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Abstract

Metabolomics technologies enable the examination and identification of endogenous biochemical reaction
products, revealing information on the precise metabolic pathways and processes within a living cell. Meta-
bolism is either directly or indirectly involved with every aspect of cell function, and metabolomics is thus
believed to be a reflection of the phenotype of any cell. Metabolomics analysis of cells has many potential
applications and advantages compared to currently used methods in the postgenomics era. Cell metabolomics is
an emerging field that addresses fundamental biological questions and allows one to observe metabolic phe-
nomena in cells. Cell metabolomics consists of four sequential steps: (a) sample preparation and extraction, (b)
metabolic profiles of low-weight metabolites based on MS or NMR spectroscopy techniques, (c) pattern rec-
ognition approaches and bioinformatics data analysis, (d) metabolites identification resulting in putative bio-
markers and molecular targets. The biomarkers are eventually placed in metabolic networks to provide insight
on the cellular biochemical phenomena. This article analyzes the recent developments in use of metabolomics to
characterize and interpret the cellular metabolome in a wide range of pathophysiological and clinical contexts,
and the putative roles of the endogenous small molecule metabolites in this new frontier of postgenomics
biology and systems medicine.

Introduction

Apromising approach to explore the cell phenotype is
metabolomics, a rapidly growing field of postgenomics

biochemistry, defined as the metabolic complement of func-
tional genomics, and is especially useful in medical and life
sciences research (Kinross et al., 2011; Zhang et al., 2012a).
Metabolomics enables the characterization of endogenous
small molecules (referred to as metabolites) that are the
products of biochemical reactions, revealing connections
among different pathways that operate within a living cell
(Wang et al., 2011). More specifically, the ability to uncover
and evaluate biochemical differences within healthy and
diseased organisms provides information as to the underlying
cause(s) of disease, which in turn suggests targets for phar-
macological intervention (Wang et al., 2012a,b). Metabolome
analysis could describe qualitatively and quantitatively the
final products of cellular regulatory pathways and can be seen
as the ultimate response of a biologic system to genetic factors
and/or environmental changes (Cuperlović-Cul et al., 2010).
Cell metabolome can be defined as the set of all the metabo-
lites present in cells and metabolites can be considered the
best indicator of an organism’s phenotype (Nomura et al.,
2011; Tautenhahn et al., 2012).

Metabolomics capitalizes on the small molecules in cell to
construct a ‘fingerprint’ that can be unique to the individuals.
Small-molecule metabolites as primary indicators have an
important role in biological systems and represent attractive
candidates to understand cell phenotypes (Riedelsheime
et al., 2012; Tomita et al., 2012). Cells are used extensively in
disease research for understanding the molecular mechanism
of disease progression, response, and resistance to therapeu-
tics. Cell applications are easier to control, less expensive and
easier to interpret than analysis of both animal models and
human subjects. As such, it represents an untapped resource
for identification of specific metabolite biomarkers that would
help distinguish the normal and abnormal states, as well as
response to drugs or stress agents. Metabolomic studies have
shown that cellular metabolic networks are robust and the
dynamic behavior of biochemical pathways that are governed
by a highly interconnected regulatory system (Chen et al.,
2012; Finley et al., 2012; Zhang et al., 2011). The general pro-
cedures of cell metabolomics are shown in (Figure 1).

The focus on the metabolic profile of the whole organism
provides relevant information about specific cell types under
different conditions, which is crucial for a more holistic un-
derstanding of cell properties and functions (Cai et al., 2010;
Mintz-Oron et al., 2012). By using a combination of feature
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selection, pattern recognition, and multivariate data analysis
approaches, metabolomic profiling aims to provide a com-
prehensive assessment of the alterations in the metabolite
levels in cells (Lange et al., 2011; Stringari et al., 2011; Turn-
baugh et al., 2011). Recent technological advancements in
nuclear magnetic resonance spectroscopy (NMR) and mass
spectrometry (MS) have led to wide use of these technologies
for precise measurements of metabolites with improved sen-
sitivity, resolution, and mass accuracy (Fischer et al., 2012;
Kleiner et al., 2012). At the same time, data provided by
metabolic profiling of cells can be complementary to the
whole system results. Application of metabolomics in the area
of cell is relatively undeveloped and thus the aim of the
present review is to provide an insight into the issues per-
taining to metabolome analysis, as well as to explore its pos-
sible applications in cell culture.

