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Abstract
Dementia is one of the most common neurological disorders among the elderly. Identifying those
who are of high risk suffering dementia is important to the administration of early treatment in
order to slow down the progression of dementia symptoms. However, to achieve accurate
classification, significant amount of subject feature information are involved. Hence identification
of demented subjects can be transformed into a pattern recognition problem with high-dimensional
nonlinear datasets. In this paper, we introduce trace ratio linear discriminant analysis (TR-LDA)
for dementia diagnosis. An improved ITR algorithm (iITR) is developed to solve the TR-LDA
problem. This novel method can be integrated with advanced missing value imputation method
and utilized for the analysis of the nonlinear datasets in many real-world medical diagnosis
problems. Finally, extensive simulations are conducted to show the effectiveness of the proposed
method. The results demonstrate that our method can achieve higher accuracies for identifying the
demented patients than other state-of-art algorithms.

Index Terms
Dimensionality reduction; feature extraction; medical diagnosis

I. Introduction
Dementia, which causes a progressive decline in cognitive functions, is one of the most
common neurolog-population, its prevalence is expected to increase [1]. However, there
exists considerable regional variation in diagnosis practice because of the differences in
available resources even within a country, e.g. lack of trained general practitioners and/or
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time to administer and analyze full cognitive function assessments. For example, it was
approximated that only a third of people who were actually suffering dementia in the US
ever received a formal medical diagnosis. Thus, limited patients suffering dementia are
offered appropriate medical treatment or care, which can potentially slow down the
progression of symptoms. To separate probably or possibly demented patients from normal
subjects, a large amount of data with features for describing symptoms are currently
required [1]. In that way, the identification of demented subjects can be transformed into a
pattern recognition problem with a high-dimensional dataset.

But dealing with high-dimensional data has always been a major problem in pattern
recognition. Hence finding a low-dimensional representation of high-dimensional data,
namely dimensionality reduction is thus of great practical importance. Among the
dimensionality reduction methods, linear discriminant analysis (LDA) [10] is the most
popular method, which is to find the optimal low-dimensional presentation by maximizing
the between-class scatter matrix while minimizing the within-class scatter matrix. Several
variants of LDA have been proposed during the past decades, and trace ratio LDA (TR-
LDA) is one of the most widely used variants [2], [11], [12]. TR-LDA is based on the trace
ratio criterion, which can directly reflect Euclidean distances between data points of inter-
and intra-classes. In addition, the optimal projection obtained by TR-LDA is orthogonal. As
described in [2], when evaluating the similarities between data points based on Euclidean
distance, the orthogonal projection can preserve such similarities without any change. Thus,
TR-LDA tends to perform empirically better than the classical LDA and other variants of
LDA in many problems.

In this paper, improved ITR algorithm (iITR), an efficient algorithm is proposed for solving
TR-LDA problem, which can handle nominal attributes and missing values in many real-
world medical diagnosis problems. To validate the effectiveness of the proposed method to
assist medical screening, the performance of TR-LDA with iITR and other state-of-art
dimensionality reduction methods will be compared here by a case study in the screening of
demented subjects using only demographic data, medical history, and behavioral attributes,
without the use of cognitive function assessment data. In our current study, results show that
TR-LDA method can assist the identification of demented patients with higher accuracies
even with less training data comparing to other state-of-art dimensionality reduction
methods. The proposed dimensionality reduction method can be incorporated into
computational screening program to identify probable or possible patients such that general
practitioners can refer these subjects to specialists for full diagnosis.

II. Trace Ratio Linear Discriminant Analysis
A. Review of Linear Discriminant Analysis

LDA uses the within-class scatter matrix Sw to evaluate the compactness within each class
and between-class scatter matrix Sb to evaluate the separability of different classes. The goal
of LDA is to find a linear transformation matrix W ∈ RD×d, for which the between-class
scatter matrix is maximized, while the within-class scatter matrix is minimized. Let X = {x1,
x2, … Xl} ∈ RD×l be the training set, each xi belongs to a class ci = {1, 2, … c}. Let li be the
number of data points in the ith class and l be the number of data points in all classes. Then,
the between-class scatter matrix Sb, within-class scatter matrix Sw, and total-class scatter
matrix St are defined as follows:
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(1)

where μi = 1/li Σxi∈ci xi is the mean of the data points in the ith class, and  is
the mean of the data points in all classes. The original formulation of LDA, called Fisher
LDA [10], can only deal with binary classification. Two optimization criteria can be used to
extend Fisher LDA to solve the multi-class classification problem. The first one is in the
ratio trace form (we refer it as LDA):

(2)

and the second one is in the trace ratio form (we refer it as TR-LDA):

(3)

The optimal solution of LDA can be formed by the top eigenvectors of . On the other
hand, the optimization problem of TR-LDA in (3) has no close-form solution and has to
calculate it by an Iterative Trace Ratio method (ITR) [7]. Specifically, if Wt denotes the
solution at the tth iteration, then at the (t + 1)th solution, Wt+1 can be formed by the top

eigenvectors of Sb − λtSw, where . This procedure can be
proved to converge to the globally optimal solution given any initialization W0 [2].

