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Abstract
Following recent technological revolutions, the investigation of massive biomedical data with
growing scale, diversity, and complexity has taken a center stage in modern data analysis.
Although complex, the underlying representations of many biomedical data are often sparse. For
example, for a certain disease such as leukemia, even though humans have tens of thousands of
genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory
pathway involves only a small number of genes; many biomedical signals are sparse or
compressible in the sense that they have concise representations when expressed in a proper basis.
Therefore, finding sparse representations is fundamentally important for scientific discovery.
Sparse methods based on the  norm have attracted a great amount of research efforts in the past
decade due to its sparsity-inducing property, convenient convexity, and strong theoretical
guarantees. They have achieved great success in various applications such as biomarker selection,
biological network construction, and magnetic resonance imaging. In this paper, we review state-
of-the-art sparse methods and their applications to biomedical data.
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1. INTRODUCTION
Recent technological revolutions have unleashed a torrent of biomedical data with growing
scale, diversity, and complexity [24; 27; 77; 86; 101]. The wealth of data confronts scientists
with an urgent need for new methods and tools that can intelligently and automatically
extract useful information from data and synthesize knowledge [17; 32; 56; 74]. Although
complex, the underlying representations of many real-world data are often sparse [32; 38;
41]. For example, for a certain disease such as leukemia, even though humans have tens of
thousands of genes, only a small number of them are relevant to the disease; a gene network
is sparse since a regulatory pathway involves only a small number of genes; the neural
representation of sounds in the auditory cortex of unanesthetized animals is sparse, since the
fraction of neurons active at a given instant is small; many biomedical signals have sparse
representations when expressed in a proper basis. Therefore, finding sparse representations
is fundamentally important for scientific discovery. The last decade has witnessed a growing
interest in the search for sparse representations of data.

The quest for sparsity is further motivated for various reasons. First, sparse representations
enhance the interpretability of the model. For example, in many biological applications, the
selection of genes or proteins which are related to the study, is crucial to facilitate the
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biological interpretation [18; 38]. In addition, the resulting gene/protein selection might
enable a feasible biological validation with a reduced experimental cost. Second, sparseness
is one way to measure the complexity of the learning model [84]. Regularization is
commonly employed to penalize the complexity of a learning model and alleviate
overfitting. Regularization based on the  norm maximizes sparseness, which, however,
leads to an NP-hard problem. As a computationally efficient alternative, the  norm
regularization, which also leads to a sparse model, is widely used in many areas including
signal processing, statistics, and machine learning [13; 23; 52; 93; 98; 124; 127]. Finally,
finding sparse representations has recently received increasing attention due to the current
burst of research in Compressed Sensing (CS) [4; 6; 16; 25; 26; 102]. CS is a technique for
acquiring and reconstructing a signal utilizing the prior knowledge that it is sparse or
compressible. It encodes a large sparse signal using a relatively small number of linear
measurements, and minimizing the  norm in order to decode the signal. Recent theories
[13; 14; 15; 16; 25] assert that one can recover certain signals and images from far fewer
samples or measurements than traditional methods.

In this paper, we review sparse methods for (1) incorporating a priori knowledge on feature
structures for feature selection, (2) constructing undirected Gaussian graphical models, and
(3) parallel magnetic resonance imaging.

Structured Feature Selection
Although sparse learning models based on the  norm such as the Lasso [98] have achieved
great success in many applications, they do not take the existing feature structure into
consideration. Specifically, these models yield the same solution after randomly reshuffling
the features. However, in many applications, the features exhibit certain intrinsic structures,
e.g., spatial or temporal smoothness, disjoint/overlapping groups, trees, and graphs [42; 45;
51; 65; 116]. The a priori structure information may significantly improve the classification/
regression performance and help identify the important features. For example, in the study
of arrayCGH [99; 100], the features—the DNA copy numbers along the genome—have the
natural spatial order, and the fused Lasso, which incorporates the structure information using
an extension of the , outperforms the Lasso in both classification and feature
selection. In this paper, we review various structured sparse learning models including group
Lasso, sparse group Lasso, overlapping group Lasso, tree Lasso, fused Lasso, and graph
Lasso.