Methodology of Sample Preparation and Extraction

Metabolomic analysis of cells has emerged as an important
technique for studying cellular biochemistry. Cell metabo-
lomic experiments can be divided into several general steps:
cell culture growth or stimulation, quenching and metabolite
extraction, and data processes. With the advent of liquid
chromatography-tandem mass spectrometry (LC-MS) and
gas chromatography-tandem mass spectrometry (GC-MS)
methods, large numbers of metabolites can be quantified to
provide detailed insight into the metabolic status of cells
(Suhre et al., 2011). The first necessary step, termed ‘quench-
ing,’ is to stop the enzymatic activity or changes in the me-
tabolite levels rapidly. Freezing is generally considered to be
the easiest way of stopping enzyme activity, provided that
cells are not allowed to partially thaw before extracting

FIG. 1. A scheme of the cell metabolomics workflow. Cell metabolomics consists
of four sequential steps: (a) sample preparation and extraction, (b) metabolic profiles
of low-weight metabolites based on MS or NMR spectroscopy techniques, (c) pat-
tern recognition approaches and bioinformatic data analysis, (d) metabolites iden-
tification resulting in biomarkers and targets. The biomarkers are eventually placed
in metabolic networks to provide insight on the biochemical phenomena.
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metabolites. Apart from the development of sensitive detec-
tion systems, a big challenge in cell metabolomics is to cope
with the fast changes of intracellular concentrations of me-
tabolites. It imposes stringent requirements on the sample
preparation (Blow et al., 2008). The time and method of
sampling are important issues to be considered to ensure re-
producibility in the bio-samples, especially the biological
replicates commonly used. Hence, integrated procedures that
allow for sampling, quenching, and extraction to be simplified
into a single step have been devised (Kleiner et al., 2012;
Sreekumar et al., 2009). Intracellular metabolite concentra-
tions are subsequently determined by subtracting the me-
tabolite content of the cell-free extracellular medium. A
simple, fast, and reproducible sample preparation procedure
has been developed for relative quantification of metabolites
in adherent mammalian cells using the clonal b-cell line INS-1
as a model sample (Lorenz et al., 2011). Maximal recovery can
be achieved using a single rapid extraction step. Given the
power of the metabolomics technology, the availability of
standardized sample preparation methods for cell is critical
toward augmenting research in this direction.

Analytical Instrument Platforms

Metabolite concentrations represent sensitive markers of
phenotypic changes. Consequently, the development of ro-
bust metabolomic platforms will greatly facilitate various
applications of cell cultures, and would be invaluable tools for
gaining insights into these areas. A variety of analytical
platforms has been developed to facilitate these and other
types of metabolomics experiments (Locasale et al., 2012). For
instance, NMR, GC, and LC have been coupled to MS detec-
tion methods in order to perform metabolomic profiling of a
variety of biological samples (Qin et al., 2012). MS detector
coupled with LC has been effective for characterizing che-
mical content from cells. There are a number of features of LC
that make it a method of choice for such analyses. For ex-
ample, it is possible to concentrate and separate analytes si-
multaneously. In addition, because the scaling laws of LC
make it amenable to small-volume sampling, it has been used
extensively for single cell and even subcellular analyses, and
is well suited as a separation method for use in metabolomics
experiments (Zhang et al., 2013). In a study by Frezza et al.
(2011), LC-MS metabolomics was used to assess the effects of
hypoxia on cellular metabolism. It revealed the importance
of synchronized and regulated catabolism as a mechanism of
adaptation to bioenergetic stress.

An MS and high-throughput analysis will open up the
possibility to perform metabolomics on large populations of
cells (Cui et al., 2008). In fact, MS has already become the main
analytical platform for cell metabolomics. MS has also been
used to characterize the contents of individual neurons, with
considerable efforts devoted to characterizing their peptide
complements. Many of these studies employed direct MS
profiling; however, pairing LC to MS often leads to better
analyte coverage. Furthermore, electrospray ionization (ESI)
coupled with tandem MS/MS allows for the identification
and/or characterization of unknown or unexpected com-
pounds, such as metabolites, via their mass-to-charge ratio (m/z)
and MS/MS fragmentation pattern, and complements the
other detection schemes used for cell measurements. In-
tracellular metabolites can reflect the physiological state of

cells. Hyphenated UPLC-MS is a relatively new technique for
the separation of complex samples and shows promise for
metabolomics (Bricker et al., 2012; Paglia et al., 2012; Wu et al.,
2011). It is a potential technology for the classification of the
cells. Cell growth, metabolic activity, and protein productiv-
ity measurements, which are currently used to monitor the
cellular physiological state, suggested consistency across
bioreactors and over the course of the cultivation.