B. A More Efficient Algorithm for Solving the TR Problem
Though the ITR algorithm works well for solving the TR problem, it has its own drawback.
The ITR algorithm method has chosen d eigenvectors corresponding to the d largest
eigenvalues of Sb − λ*Sw to form W*. These eigenvectors can only maximize the trace
difference value Tr(WT(Sb − λ*Sw)W), but these eigenvectors cannot maximize trace ratio

value . Thus, how to find eigenvectors to maximize the trace
ratio value is an important question. Motivated by this issue, we then, in this subsection,
propose a more efficient algorithm, called improved ITR algorithm (iITR), which can solve
this problem.

Given any initial λt, by performing the eigen-decomposition of Sb − λtSw, we can obtain the
D eigenvectors of SbλtSw. The problem is then to choose the d eigenvectors Wt = {wi1, wi2,

…, wiD} maximizing , where i = {i1, i2, …, id} is a certain
permutation chosen from {1, 2, …, D}. Here, if we define f = {f1, f2, …, fD} ∈ R1×D, g =

{g1, g2, …, gD} ∈ R1×D with each element satisfying  and , the
above problem can be converted to find the optimal selection vector b = {b1, b2, … bD} ∈
R1×D as:

(4)
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Note that the above problem is a linear fractional programming (LFP) problem [4], [9], [14].
It can be solved by Dinkelbach’s algorithm which is a general algorithm for optimizing γ =
Φ(b)/Ψ(b) with Ψ(b) > 0. In Dinkelbach’s algorithm, it converts the problem to a sequence
of sub-problems for optimizing Φ(b) − γΨ(b). Hence in our case, by initializing γ0 = λt and
let f, g be defined as above, the optimal selection vector b* can then be obtained by
iteratively solving the following sub-problem:

(5)

After b* is obtained, we can output Wt by choosing the d eigenvectors with . The basic
steps of the algorithm are listed in Table I.

C. Convergence Analysis of iITR Algorithm
Here the convergence of the proposed iITR algorithm is also analyzed. In fact, as pointed in
[3], [13], the algorithm of TR-LDA is Newton method, hence the convergence rate is
quadratic and the very fast convergence of the algorithm of TR-LDA is theoretically
guaranteed. It has been rigorously proved that for ITR algorithm, given any initial λt, the

updated λt+1 satisfying 1)  and 2) . Hence we only need to prove that for

the proposed iITR algorithm, the updated  is no smaller than . Following (5), this
can be equivalent to prove that given the initial γ0 = λt, the updated γk+1 satisfying i) γk+1 ≥
γk and ii) γk+1 ≤ γ*. We next prove the two inequalities.

Proof—Let h(γk) = maxb b(f − γkg)T, since γk+1 = bkfT/bkgT, we have bkfT − γk+1bkgT = 0
→ bk (f − γk+1g)T = 0. In addition, since bk+1 = arg maxb b(f − γk+1g)T, it follows h(γk+1) =
bk+1 (f − γk+1g)T ≥ bk (f − γk+1g)T = 0. This indicates that h(γk+1) ≥ 0. We then have h(γk+1)
≥ 0 → bk+1 fT/bk+1gT ≥ γk+1 → γk+2 ≥ γk+1. By simply performing the notation substitution,
i.e. k + 1 → k, we thus prove the first inequality γk+1 ≥ γk. We next prove the second
inequality. Recall that γ* = maxb bfT/bgT = b*fT/b*gT, it follows b*fT − γ*b*gT = 0 → b*(fT
− γ*g)T = 0. Since h(γ*) = max b(f − γ* g)T = b*(f − γ* g) = 0, it can be rewritten as h(γ*) =
h(γk+1) + (γk+1 − γ*)gT = 0. Note that h(γk+1) ≥ 0 and g is a semi-positive vector, the
equality can only holds as γk+1 ≤ γ*, hence we prove the second inequality, i.e. γk+1 ≤ γ*.

III. Identifying Demented Patients via TR-LDA
A. Data Descriptions

The proposed method will be used to screen the demented subjects which meet the criteria
for dementia in accordance with standard criteria for dementia of the Alzheimer’s type or
other non-Alzheimer’s demented disorders in their first visits to Alzheimer disease Centers
(ADCs) throughout the United States. Data from 289 demented subjects and 9611 controls
collected by approximately 29 ADCs from 2005 to 2011 are studied. These data are
organized and made available by the US National Alzheimer’s Coordinating Center
(NACC). Among the demented patients studied, 97% of them were classified as probable or
possible Alzheimer’s disease (AD) patients. Those with dementia and with neither probable
AD nor possible AD have other types of dementia such as Dementia with Lewy Bodies, and
Frontotemporal Lobar Degeneration. 5 nominal, 142 ordinal, and 9 numerical attributes of
the subjects are included in the study. These attributes include demographic data, medical
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history, and behavioral attributes, with 5% being missing values. To make the classification
problem more difficult, no cognitive assessment variable, such as Mini-Mental State
Examination score, is included as attribute.

