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Abstract
High-resolution 2D 13C-13C NMR correlation spectra of uniformly 13C-labeled molecules in
solution are obtained by homonuclear 13C-decoupling along both dimensions by the application of
indirect covariance NMR to constant-time NMR spectra. The spectra are optimally suited for
chemical structure elucidation and molecular identification of the components of complex
mixtures, such as ones from uniformly 13C-labeled cell cultures.

The characterization of chemical mixtures and their components is an essential task in many
areas of Chemistry. NMR spectroscopy is a powerful tool enabling quantitative studies of
complex mixtures, e.g. in metabolomics, to monitor changes both in terms of chemistry and
concentrations without requiring extensive chromatographic fractionation. The vast majority
of applications is based on 1D and 2D 1H NMR taking advantage of the high sensitivity
afforded by 100% abundance of protons and their large gyromagnetic ratio. Although the
benefits of 2D 13C-1H HSQC correlation spectroscopy of complex mixtures at 13C natural
abundance have been demonstrated [1, 2], the absence of correlation information between
different C-H pairs impedes identification of entire spin systems and thereby limits
applications to compounds catalogued in NMR databases, such as the BMRB [3] and
HMDB [4]. To establish correlations between all spins in a molecule or a spin system in an
efficient manner, the use of 13C-enriched metabolite samples hold significant promise. Such
samples can be produced, for example, by uniformly 13C-labeled cell cultures and
organisms. Unfortunately, the presence of large 13C-13C 1J-couplings (>30 Hz) generates
broad multiplet structures, which leads to substantial spectral crowding and cross-peak
overlap when applied to complex mixtures. 13C constant-time (CT) spectroscopy [5-9] can
help overcome the resolution issue along the indirect dimension, but the problem persists
along the detection dimension. Here, we demonstrate how the combination of constant-
time 13C-13C TOCSY with indirect covariance processing [10-14] produces homonuclear-
decoupled high-resolution, high-sensitivity 13C-13C TOCSY spectra suitable for studying
complex mixtures. This strategy has recently been demonstrated for the resolution
enhancement of pure shift 1H correlation spectra [15, 16].
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NMR Samples
A uniformly 13C-labeled algal amino acid mixture, purchased from Sigma-Aldrich, was
prepared by dissolving 0.5 mg mixture in 2 ml D2O. The resulting suspension was
centrifuged and the supernatant was used for measurements. Uniformly 13C-labeled glucose,
purchased from Cambridge Isotope Laboratories, Inc., was prepared as a 1 M solution in
D2O.

NMR Experiments and Processing
All 2D 13C-13C CT-TOCSY [9] and 2D 13C-13C TOCSY [17] data sets were collected with
512 N1 and 1024 N2 complex data points, with 56 ms DIPSI-2 mixing [18] for TOCSY and
56 ms FLOPSY-16 mixing [19] for CT-TOCSY. All NMR spectra were collected using a
cryogenically cooled TCI probe (from Bruker Biospin) at 700 MHz proton frequency with
110 pm 13C spectral widths at 298 K temperature. The NMR data were zero-filled to 1024
(N1) and 2048 (N2), apodized using shifted sine-bell functions, and Fourier transformed,
phase and baseline corrected using NMRPipe [20], and converted to a Matlab-compatible
format for subsequent processing and analysis. The experimental time of the CT-TOCSY
spectra was 5 hours for glucose and 20 hours for the algal amino acid mixture.

Indirect covariance processing takes the 2D FT NMR spectrum F as input and generates the
new spectrum C according to [10, 13]:

(1)

In the present context, the method takes advantage of the high resolution of F along the
indirect dimension ω1 endowed by the constant-time scheme by mapping it onto the direct
dimension. This results in a symmetric 2D spectrum C that is homonuclear decoupled along
both dimensions.

Since CT-experiments are susceptible to the appearance of (minor) intermittent extra-peaks
[5-9], we apply an exclusion mask to C [21, 22]. For this purpose, a 2D FT CT-TOCSY
spectrum F′ is computed from the same 2D time-domain data with zero-filling along ω1 to
the same total number of datapoints N2 as along ω2 . Application of Gaussian line
broadening (40 Hz) along the ω2 dimension and symmetrization by selecting min{|F′ij|,|F′ji|}
from spectral points F′ij and F′ji at positions that are symmetric with respect to the main
diagonal yields a medium-resolution spectrum. Line broadening is required, otherwise cross-
peaks whose multiplets have no signal at the center frequency will disappear by the
symmetrization procedure. Regions in C are then set to zero for which F′ lies below a given
threshold. The application of the mask suppresses peaks that are not present in the original
2D FT spectrum while retaining the narrow peak shapes of the indirect covariance spectrum,
which is demonstrated below.