Sparse Undirected Gaussian Graphical Models
Undirected graphical models explore the relationships among a set of random variables
through their joint distribution. The estimation of undirected graphical models has
applications in many domains, such as computer vision, biology, and medicine. An instance
is the analysis of gene expression data. As shown in many biological studies, genes tend to
work in groups based on their biological functions, and there exist some regulatory
relationships between genes [19]. Such biological knowledge can be represented as a graph,
where nodes are the genes, and edges describe the regulatory relationships. Graphical
models provide a useful tool for modeling these relationships, and can be used to explore
gene activities. One of the popular graphical models is the Gaussian graphical model
(GGM), which assumes the variables to be Gaussian distributed [5]. In GGM, the problem
of learning a graph is equivalent to estimating the inverse of the covariance matrix
(precision matrix), since the nonzero off-diagonal elements of the precision matrix represent
edges in the graph [5]. In some applications, we need to estimate multiple related precision
matrices. For example, in the modeling of brain networks for Alzheimer's disease using
neuroimaging data [43], we want to estimate graphical models for three groups: normal
controls (NC), patients of mild cognitive impairment (MCI), and Alzheimer's patients (AD).
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These graphs are expected to share some common connections, but they are not identical. It
is thus desirable to jointly estimate the three graphs. In this paper, we review sparse methods
for estimating a single undirected graphical model and for estimating multiple related
undirected graphical models and discuss their properties.

Parallel Magnetic Resonance Imaging
Parallel imaging has been the single biggest innovation in magnetic resonance imaging in
the last decade. It exploits the difference in sensitivities between individual coil elements in
a receive array to reduce the number of gradient encodings required for imaging, and the
increase in speed comes at a time when other approaches to acquisition time reduction were
reaching engineering and human limits [59]. In the SENSE-type reconstruction approach,
researchers have taken advantage of the sparsity promoting penalties (e.g., wavelets and
total variations) to reduce the acquisition time while maintaining the image quality. Key
components of sparse learning include the estimation of the coil sensitivity profiles, the
design of the sparsity promoting regularization, the development of the sampling pattern that
takes advantage of sparse learning, and the efficient optimization of the non-smooth inverse
problem. In this paper, we review different components of sparse learning in magnetic
resonance imaging.

The rest of the paper is organized as follows. We review structured sparse learning for
feature selection in Section 2. The estimation of sparse undirected Gaussian graphical
models is presented in Section 3. We discuss sparse learning in parallel magnetic resonance
imaging in Section 4. Finally, we conclude the paper in Section 5.

2. STRUCTURED FEATURE SELECTION
We are given a set of training samples , where  denotes the p-dimensional
features for the i-th sample, and  is its response (numeric for regression, and
categorical for classification). In addition, we are given a feature structure, e.g., a group
structure, a tree structure, or a graph structure, as part of the input data. We focus on a linear
model  with h(a) = xTa, where  is the vector of model parameters. To fit
the model with the training samples, we learn the model parameter vector x by solving the
following optimization problem:

(1)

where L(x) is a loss function, Ω(x) is a regularization term encoding the prior knowledge on
the input features, and λ > 0 is the regularization parameter controlling the trade-off between
the loss L(·) and the penalty Ω(·).

The formulation in (1) can be applied for regression, classification, and longitudinal data
analysis:

• Regression: The outcome b is a continuous value, e.g., the hippocampus volume or
the minimental state examination (MMSE) score of a subject in the study of
Alzheimer's disease. The least squares loss is commonly used for regression.

• Classification: The outcome b is a discrete value, e.g., disease status, including
normal controls and disease patients. The logistic loss is commonly used for
classification.

• Longitudinal Data Analysis: The outcome b is the observed failure/censoring time.
If an event occurs at time t, then the subject has a failure time t. If a patient drops
from the study at time t, we consider he/she is censored at time t. The Cox model is
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a popular approach for longitudinal data analysis, in which the negative log-
likelihood function of the proportional hazard is used as the loss function [21].

The regularization term Ω(x) in (1) is commonly employed to penalize the complexity of a
learning model and alleviate overfitting, e.g., the  regularization used in ridge
regression. However, the commonly used  regularization leads to a dense model,
i.e., almost all model parameters in x are non-zero. To enhance the interpretability of the
model, a sparse model is desired. One popular sparse model, known as the Lasso, is based
on the  penalty:

(2)

The Lasso has been applied widely in many biomedical applications [91; 94; 107; 111; 123].
In many applications, the features exhibit certain intrinsic structures, e.g., spatial or temporal
smoothness, graphs, trees, and disjoint/overlapping groups. The a priori structure
information may significantly improve the classification/regression performance and help to
identify the important features.