Data Processes

Using pattern recognition approaches such as ‘‘unsuper-
vised’’ principal component analysis (PCA) and ‘‘supervised’’
partial least squares-discriminant analysis (PLS-DA), meta-
bolomics could provide a comprehensive assessment of the
metabolite in cells. PCA is a data analysis method that can
deal with large volumes of data. Owing to the complexity and
volume of the data generated by today’s advanced techno-
logies in metabolomics, PCA has become predominant in the
medical sciences (Wang et al., 2012c; 2013a). In the PCA
scores, each point represents an individual sample. The PCA
results are displayed as score plots indicating the scatter of the
samples, which indicate similar metabolomic compositions
when clustered together and compositionally different me-
tabolomes when dispersed. The purpose of the PLS-DA
analysis was to calculate models that differentiate between
groups and between model and control subjects. In the PLS-
DA modeling, the samples from the different groups were
sorted into different classes using score plots, and endogenous
metabolites that contribute to the classification were identi-
fied in loading plots, which showed the importance of each
variable to the classification (Zhang et al., 2012b). Potential
markers were extracted from loading-plots constructed fol-
lowing the PLS-DA analysis, and markers were chosen based
on their contribution to the variation and correlation within
the data set. Because the ultimate goal of biomarker discovery
is the translation of those biomarkers to clinical practice, it is
clear that the metabolomics needs to generate their receiver
operator characteristic (ROC) curves that is generally con-
sidered the standard method for performance assessment.

Bringing Metabolomics to the Forefront
of Cell Research

It has been noted that the testing of drugs on animals is
insufficient in clinical testing, and that the cell cultures may be
an alternative for understanding the specific metabolism of
drug candidates ( Jenkins et al., 2004). Currently, the greatest
interest focuses on cell phenotype analysis and molecular
classification of disease subtype and drug-testing studies,
discovery of markers of sample phenotypes or drug targets
(Khoo et al., 2007; Olivier et al., 2012). Metabolic analysis of
cell cultures has many potential applications and advantages
to currently used methods for cell testing (du Preez et al.,
2012). Metabolite concentrations represent sensitive markers
of both genomic and phenotypic changes. Metabolomics
represents the downstream of systems biology and has drawn
significant interest for studying the metabolic networks from
cells to organisms (Arakaki et al., 2008). Cell metabolomics is
an emerging field that addresses fundamental biological
questions and allows observation of metabolic phenomena in
cells. Thus, metabolomics has been used for optimizing cell
cultures for antibody production (Wu et al., 2012), testing
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drugs (Sabidó et al., 2012), cell transfections, determinant of
apoptosis, and comparing lung cancer cell phenotypes,
identifying novel underlying metabolic pathways (Ward
et al., 2011).

Current Applications

Cancer cells

There are many possible applications for cell metabo-
lomics in a context of cancer, and some prominent exam-
ples are outlined here. Cancer cells have several specific
metabolic features, which have been explored for targeted
therapies. Agents that promote apoptosis are currently
considered as a powerful tool for cancer therapeutics. Me-
tabolomic signatures might be used in the tests of efficacy of
agents causing apoptosis in cell culture. HEK and HepG2
cells were searched for metabolic biomarkers of apoptosis
differing from that of necrosis (Halama et al., 2011). Several
metabolites indicative for apoptotic processes in cell culture
including aspartate, glutamate, methionine, alanine, glycine,
propionyl carnitine, and malonyl carnitine were observed.
These signatures could be obtained in fast high-throughput
screening. In a study by Dewar et al. (2010), metabolic dif-
ferences were to examine between chronic myelogenous
leukemic cell, MyL, and MyL-R (Dewar et al., 2010). Specific
metabolite identification and quantification were used to
examine metabolic differences between the cell types. It
demonstrated a clear difference in the metabolite profiles of
drug-resistant and sensitive cells, with the biggest difference
being an elevation of creatine metabolites in the imatinib-
resistant MyL-R cells.