Figure 1 illustrates the method for uniformly 13C-labeled glucose. The two panels on the far
left show a standard 13C-13C 2D TOCSY spectrum (bottom) with a zoomed region at the
top. The presence of homonuclear 1JCC, 2JCC, 3JCC leads to prominent peak splittings that
by far exceed the intrinsic line width. Nuclei that are bonded to two adjacent carbons show
characteristic 1:2:1 multiplet patterns that cover a wide spectral range of 2·1JCC ≈ 70-90 Hz,
which makes these cross-peaks naturally prone to overlaps. The middle two panels depict
the corresponding 13C-13C 2D FT CT-TOCSY spectrum, which shows good decoupling
along the ω1 dimension, while the ω2 dimension is fully impacted by 13C-13C J-coupling
effects. Application of the covariance method of Eq. (1) to the 13C-13C 2D CT-TOCSY
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spectrum in the middle leads after masking to the spectrum on the right, which is effectively
homonuclear decoupled along both dimensions. Although glucose does not suffer from
cross-peak overlaps, Figure 1 illustrates the method.

The chance of overlaps increases with the number of cross-peaks present in the spectrum as
is the case for the amino-acid mixture shown in Figure 2. This figure is laid out analogously
to Figure 1 comparing the standard 13C-13C 2D TOCSY (left panels) with the
corresponding 13C-13C 2D CT-TOCSY spectrum (middle panels) and the indirect
covariance 13C-13C 2D CT-TOCSY spectrum (right panels). The resolution improvement
from left to right is striking as can be seen in the zoomed regions in the three panels at the
top. Cross-peak clusters that evade direct analysis in the standard 2D FT spectrum (left)
become partially resolved in the CT spectrum (middle) and fully resolved after indirect
covariance processing (right). The resolution enhancement over standard 13C-13C 2D FT
amounts to a factor 4, improving the average resolution from 70 Hz to 17 Hz along both
dimensions. This trait considerably facilitates analysis of cross-peak connectivities, spin
system assignment, component identification, or even chemical structure elucidation.
Although a skilled NMR spectroscopist can still extract useful information from the
standard 13C-13C 2D TOCSY spectrum (left panels), the covariance 13C-13C spectrum (right
panels) permits a straightforward interpretation and is directly amenable to automated
analysis. Figure 3 illustrates complete 13C-spin system identification for isoleucine taking
optimal advantage of the resolution gain afforded by the CT-covariance approach.

Homonuclear decoupling of 2D NMR experiments along both dimensions has been a long-
standing challenge, which has elicited both experimental and computational approaches.
Composite pulse decoupling [23, 24] and adiabatic decoupling [25, 26] can alter resonance
positions and they work best for relatively small frequency ranges. The maximum entropy
method [27] has been successfully applied to Cα resonances of amino acids that have a 1J-
coupling to Cβs, but its performance for 13C nuclei with more than one coupling partner has
not been demonstrated. Spin-state selective methods, such as S3E [28], IPAP [29], and
DIPAP [30, 31] are tailored to a fixed number of coupling partners and their performance is
sensitive to the exact magnitudes of the involved couplings. A homonuclear decoupling
scheme based on pulsed-field gradient slice selection (‘pure shift spectroscopy’) [32] has
recently been combined with covariance NMR to improve the resolution of 1H-1H 2D
TOCSY, COSY, and NOESY spectra [15, 16]. Although this approach can in principle
achieve better decoupling than CT-based methods, the resolution gain is offset by a
sensitivity loss caused by slice selection. The CT-covariance spectrum, on the other hand,
retains the inherent sensitivity of the 2D FT parent spectrum.

Our results demonstrate that dramatic cross-peak sharpening can be achieved along both 13C
dimensions by the CT-covariance method producing high-resolution homonuclear-
decoupled 13C-correlation spectra with qualitatively improved spectral behavior. While this
property significantly assists the analysis complex organic molecules and mixtures of
moderate complexity, as is the case for the amino-acid mixture of Fig. 2, it will be even
more beneficial for studying extracts and lysates from 13C-labeled organisms, such as
bacteria, yeast, and plants, for metabolic profiling, flux analysis, and de novo structure
determination of metabolites [33].
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Highlights

2D TOCSY spectra of 13C-labeled metabolites could be decoupled along both
dimensions

Indirect covariance processing of constant-time 2D NMR spectrum provides
resolution enhancement

High-resolution 13C-13C TOCSY spectra of complex mixtures display reduced
cross-peak overlaps
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Figure 1.
2D 13C-13C TOCSY (left), 13C-13C CT-TOCSY (middle), and indirect covariance 13C-13C
CT-TOCSY spectra (right) of 13C labeled glucose. The 3 top panels depict expansions of the
boxed spectral regions in the lower panels. The double-arrows indicate selected cross-
sections that belong to the α and β forms of glucose.
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Figure 2.
2D 13C-13C TOCSY (far left), 13C-13C CT-TOCSY (middle), and indirect
covariance 13C-13C CT-TOCSY spectra (far right) of a uniformly 13C- labeled amino-acid
mixture. The 3 top panels depict expansions of the boxed spectral regions in the lower
panels.
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Figure 3.
Indirect covariance 13C-13C CT-TOCSY spectrum of a uniformly 13C-labeled amino acid
mixture determined according to Eq. (1). The 13C-spin connectivity network for isoleucine
is indicated by blue lines.
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