2.1 Group Lasso and Sparse Group Lasso
In many applications, the features form a natural group structure. For example, the voxels of
the positron emission tomography (PET) images in the Alzheimer's Disease study can be
divided into a set of non-overlapping groups according to the brain regions [43]; in the
multi-factor ANOVA problem, each factor may have several levels and can be represented
using a group of dummy variables [117]. The selection of group structures has recently
received increasing attention in the literature [3; 44; 45; 64; 78; 117; 120]. The pioneer work
[117] focused on the non-overlapping group Lasso, i.e., the groups are disjoint. Assume the
features are partitioned into k disjoint groups {G1, · · · , Gk}. The group Lasso formulation
uses the  penalty on the model parameters:

(3)

where ‖ · ‖q is the  with q > 1 (most existing work focus on q = 2 or ∞) [68], and
wi is the weight for the i-th group. The group selection distinguishes the group Lasso from
the Lasso which does not take group information into account and does not support group
selection. The group Lasso has been applied for regression [55; 80; 117], classification [78],
joint covariate selection for grouped classification [85], and multi-task learning [2; 62; 89].

The group Lasso does not perform feature selection within each feature group. For certain
applications, it is desirable to perform simultaneous group selection and feature selection.
The sparse group Lasso (sgLasso) incorporates the strengthens from both Lasso and group
Lasso, and it yields a solution with simultaneous between- and within- group sparsity [30;
87]. The sparse group Lasso penalty is based on a composition of the  and the

:

(4)

where α ∈ [0, 1], the first term controls the sparsity in the feature level, and the second term
controls the sparsity in the group level. The sparse group Lasso has been applied to analyze
multiple types of high dimensional genomic data for biomarker discovery [87].
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Figure 1 illustrates Lasso, group Lasso, and sparse group Lasso; we use four types of data
sources including Proteomics, GWAS (genome-wide association study), MRI (magnetic
resonance imaging), and PET from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database1. We construct four feature groups, one for each each data source. As shown in the
figure, the Lasso does not consider the group (source) information and selects a subset of
features from all four groups; the group Lasso selects a subset of the groups (3 in this
example) and all features from these 3 groups are selected; the sparse group Lasso
simultaneously selects a subset of the groups and a subset of the features within each
selected group.

2.2 Overlapping Group Lasso and Tree Lasso
In group Lasso [117], the groups are disjoint. Some recent work [44; 45; 46; 51; 69; 120]
studied the more general case where the groups may overlap. One motivating example is the
use of biologically meaningful gene/protein sets (groups). The proteins/genes in the same
groups are related if they either appear in the same pathway, or are semantically related in
terms of Gene Ontology (GO) hierarchy, or are related from gene set enrichment analysis
(GSEA) [97]. The canonical pathway in MSigDB, for example, has provided 639 groups of
genes [97]. It has been shown that the group (of proteins/genes) markers are more
reproducible than individual protein/gene markers and the use of such group information
improves classification performance [19]. Groups may overlap - one protein/gene may
belong to multiple groups - and the group Lasso formulation is not applicable. For the
general overlapping group patterns, we can make use of the following overlapping group
Lasso penalty [120]:

(5)

where α ∈ [0, 1], wi > 0 (i = 1, 2, . . . , k), and Gi consists of the indices from the i-th group
of features. The k groups of features are pre-specified, and they may overlap. A different
overlapping group Lasso formulation was proposed in [44]. In some applications, the
features follow a tree structure. For example, an image can be represented using a tree
structure where each leaf node corresponds to a feature (pixel) and each internal node
corresponds to a group of features (pixels) based on the spatial locality [69]. In such a case,
we can make use of the tree structured group Lasso penalty [46; 51; 69; 120]:

(6)

where  is a constant weight, and , a node at the depth i, consists of all features in the
subtree. Note that any parent node is a superset of its children. Thus, if a specific node is not
selected (i.e., its corresponding model coefficient is zero), then all its children will not be
selected. It is clear that the tree structured group Lasso is a special case of the overlapping
group Lasso with a specific tree structure.