B. Prediction Stage
The next step is to apply TR-LDA in identifying demented patients from normal persons.
Note that NACC dataset includes nominal attributes and missing values. It should be
transferred to a numerical data before performing dimensionality reduction. To handle this
problem, we use kernel method to map NACC dataset to a high-dimensional Hilbert space.
We then use the data in such space to perform dimensionality reduction. The kernel function
used is the radial basis function (RBF) defined by Kij = exp(−||xi − xj||2/σ2). Here, to
construct the kernel function, we use VDM (Value difference Metric) [8] to calculated the
distance between xi and xj instead of only relying Euclidean distance. In detail, given two
samples xi and xj, suppose the first j attributes of them are nominal, the following k ones are
numeric and normalized to [0,1], and the remaining D − j − k ones are missing if either xi or
xj lacks the values in these attributes, the distance between xi and xj can be calculated by:

(6)

Here, the VDM distance between two values z1 and z2 on nominal attribute Z can be
calculated by:

(7)

where NZ,z denotes the number of training examples holding value z on Z, NZ,z,k denotes the
number of training examples belonging to the kth class and holding value z on Z, c denotes
the number of classes. Hence after we define the distance as in (6), we can either use it to
construct the kernel function or to train a nearest neighbor classifier for evaluating the
accuracies of test set.

IV. Simulations
This simulation aims at differentiating normal persons from demented persons by using TR-
LDA and compares it with other state-of-the-art methods such as PCA, LPP, MMC and
LDA. In this simulation, we randomly choose 500, 1000 and 2000 samples in AD data as
training set and the remaining as test set. The data is preliminarily processed with KPCA
operator to eliminate the null space of training set [7]. Then, each method uses the training
set in the reduced output space to train a nearest neighborhood classifier to classify the
demented and non-demented persons in test set.

The average accuracies over 20 random splits under different dimensionalities are in Table
II and Fig. 2. As shown in Table II, the classification accuracies of all methods change
greatly with the increase in the number of labeled samples. Another important observation is
that the supervised methods such as LPP [6], MMC [5], LDA [10], TR-LDA outperform the
unsupervised methods such as PCA and LPP. Among all the supervised methods, the
proposed TR-LDA performs the best due to the trace ratio criterion. We also compare the
convergence between ITR and iITR algorithms as in Fig. 1. From Fig. 1, we can see both
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algorithms can converge to the optimal trace ratio value. The iITR algorithm converges
faster than ITR algorithm due to reason as in Section II-C.

V. Conclusion
Dementia is one of the most common neurological disorders among the elderly.
Identification of demented patients from normal subjects can be transformed into a pattern
recognition problem with high-dimensional nonlinear datasets. In this paper, we introduce
trace ratio linear discriminant analysis (TR-LDA) for dementia diagnosis and propose an
improved ITR algorithm (iITR) to solve the TR-LDA problem. The new proposed algorithm
can handle nominal attributes and missing values in many real-world medical diagnosis
problems. Finally, extensive simulations are presented to show the effectiveness of the
proposed algorithms. The results demonstrate that our proposed algorithm can achieve
higher accuracies for identifying the demented patients than other state-of-art algorithms.
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Fig. 1.
Convegence between ITR and iITR algorithms: (a) 500 samples; (b) 1000 samples; (c) 1500
samples; (d) 2000 samples.
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Fig. 2.
Average accuracies under different dimensionalities: (a) 500 samples; (b) 1000 samples; (c)
1500 samples; (d) 2000 samples.
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TABLE I

iITR Algorithm for Solving the Trace Ratio Problem

1 Initialize λ0 = 0.

2 Compute the eigen-decomposition of Sb − λtSw as (Sb − λtSw) wi = τiwi, where wi (i = 1,2,…D) is the eigenvector of Sb − λtSw.

3
Calculate  and  for i ∈ {1,2,…,D} and initialize γ0 = λt and  be a zero
vector, iteratively solving the sub-problem of Eq. (5) until convergence:

• Sort fi − γkgi and set  corresponding to the d largest value of fi − γkgi,  otherwise.

• Update γi+1 = bkfT/bkgT.

• If bk = bk−1, output b* = bk and γ* = b*fT/b*gT.

4 Form Wt by choosing the d eigenvectors of wi, with  and Update λt+1 = γ*.

5 Iterate the steps (2–4) until |λt+1 − λt| < ε. Output W*.
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