PLLA [23,24]. In vivo, aligned electrospun fibers promoted significantly enhanced
axon regeneration in a sciatic nerve injury model, as assessed by increased nerve fiber
number, electrical activity, and motor reinnervation compared to randomly aligned
electrospun fiber mats [21,24–26]. These studies show the importance in designing scaffolds
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that provide structure similar to that of native nerve architecture, as well as topological
guidance for regenerating axons to the distal target of innervation.

Enhancing biomaterial scaffolds with axon promoting factors
In addition to topographical cues, many engineered conduits now incorporate important
growth factors and adhesion cues, such as NFs and ECM proteins. Laminin mediates cell
survival, axon extension and cell adhesion through specific peptide sequences, IKVAV and
YIGSR, as well as important integrin signaling so its role in nerve regeneration has been
well studied [25,27–30]. Cao et al. developed linear ordered collagen scaffolds that have
been modified with laminin by covalent attachment to promote axonal regeneration. In
addition, laminin was used as a means for delivery of ciliary neurotrophic factor (CNTF)
and brain-derived neurotrophic factor (BDNF) via laminin-binding domains (LBD).
Laminin alone improved myelinated axon number in vivo, yet the controlled delivery of
CNTF through the LBD, showed an additional improvement in axon regeneration and
conduction velocity of the regenerating sciatic nerve [31]. Controlled delivery of BDNF and
CNTF also showed improved compound muscle action potential (CMAP) activity of rat
facial nerves [32]. The incorporation of biochemical factors, such as laminin, CNTF, and
BDNF, indicate that while structural cues from the collagen scaffold are important,
additional cues can further enhance functional outcomes.

ECM proteins that are native to nerve architecture have proven useful in enhancing neurite
outgrowth in vitro and in vivo. Fibronectin is an ECM protein that is important for cell
migration and adhesion via integrin binding to the RGD domain. Fibronectin has shown to
promote neurite extension in vitro in combination with various polymer scaffolds, including
aligned electrospun PAN-methacrylate, polyethylene glycol, and collagen [17,33].
Engineered elastin-like protein hydrogels, which contain RGD binding sites and mimic
native nerve mechanical properties in a controlled manner, significantly increased neurite
extension from DRGs in vitro [34]. These tunable hydrogels may prove useful in fabricating
tailored biomaterial scaffolds that provide optimal adhesion properties for regenerating
axons.

One of the best commercially available options for treating nerve defects, specifically long
nerve gaps, are acellular nerve allografts. These are nerve grafts that undergo a
decellularization process, either through chemical or thermal processing, that removes
immunogenic, cellular components of the tissue [35]. This processing maintains most of the
native nerve architecture composed of important ECM proteins, such as laminin and
collagen, which can promote enhanced regeneration and functional recovery in combination
with the structural cues in long term studies [36]. Acellular nerve allografts are also being
used as a platform for delivery of cells and NFs. For example, Wang et al. has optimized
acellular grafts to deliver bone mesenchymal stromal cells (BMSCs) to stimulate enhanced
axon regeneration, and chondroitinase ABC to remove inhibitory molecules. This
combination therapy stimulated secretion of NFs, such as NGF and BDNF, increased
Schwann cell markers and angiogenesis markers, vascular endothelial growth factor (VEGF)
and CD34, expression and decreased inhibitory chondroitin sulfate proteoglycans in the
regenerating nerve. This approach increased myelinated nerve fiber number, myelin
thickness, and axon diameter; again suggesting that while the acellular grafts are an
excellent platform, combinatorial strategies can further enhance axonal regeneration and
functional recovery through acellular grafts [37].

Many scaffolds, from both synthetic and natural polymers, have been functionalized to
deliver NFs and ECM proteins through various chemical crosslinking methods. In Shepard,
et al., PEG hydrogels were functionalized to locally deliver viral vector constructs for NGF
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via affinity peptides, which promoted increased neurite outgrowth from DRGs in vitro.
These gels also encapsulated protease-secreting HT-1080 cells in order mimic infiltrating
cells after injury that may degrade the hydrogel crosslinks and increase viral vector release
[38]. Affinity peptides have also proven useful for the controlled delivery of NFs, such as
NGF and GDNF, from fibrin matrices, which promoted enhanced motor regeneration, target
reinnervation and functional recovery [39–41]. Both affinity-based peptides, as above, and
chemical conjugation methods have been used to delivery NFs and ECM proteins in a
controlled manner that may prove ideal for in vivo regeneration [42–46].