2.3 Fused Lasso
In many applications, the features enjoy certain smoothness properties. For example, the
adjacent features in the arrayCGH data are close to each other along the genome. Therefore,
it is desirable to enforce the model parameters in x to have the structure of smoothness. Such
a structure can be induced by the fused Lasso penalty [28; 99]:

1http://www.adni-info.org/
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(7)

where α ∈ [0, 1]. The fused Lasso penalty in (7) shall induce a solution that xi tends to be
close or identical to xi+1 for i = 1, · · · , p – 1. The smoothness structure can also be revealed
from the fused Lasso signal approximator [28]:

(8)

Figure 2 illustrates the fused Lasso signal approximator (8) under different values of λ with
α = 0.5. We can observe that the solution is piecewise constant.

2.4 Graph Lasso
In certain applications, the features form an undirected graph structure, in which two
features connected by an edge in the graph are more likely to be selected together. As an
example, many biological studies have suggested that genes tend to work in groups
according to their biological functions, and there are some regulatory relationships between
genes [60]. This biological knowledge can be represented as a graph, where the nodes
represent the genes, and the edges imply the regulatory relationships between genes. Figure
3 shows a subgraph consisting of 80 nodes (genes) of the network described in [19]. Several
recent studies have shown that the estimation accuracy can be improved using dependency
information encoded as a graph. Let (N, E) be a given graph, where N = {1, 2, · · · , p} is a
set of nodes, and E is a set of edges. Node i corresponds to the i-th feature. If nodes i and j
are connected by an edge in E, then the i-th feature and the j-th feature tend to be grouped.

The fussed Lasso penalty in (7) can be extended to a general graph structure; we call it the 
graph Lasso:

(9)

where the second regularization term penalizes a large deviation between two model
parameters whose corresponding nodes are connected in the graph. Intuitively, if two genes/
proteins are connected in a network, their model parameters are likely to be close to each
other, satisfying the so-called smoothness property on a graph. The  graph Lasso
formulation is computationally expensive to solve. The  graph Lasso, or the Laplacian
Lasso, is an efficient alternative, which uses the following penalty:

(10)

where L is the Laplacian matrix [7; 20] constructed from the graph. It is known that the
Laplacian matrix is positive semi-definite, and captures the underlying local geometric
structure of the data. When L is an identity matrix, (10) reduces to the elastic net penalty
[126]. Existing efficient algorithms for solving the Lasso can be applied to solve the  graph
Lasso by grouping the loss term L(x) and the Laplacian regularization λ(1 – α)xTLx
together, as the latter is both convex and differentiable.

Both  and  graph Lasso encourage positive correlation between the values of coefficients
for the features connected by an edge in the graph. However, in certain applications, two
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features connected may be negatively correlated. To overcome this limitation, GFlasso
employs a different  regularization over a graph:

(11)

where rij is the sample correlation between two features [50]. The penalty in (11) encourages
the coefficients xi, xj for features i, j connected by an edge in the graph to be similar when rij
> 0, but dissimilar when rij < 0. GFlasso would introduce additional estimation bias due to
possible graph misspecification. For example, additional bias may occur when the sign of rij
is inaccurate.

Another alternative is the so-called graph OSCAR (GOSCAR) penalty given by [110]:

(12)

where a pairwise  regularizer is used to encourage the coefficients to be equal [9], but the
grouping constraints are imposed on the nodes connected over the given graph. The 
regularizer encourages sparseness. The pairwise  regularizer puts more penalty on the
larger coefficients. Note that max {|xi|, |xj|} can be decomposed as

The GOSCAR formulation is closely related to OSCAR [9]. The penalty of OSCAR is

(13)

The  regularizer leads to a sparse solution, and the  regularizer encourages the
coefficients to be equal. OSCAR can be efficiently solved by accelerated gradient methods,
whose key projection can be solved by a simple iterative group merging algorithm [121].
However, OSCAR assumes each node is connected to all the other nodes, which is not
sufficient for many applications. Note that OSCAR is a special case of GOSCAR when the
graph is complete. GOSCAR, incorporating an arbitrary undirected graph, is much more
challenging to solve [110].

