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Does epithelial sodium channel hyperactivity contribute
to cystic fibrosis lung disease?
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Key points

• Lung hydration and mucus clearance rates are set by a balance between CFTR-mediated Cl−

secretion and ENaC-led Na+ absorption. In CF airways, CFTR is diminished, and ENaC is
upregulated, leading to mucus dehydration and increased chance of infection.

• Evidence for ENaC upregulation in CF airways includes electrophysiological evidence, increased
ASL absorption rates, increased cleavage of CF ENaC and increased basolateral Na+/K+ ATPase
activity in CF airways.

• The mechanism of Na+ hyperabsorption in CF airways is unknown and it may be due to altered
protein-protein interactions and/or increased proteolysis of ENaC in CF airways. However,
inhibition of ENaC is predicted to increase CF mucus hydration/clearance and thus, ENaC
remains an important therapeutic target for the treatment of CF lung disease.

Abstract Airway epithelia absorb Na+ through the epithelial Na+ channel (ENaC) and secrete
Cl− through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel.
This balance maintains sufficient airway surface liquid hydration to permit efficient mucus
clearance, which is needed to maintain sterility of the lung. Cystic fibrosis (CF) is a common
autosomal recessive inherited disease caused by mutations in the CFTR gene that lead to the
reduction or elimination of the CFTR protein. CF is a multi-organ disease that affects epithelia
lining the intestines, lungs, pancreas, sweat ducts and vas deferens, among others. CF lungs
are characterized by viscous, dehydrated mucus, persistent neutrophilia and chronic infections.
ENaC is negatively regulated by CFTR and, in patients with CF, the absence of CFTR results in a
double hit of reduced Cl−/HCO3

− and H2O secretion as well as ENaC hyperactivity and increased
Na+ and H2O absorption. Together, these effects are hypothesized to trigger mucus dehydration,

Carey Hobbs (left), Chong Da Tan (centre) and Robert Tarran (right) all
performed studies on the epithelial sodium channel (ENaC) in the Cystic
Fibrosis/Pulmonary Research and Treatment Centre in the University of North
Carolina at Chapel Hill. Carey is a structural biologist/biochemist, while Chong
and Robert are physiologists with backgrounds in electrophysiology and imaging.
One of the major research efforts in the lab is in understanding how SPLUNC1
proteins can regulate ENaC in healthy and diseased airways. This present paper
discusses the relevance of ENaC hyperactivity to cystic fibrosis lung disease.
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resulting in a failure to clear mucus. Rehydrating CF mucus has become a recent clinical focus and
yields important end-points for clinical trials. However, while ENaC hyperactivity in CF airways
has been detected in vivo and in vitro, recent data have brought the role of ENaC in CF lung
disease pathogenesis into question. This review will focus on our current understanding of the
contribution of ENaC to CF pathogenesis.
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Abbreviations ASL, airway surface liquid; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance
regulator; ENaC, epithelial Na+ channel; HBEC, human bronchial epithelial culture; PHA-1, pseudohypoaldosteronism
type 1.

Introduction

The epithelial Na+ channel (ENaC) constitutes the
rate-limiting step for Na+ absorption in the airways and is
postulated to play a significant role in influencing mucus
hydration levels (Zhou et al. 2011; Fig. 1A and B). ENaC
is a heterotrimer that is typically composed of α, β and γ
subunits (Stockand et al. 2008). However, in some tissues,
a fourth δ-ENaC subunit may be expressed, resulting in
the formation of δαβγ-ENaCs with altered biophysical
characteristics (Ji et al. 2006; Bangel-Ruland et al. 2010).
The extracellular loops of α- and γ-ENaC subunits can
be proteolytically cleaved at multiple sites, leading to
activation of ENaC and increased Na+ absorption, whilst
β-ENaC may serve as a regulatory subunit (Gaillard et al.
2010). Protein–protein interactions, shear stress, cellular
trafficking and intracellular 2nd messengers including
Na+, cAMP and PIP2 also play roles in regulating ENaC,
and may have different effects depending on where ENaC
is expressed (Kashlan & Kleyman, 2012; Palmer et al. 2012;
Soundararajan et al. 2012; Thibodeau & Butterworth,
2013). As such, ENaC is highly sensitive to both the intra-
cellular and extracellular environments, and can rapidly
alter its activity depending on the needs of the lungs. In
cystic fibrosis (CF) airways, Na+ absorption is elevated,
either as a direct or indirect consequence of the lack of
CF transmembrane conductance regulator (CFTR). This
increase in Na+ absorption may be due to a constitutive
increase in ENaC activity, excessive proteolytic cleavage
of ENaC and/or abnormal activation of ENaC by cAMP,
all of which may contribute to a depletion of airway
surface liquid (ASL) volume (Fig. 1A and B; Gaillard
et al. 2010).