Stimulating nerve regeneration through conductive biomaterials and
electrical stimulation

As previously described, many strategies are focused on mimicking native nerve attributes
including architecture, protein composition, and NF delivery. Another strategy has focused
on the inherent electrical excitability of neurons. In vitro and in vivo, electrical stimulation
has shown to increase neurite extension and axonal regeneration [47,48]. Thus, engineering
a biomaterial scaffold that is electrically conductive may improve regeneration and
functional recovery following injury.

In vitro investigation has shown that using electrically conductive materials, such as
polypyrrole (PPy) and polyaniline (PANi) in small amounts, combined with other well-
characterized, degradable polymers, are capable of promoting enhanced neurite extension
with low electrical stimulation. Song et al. demonstrated increased neurite extension area in
complex geometries when photoresist patterns were doped with electrically conductive
polymers, (PPy) as well as chemically conjugated NGF and poly-L-lysine/laminin [49,50].
The Schmidt group developed scaffolds in which NGF was chemically conjugated to PPy
and PPy-PLGA scaffolds where it was found to increase the percentage of neurite
expressing cells and the average PC12 cell neurite length in vitro with electrical stimulation
[51–54]. PLLA-PANi scaffolds have shown promise for directing neural stem cell (NSC)
differentiation, as electrical stimulation of PLLA-PANi scaffolds promoted elongated,
neurite morphology of NSCs compared to unstimulated controls [55].

Polycaprolactone fumarate (PCLF)-PPy scaffolds were developed to promote increased
neurite extension, where it was observed that only scaffolds formed via specific anions
needed for PPy stabilization, naphthalene-2-sulfonic acid sodium salt (NSA) and
dodecylbenzenesulfonic acid sodium salt (DBSA), can support cell adhesion, survival, and
neurite extension [56]. These scaffolds were then fabricated into NGCs without any
disruption of material properties. These scaffolds promoted enhanced neurite length and
percent neurite-expressing PC12 cells with electrical stimulation and were capable of
promoting aligned neurite extension in the direction of the applied electrical current [57]. In
vivo, Huang, et al. demonstrated porous, biodegradable PPy-chitosan conduits increased
regeneration and functional recovery following intermittent electrical stimulation.
Conductive scaffolds in combination with electrical stimulation increased nerve fiber and
myelinated fiber number, enhanced motor and sensory regeneration, functional recovery,
and decreased muscle atrophy [58]. These electrically conductive scaffolds have shown
promise in increasing nerve regeneration in large gaps with electrical stimulation; thus
incorporating electrical conductive materials into chemically and structurally designed
constructs may be necessary to promote enhanced functional motor and sensory recovery.

Remaining Challenges
While the current research shows great potential, regeneration across gaps greater than 30
mm remains a major challenge clinically particularly for patients who suffer multiple
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injuries due to trauma. In addition to providing structural and biochemical cues, future
combination therapies should focus on how these cues can be modulated spatially and
temporally in response to the speed of regeneration. For example, the growth factor
concentration at a given location in the distal nerve may need to increase early during the
regeneration process to promote axon growth toward that site, and then decrease after the
growth cones have passed to prevent axon trapping at that particular location thus allowing
innervation of the target muscle. New methods that allow modulation of cues will be key to
improving long-range regeneration and function.

Conclusion
Current strategies, focused on mimicking nerve structure and function, have shown vast
improvement over unstructured, commercially available, hollow NGCs. However, to
provide a microenvironment similar to a nerve autograft, engineered constructs must
incorporate cues from native nerves including surface topography, biochemical signals, and
electrically active tissue. Thus, any future development of NGCs of synthetic or natural
materials will have to be a combinatorial approach that includes several of these aspects to
target functional outcomes that match the clinical standard, autografts.
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Highlights

Commercial nerve guidance conduits are insufficient to promote enhanced regeneration.

Multi-faceted approaches are needed to mimic native nerve architecture and function.

Engineered constructs with topographical cues facilitate aligned axonal regeneration.

Delivery of native nerve biochemical and electrical cues improve functional outcomes.
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Figure 1.
In order to engineer a nerve guidance conduit that promotes enhanced functional recovery,
many aspects of native nerve architecture and function must be incorporated in the design.
Regenerating axons are sensitive to the microenvironment of nerves that includes
topographical cues, growth promoting biochemical cues such as ECM proteins and
neurotrophic factors, and the excitability of neurons through electrical stimulation.
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