The penalty in GOSCAR overcomes the limitation of the Laplacian Lasso that the different
signs of coefficients can introduce additional penalty. However, under the  regularizer,
even if |xi| and |xj| are close to each other, the penalty on this pair may still be large due to
the property of the max operator, resulting in the coefficient xi or xj being over penalized.
The additional penalty would result in biased estimation, especially for large coefficients, as
in the Lasso case [98]. In GFlasso, when the pairwise sample correlation wrongly estimates
the sign between xi and xj, an additional penalty on xi and xj would occur, introducing
estimation bias. This motivates the following non-convex feature grouping and selection
penalty:

(14)
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which shrinks only small differences in absolutes values [110; 125]. As a result, estimation
bias is reduced as compared to those convex grouping penalties. Note that the non-convex
penalty does not assume the sign of an edge is given; it only relies on the graph structure.

3. SPARSE UNDIRECTED GAUSSIAN GRAPHICAL MODELS
Undirected graphical models are commonly used to describe and explain the relationships
among a set of variables based on a collection of observations. In the Gaussian case, the
graphical Lasso [29] is a popular approach for learning the structure in an undirected
Gaussian graphical model [5]. The basic model for continuous data assumes that the
observations have a multivariate Gaussian distribution with mean μ and covariance matrix
Σ. If the ijth entry of Θ = Σ–1 is zero, then variables i and j are conditionally independent,
given the other variables. Here, Θ is called the precision matrix. Thus, the problem of
identifying the structure of the undirected Gaussian graphical model is equivalent to finding
the nonzero entries of Θ. In [5], the  penalty is imposed on the precision matrix to increase
its sparsity. The sparse undirected graphical model has been applied to construct biological
networks [5] and brain networks [43].

3.1 Graphical Lasso
Suppose we have n samples independently drawn from a multivariate Gaussian distribution,
and these samples are denoted as , where yi is a p dimensional
vector,  is the mean, and  is the covariance matrix. Let  be the

inverse covariance matrix. The empirical mean is denoted as , and the
empirical covariance is denoted as S:

It can be shown that under a multivariate Gaussian model, the maximum likelihood estimate
of Θ = Σ–1 can be obtained by solving the following maximization problem:

(15)

where tr (SΘ) is the trace of SΘ, given by the summation of the diagonal entries of SΘ.
Assume that S is nonsingular. The maximum likelihood estimate of the inverse covariance Θ
is Θ = S–1. If the dimensionality is larger than the sample size, i.e., p > n, S is singular. In
such a case, regularization is commonly applied, and we estimate Θ = Σ–1 by maximizing
the following objective function:

(16)

where J(Θ) is a penalty function. The graphical Lasso employs the  penalty and solves the
following optimization problem [5]:

(17)

It is known that a larger value of λ leads to a sparser Θ that fits the data less well, while a
smaller value of λ leads to a less sparse Θ that fits the data well. Thus, the choice of λ is an
important issue in practical application of the graphical Lasso [63; 79].
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Banerjee et al. [5] employed the interior point method to solve the optimization problem in
(17). Friedman et al. [29] developed the graphical Lasso (GLasso) which applied the
blockwise coordinate descent method to solve (17). The GLasso fails to converge with
warm-starts. To resolve this issue, Mazumder and Hastie [76] proposed a new algorithm
called DP-GLasso, each step of which is a box-constrained QP problem. The main challenge
of estimating a sparse precision matrix is its high computational complexity. Witten et al.
[106] and Mazumder and Hastie [75] independently derived a screening rule, which
dramatically reduced the computational cost especially for large regularization parameter
values.

3.2 The Monotone Property
Huang et al. [43] derived the monotone property of the graphical Lasso. We first introduce
the following definition.

DEFINITION 1. In the graphical representation of the inverse covariance, if node i is connected to
node j by an arc, then node i is called a “neighbor” of node j. If node i is connected to node k
though some chain of arcs, then node i is called a “connectivity component” of node k.

Intuitively, two nodes are neighbors if they are directly connected, whereas two nodes
belong to the same connectivity component if they are indirectly connected, i.e., the
connection is mediated through other nodes. In other words, if two nodes do not belong to
the same connectivity component (i.e., two nodes completely separated in the graph), then
they are completely independent of each other. Huang et al. [43] showed that the
connectivity components have the following monotone property:

PROPOSITION 1. Let Ck(λ1) and Ck(λ2) be the sets of all the connectivity components of node k
with λ = λ1 and λ = λ2, respectively. If λ1 < λ2, then Ck(λ2) ⊆ Ck(λ1).