To investigate the mechanisms behind the oncogenic stress
response, Bcr-Abl cells were cultivated in presence of imatinib
(Dengler et al., 2011). Cell death was preceded by enhanced
glycolysis, glutaminolysis, and amino acid metabolism,
leading to elevated ATP and protein levels. The enhanced
metabolism could be linked to induction of cell death as in-
hibition of glycolysis or glutaminolysis. It indicated that these
metabolic changes are major mediators of oncogenic stress in
Bcr-Abl cells. In a report done by Collier et al. (2011), using
832/13 and INS-1E rat insulinoma cells, the apoptosis is un-
likely to be the primary pathway underlying b-cell death in
response to IL-1b + c-IFN (Collier et al., 2011). Results dem-
onstrate that pancreatic b-cells undergo apoptosis in response
to camptothecin or staurosporine, but not pro-inflammatory
cytokines. A study was performed to characterize the global
metabolic changes during the process of tumor invasion and
metastasis to murine osteosarcoma cell (Hua et al., 2011).
Serum metabolic profiling revealed that many key metabo-
lites in glycolysis and tricarboxylic acid (TCA) cycle, as well as
most of the amino acids were elevated at rapidly growing
stages of tumor, presumably resulting from a high energy
demand and turnover of anabolic metabolism during the
tumor cell proliferation. Several other excellent examples of
the application of quantitative metabolomics in cell culture
analysis were presented for the analysis of neuroendocrine
cancers and in the analysis of cancer cell metabolic phenotype
(Costello et al., 2011). Examples of such analysis include
profiling of central metabolism in human cancer cells, iden-
tification of metabolic fluxes in hepatic cells (Westra et al.,
2011), and several other examples that have been reviewed
previously (Prigione et al., 2011).

Cellular response to pathogen infections

Metabolic profiling allowed the differentiation of fatty acid
biosynthesis and cholesterol metabolism during viral repli-
cation in the A549 and AGS cells (Lin et al., 2010). It revealed
the different responses between A549 and AGS to the virus
infection. From the pattern recognition results, AGS cell might
be more susceptible to influenza A virus. Regarding the fact
that AGS is a poorly differentiated gastric adenocarcinoma
cell line, whereas A549 is a relatively differentiated lung
tumor one, it is speculated that viral replication might be as-
sociated with the cell differentiations. A multiplatform analyt-
ical approach combining proton nuclear magnetic resonance
NMR and MS, together with pattern recognition tools in a
metabolomic study was used to investigate the effects of den-
gue virus infection (Birungi et al., 2010). Distinct effects of
infection by each serotype were demonstrated, and these dif-
ferences were attributed to changes in levels of metabolites,
including amino acids, and dicarboxylic acids related to the
tricarboxylic acid cycle. These studies demonstrated application
of metabolomics to improve understanding of the effect of
dengue infection on endothelial cells’ metabolome.

Cellular response to toxicity

Toxicity testing is vital to protect human health from ex-
posure to toxic chemicals in the environment. Furthermore, by
combining novel cellular models with molecular profiling
technologies, metabolomics can add new insights into the
molecular basis of toxicity and provide a rich source of bio-
markers that are urgently required in a 21st Century approach
to toxicology. NMR-based metabolic profiling approach has
been used to characterize the metabolome of the RPTEC/
TERT1 cells, an immortalized non-tumor human renal epi-
thelial cell line that recapitulates phenotypic characteristics
that are absent in other in vitro renal cell models (Ellis et al.,
2011). Metabolic profiling of RPTEC/TERT1 cells can report
on the effect of chemical exposure on multiple cellular path-
ways, producing different response profiles for the different
compounds tested with a greater number of major metabolic
effects observed in the toxin-treated cells. Importantly, com-
pounds with established links to chronic renal toxicity pro-
duced more diverse and severe perturbations to the cellular
metabolome than nontoxic compounds. As these changes can
be rationalized with the different pharmacological and tox-
icity profiles of the chemicals, it is suggested that metabolic
profiling in the RPTEC/TERT1 model would be useful in in-
vestigating the mechanism of action of toxins at a low dose.

Cellular response to environmental factors

Hypoxia is one of the features of poorly vascularized areas
of solid tumors, but cancer cells can survive in these areas
despite the low oxygen tension. The adaptation to hypoxia
requires biochemical responses that culminate in a metabolic
rearrangement to counter-balance the decrease in energy
supply from mitochondrial respiration. The understanding of
metabolic adaptations under hypoxia could reveal novel
pathways that, if targeted, would lead to specific death of
hypoxic regions. In a study done by Frezza et al. (2011), meta-
bolomics was used to assess the effects of hypoxia on cellu-
lar metabolism of HCT116 cancer cells, utilizing LC-MS, to
determine the metabolic profile of hypoxic cells. It revealed
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the importance of synchronized and regulated catabolism as a
mechanism of adaptation to bioenergetic stress. By investi-
gating the central carbon metabolism that includes most of the
energy transfer molecules such as nucleotides, sugar mono- and
biphosphates, and cofactors, a conclusion about phenotypes
and stress answers in microorganisms is possible (Liebeke et al.,
2010). Detection of several remarkable differences (e.g., in nu-
cleotide metabolism and especially cell wall precursor metab-
olites), indicates a previously unreported importance of serine/
threonine kinase/phosphatase on peptidoglycan and wall
teichoic acid biosynthesis. These findings may lead to new in-
sights into the regulation of cell wall metabolism.