Intuitively, if two nodes are connected (either directly or indirectly) at one level of
sparseness, they will be connected at all lower levels of sparseness. This monotone property
can be used to identify how strongly connected each node k is to its connectivity
components [43].

3.3 Simultaneous Estimation of Multiple Graphs
In some applications, we need to estimate multiple related precision matrices. A motivating
example is the modeling of brain networks for Alzheimer's disease using neuroimaging data
such as PET, in which, we want to estimate graphical models for three groups: normal
controls (NC), patients of mild cognitive impairment (MCI), and Alzheimer's patients (AD).
These graphs are expected to share some common connections, but they are not identical.
Furthermore, the graphs are expected to evolve over time, in the order of disease severity
from NC to MCI to AD. Estimating the graphical models separately fails to exploit the
common structures among them. It is thus beneficial to jointly estimate the three graphs,
especially when the number of subjects in each group is small. There is some recent work on
the estimation of multiple precision matrices. Guo et al. [36] proposed to jointly estimate
multiple graphical models using a hierarchical penalty. The time-varying graphical models
were studied by Zhu et al. [122], and Kolar et al. [53; 54]. Danaher et al. [22] estimated
multiple precision matrices simultaneously using a pairwise fused penalty and grouping
penalty.

Assume we are given K data sets, , k = 1, · · · , K with K ≥ 2, where nk is the
number of samples of the ith dataset, and p is the number of features. The p features are
common for all K data sets, and all samples are independent. Furthermore, the samples
within each data set X(k) are identically distributed with a p-variate Gaussian distribution
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with zero mean and covariance matrix Σ(k). We assume that there are many conditionally
independent pairs of features, i.e., the precision matrix Θ(k) = (Σ(k))–1 is sparse. Denote the
sample covariance matrix for each data set X(k) as S(k) and Θ = {Θ(1), . . . , Θ(k)}. We can
learn multiple precision matrices together by solving the following optimization problem
[22; 109]:

(18)

where ,

and λ1 and λ2 are nonnegative regularization parameters. The  regularization leads to a
sparse solution, and the fused penalty encourages Θ(k) to be similar to its neighbors. The
optimization in (18) is computationally expensive to solve. Danaher et al. [22] developed a
screening rule for the two graph case to speed up the computation. The screening rule was
recently extended to the more general case with more than two graphs in [109]. Specifically,
Yang et al. [109] considered the problem of estimating multiple graphical models by
maximizing a penalized log likelihood with  and fused regularization as in [22]. The 
regularization yields a sparse solution, and the fused regularization encourages adjacent
graphs to be similar. The block-wise coordinate descent method was employed to solve the
fused multiple graphical Lasso (FMGL), where each step was solved by the accelerated
gradient method [83]. In addition, a screening rule was developed which enabled the
efficient estimation of multiple large precision matrices. Specifically, a set of necessary
conditions were derived for the solution of FMGL to be block diagonal. These conditions
were shown to be sufficient when K ≤ 3. Yang et al. also performed exten sive simulation
studies; results indicate that these conditions are likely sufficient for any K > 3 as well.

4. PARALLEL MAGNETIC RESONANCE IMAGING
Magnetic resonance imaging (MRI) [39; 105] is a medical imaging technique used in
radiology to visualize internal structures of the body in detail. As a non-invasive imaging
technique, MRI makes use of the property of nuclear magnetic resonance to image nuclei of
atoms inside the body. MRI has been applied to image the brain, muscles, the heart, cancers,
etc.

4.1 Undersampled k-space
The acquired raw data by an MR scanner are the Fourier coefficients, or the so-called k-
space data (see Figure 4 (a) for illustration). The k-space data are typically acquired by a
series of phase encodings (each phase encoding covers a given amount of k-space data that
are related to the trajectory, e.g., Cartesian sampling, radial sampling). For example, with
Cartesian sampling, we need 256 frequency encodings to cover the full k-space of one 256 ×
256 image. The time between the repetitions of the sequence is called the repetition time
(TR) and it measures the time for acquiring one phase encoding. If TR=50 ms, it takes about
12.8 seconds to acquire the full k-space data of one 256 × 256 image with the Cartesian
trajectory. With the same TR, it takes about 15.4 minutes to acquire the full k-space of a 256
× 256 × 72 volume. With higher spatial resolution, the time for acquiring the full k-space
can be even longer. In addition, in dynamic cine imaging, we are interested in the study of
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the motion of the object (heart, blood, etc) over time. This leads to an increased number of
phase encodings and increased acquisition time, and one usually has to compromise between
spatial resolution and temporal resolution. To save the acquisition time, one has to
undersample the k-space, i.e., reducing the number of acquired phase encodings. For
example, if the k-space data are acquired every other line, as shown in Figure 4 (c), half of
the acquisition time can be saved. The relationship between the acquired k-space data and
the image to be reconstructed can be written as

(19)

where Fu is a given undersampled Fourier transform operator, f denotes the MR image, y is
the acquired k-space data, and n depicts the noise introduced in the acquisition. Unlike the
full k-space scenario, one cannot directly apply the inverse Fourier transform to the
undersampled data acquired in Figure 4 (c), since otherwise an aliased image shown in
Figure 4 (d) will be obtained.

4.2 Parallel MR Imaging
Parallel imaging [34; 47; 88; 95] has been proven effective for reducing the acquisition time.
It exploits the difference in sensitivities between individual coil elements in a receive array
to reduce the number of gradient encodings required for imaging. Figure 5 illustrates parallel
imaging with 8 coils. Specifically, the first two rows show the coil images seen by the
individual coil/channel, and the last two rows show the coil profiles of these 8 coils. It can
be observed that the 8 coils have different sensitivities. Parallel imaging tries to reconstruct
the target image with the undersampled k-space data.

Based on how the coil sensitivities are used, parallel imaging can be roughly divided into the
following two main categories: 1) the approaches that implicitly make use of the coil
sensitivities, represented by GRAPPA [34], and 2) the approaches that explicitly make use
of the coil sensitivities, represented by SENSE [88]. In the GRAPPA type approaches, one
usually estimates the missing phase encoding lines with the kernels that are estimated by
implicitly using the coil sensitivities. In the SENSE type approach, one models the
relationship between the target image and the acquired k-space data as:

(20)

where yi is the acquired undersampled k-space data by the i-th coil, and Si is the coil
sensitivity maps (see the last two rows of Figure 5). The relationships between GRAPPA
and SENSE have been studied in the literature [8; 35; 47], and several recent work [57; 58;
72; 73] have shown that GRAPPA and SENSE can be combined to give improved
reconstruction performance.

4.3 Coil Profile Estimation
The most common way to determine the sensitivity maps is to obtain low-resolution pre-
scans. However, when the object is not static, the sensitivity functions are different between
pre-scan and under-sampled scans, and this could lead to reconstruction errors. To
compensate for this, joint estimation approaches [103; 113] have been proposed. However,
these approaches usually have high computation cost and are restricted to the SENSE type
reconstruction.

The eigen-vector approach proposed in [72] is a very promising approach for sensitivity
maps estimation. It tried to build a connection between GRAPPA and SENSE-type
approaches, by showing that the Coil Profile used in SENSE can be computed with the
GRAPPA-type calibration. Such idea was also used in [57; 58]. It was shown in [72] that the
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coil sensitivities can be computed as the eigen-vector of a given matrix in the image space
corresponding to eigenvalues “1”s.

4.4 Sampling Pattern and Fourier Transform
Cartesian sampling is the most natural scheme which under-samples the k-space by skipping
some lines. In cardiac MR imaging, TSENSE [37; 48] is a well-known approach that is
based on time interleaving of k-space lines in sequential images, and there are studies that
makes use of variable density to optimize the sampling scheme, e.g., [12]. The Fourier
transform associated with the Cartesian sampling can be efficiently computed.

Spiral and projection (radial) are the most widely used non-Cartesian sampling patterns,
among many others. It was observed in several works (e.g., [40]) that the radial sampling
exhibits advantages over Cartesian Sampling. The Fourier transform in the non-Cartesian
case is much more challenging than the Cartesian one, and gridding is usually employed for
performing Non-Uniform FFT [33].