Other applications

Emerging metabolomic tools can now be used to establish
metabolic signatures of specialized circulating hematopoietic
cells in physiologic or pathologic conditions and in human
hematologic diseases. Metabolomic analysis of young and old
normal red blood cells indicates metabolites whose levels are
directly related to sickle cell disease (Darghouth et al., 2011).
To study the metabolic changes associated with the differen-
tiation program, the exometabolome of differentiating murine
B lymphoma cells and primary B cells were compared
(Garcia-Manteiga et al., 2011). During proliferation, lactate
production increased, together with consumption of essential
amino acids; massive Ig secretion was paralleled by alanine
and glutamate production, glutamine being used as carbon
and energy sources. Notably, ethanol and 5’-methylthioade-
nosine were produced during the last phase of protein
secretion and the proliferative burst, respectively. The high-
resolution NMR spectra were applied to present differentiation
of Caco-2 (Leeet al., 2009). Results clearly reveal differences in
the metabolic profiles over time as the Caco-2 cells differentiate.
While a majority of metabolites are present at both the early
undifferentiated state and the late differentiated states, the
levels of certain metabolites are seen to change dramatically,
and in particular, the ratio of myo-inositol and taurine. The
appearance of glucose resonances in the differentiated cells
spectra suggests that these cells become gluconeogenic. It rep-
resents a novel method to analyze the differentiation of Caco-2
cells using a metabolomic approach.

Challenges in Cell Metabolomics

The comprehensive characterization of the cell metabo-
lome, however, is a daunting task, as the endogenous
metabolites vary widely in their physical and chemical
properties, which in turn, makes their concurrent extraction,
separation, and detection a major challenge. Some of these
include the fact that the chemical properties of a great number
of metabolites are still unknown, adding to the problem of
standardizing quenching and extraction methods; standard
compounds are not readily available and reference libraries
are still incomplete; not all metabolic pathways are known,
and this causes difficulties in mapping and biological inter-
pretation of these markers. Limited work has focused on de-
velopment of sample preparation techniques for metabolomic
analysis of adherent mammalian cells. The differences in op-
timized cell culture growth conditions present another major
concern for cell line metabolomics. The standard enhance-
ment of cell culture medium with serum of animal origin can
add another level of complexity in cell growth condition op-

timization. Cultured cells are useful models in biomedical
research that characterize metabolic responses to various
stimuli and explore the underlying mechanisms (MSI et al.,
2007; Selvarasu et al., 2012; Tizian et al., 2009). In addition to
the main challenges imposed by cell analysis, sample prepa-
ration protocols that do not alter the metabolic status of the
cells analyzed must be developed. Yet, these important
studies are not sufficient for generating a complete picture of
the molecular components regulating cellular function.
Without analytical standards and quality control rules,
quantification of individual metabolites and validation of the
cell metabolomic methods will not be possible. With the rapid
developments in powerful analytical technologies, we can
expect a plethora of metabolite data. The grand challenges are
to validate and make sense of the data, put molecular com-
ponents and dynamic changes into particular pathways, in-
tegrate with other types of data, and connect into molecular
networks of cell functions (Rivas-Ubach et al., 2012).

Conclusion and Future Outlook

The purpose of this article was to describe the state of the
art of a new emerging discipline, cell metabolomics in the
understanding of how the metabolites affect cell behavior and
function, and highlight the past successes in applications of
metabonomics to contribute to low-molecular-weight me-
tabolites discovery in cell research. In recent years, metabo-
lomic technologies have moved beyond simple cataloging
towards large-scale molecular quantification and network
analysis. As a vital component of a ‘systems biology’ ap-
proach, it is believed to be a good reflection of the phenotype of
any cell. A systemic knowledge of how cells work will cer-
tainly aid in our effort toward a holistic understanding of cell
function. Metabolomics produce highly useful information
about cell biology. In addition, future fundamental research
should provide a more complete list of metabolites. The de-
tailed experimental design, experimentation, and analysis for
metabolomics will provide useful information and become a
truly essential analysis for cells. We believe that the availability
of high throughput methods for analysis of metabolites in cells
will substantially enhance our abilities to gain insight into
biochemical reaction networks, to understand mechanistically
how the metabolites affect cell behavior, and by extension,
health and disease as well individual differences in response to
health interventions such as drugs, nutrition, and vaccines.
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