4.5 Incorporating Prior Knowledge and Optimization
To recover f from (19), it is important to note that our target f has certain structures, with
which we can better reconstruct f from the undersampled data y. This is where sparse
learning can play a role. Typically, we are interested in computing f by solving the following
problem

(21)

where loss(y, Fuf) depicts the data fidelity, and ϕ(f) incorporates our prior knowledge about
the image to be reconstructed.

For the data fidelity term, a commonly used one is the squared distance between the

acquired data and the prediction: . Recent studies have that the
usage of self-consistency [57; 58; 73] can benefit reconstruction. For ϕ(f), one needs to take
advantage of the structure in the target image f. Figure 6 shows the gradient of the phantom,
and it is easy to observe that such gradient is sparse. Candès et al. [14] proposed to set ϕ(f) =
‖f‖TV, showed the effectiveness of the sparsity promoting penalty in the scenario of single
coil, and proved the exact recovery under the so-called Robust Uncertainty Principles (RIP).
Later on, compressed sensing was used widely in the reconstruction of MR images, e.g., [1;
57; 61; 71; 112]. When applying sparse learning to parallel MR imaging, one key task is to
develop a suitable ϕ(·) that adapts the structure of the image(s) to be reconstructed. Group
sparsity [117] has been used for accelerating dynamic MRI [104], and total variation and
wavelet transformation have also been used for parallel MR imaging [14; 66; 67; 90; 103;
112]. An important and hot research topic is to develop better sparsity promoting penalties
that adapt to the images to be reconstructed.

The efficient optimization of problem (21) is crucial for parallel imaging. Several popular
approaches include conjugate gradient [40], Newton-type methods [103], Nesterov-type
approaches [81; 82; 66; 49], and the alternating direction method of multipliers [1; 10; 31;
112].

5. CONCLUSIONS
In this paper, we review sparse methods for biomedical data in three specific applications.
Sparse methods have also been applied to many other applications, e.g., incomplete multi-
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source data fusion [114] and biological image annotation and retrieval [115]. As with many
other data mining and machine learning techniques, the selection of the appropriate sparse
method and proper tuning of the associated parameters are critical for finding meaningful
and useful results. To this end, one needs to understand the data in a domain specific context
and understand the strengths and weaknesses of various sparse methods.

Most existing work on sparse learning focus on prediction, parameter estimation, and
variable selection. Very few work address the problem of assigning statistical significance or
confidence [11; 118]. However, such significance or confidence measures are crucial in
biomedical applications where interpretation of parameters and variables is very important
[11]. Most sparse methods in the literature are based on a convex regularizer. Sparse
methods based on a non-convex regularizer have recently been proposed and efficient
methods based on the difference of convex functions (DC) have been developed [92; 119].
However, their theoretical properties have not been well understood yet, although some
recent work demonstrate the advantage of non-convex methods over their convex
counterparts [92; 108; 119]. Finally, missing data is ubiquitous in biomedical applications.
One important issue that has not been well addressed is how to adapt sparse methods to deal
with missing data [70; 96].
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Figure 1.
Illustration of Lasso, group Lasso (gLasso), and sparse group Lasso (sgLasso). Four types of
data sources, including Proteomics, GWAS (genome-wide association study), MRI
(magnetic resonance imaging), and PET from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database are used for illustration. There are four feature groups, one for
each data source. The features selected by each algorithm are highlighted.
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Figure 2.

Illustration of the solution  of (8), the fused Lasso signal approximator.
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Figure 3.
Illustration of a subgraph of the network consisting of 80 nodes.
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Figure 4.
Illustration of MR image and the k-space data: (a) the full k-space data (displayed in
logarithmic scale), (b) the image obtained by applying inverse Fourier transform to (a), (c)
the undersampled k-space (displayed in logarithmic scale), and (d) the image obtained by
applying inverse Fourier transform to (c).
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Figure 5.
Illustration of the coil images and the coil sensitivity profiles (coil images of 8 channels are
shown in the first two rows, and the corresponding coil profiles are shown in the last two
rows).
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Figure 6.
Illustration of the gradient of the phantom (shown in Figure 4) along the vertical direction
(left) and horizonal direction (right), respectively.

Ye and Liu Page 24

SIGKDD Explor. Author manuscript; available in PMC 2013 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