ENaC-led dehydration is thought to induce mucus stasis
and increase the incidence of airway infections, leading to
pulmonary destruction and patient morbidity (Zhou et al.
2011; Thibodeau & Butterworth, 2013). Genes encoding
ENaC subunits may further affect the severity of CF by

causing gain of function type mutations in ENaC. For
example, in patients with atypical CF, a heterozygous
mutation in the α-ENaC subunit (W493R) reduces the
inhibitory effect of extracellular Na+ leading to increased
ENaC activity, thus contributing to the pathophysiology
of patients with CF carrying this mutation (Rauh et al.
2010). Similarly, a mutation in the β subunit, V348M, was
also identified, which increased ENaC open probability
by destabilizing the closed channel state (Mutesa et al.
2009; Rauh et al. 2013). ENaC has also been associated
with other diseases. For instance, Liddle’s syndrome
(pseudoaldosteronism) is caused by mutations in β-
or γ-ENaC PY motifs that prevent ENaC from being
degraded by NEDD4–2 and the ubiquitin ligase system.
This leads to an accumulation of surface ENaC in the
kidney, Na+ retention and serious hypertension (Schild
et al. 1996). However, ENaC in the lungs of patients
with Liddle’s syndrome is unaffected as it can still
be functionally inhibited by CFTR (Hopf et al. 1999;
Mall et al. 2010). As well as gain of function ENaC
mutations, loss of function ENaC mutations associated
with pseudohypoaldosteronism type 1 (PHA-1) have been
detected (Grunder et al. 1997). Here, ENaC activity is
severely diminished, resulting in significantly increased
fluid volume in the lung (Kerem et al. 1999). Surprisingly,
whilst too much ENaC is detrimental to lung health, too
little ENaC is not, and patients with PHA-1 clear the excess
liquid by an increase in mucociliary transport rates above
and beyond those seen in normal subjects without adverse
effects (Kerem et al. 1999).

The role of ENaC in CF lung disease has recently
been reviewed elsewhere (Mall, 2009; Collawn et al.
2012; Althaus, 2013). In this review, we shall discuss
ENaC activity in the context of epithelial transport under
thick-film versus thin-film conditions, and try to integrate
this with what is known of ENaC in animal models and in
human lung disease.
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Electrophysiological evidence for Na+

hyperabsorption

Boucher and colleagues found that the nasal potential
difference and its amiloride-sensitive component were
elevated in patients with CF as compared with normal
controls (Knowles et al. 1981, 1983a). These experiments
were performed in vivo using a flowing electrode placed
under the inferior nasal turbinate that was linked to a
subcutaneous reference electrode. Due to the paucity of
channels/transporters in the apical membrane of airway
epithelia, amiloride is essentially specific for ENaC in this
tissue (Qadri et al. 2012) and abolishes all Na+ transport
(Boucher et al. 1986). In vitro, the amiloride-sensitive
short circuit current (I scAmil) and transepithelial voltage
(Vt Amil) were also elevated in CF airway epithelia as
compared with normal and disease controls (Knowles et al.
1983b; Boucher et al. 1986). In contrast, transepithelial

resistance (Rt) and conductance (Gt, the reciprocal of
resistance) were unchanged (Boucher et al. 1986). These
experiments were performed ex vivo on tissues from 41
normal, 25 CF and nine disease control patients (Boucher
et al. 1986). In freshly-excised tissues, the conductance
of the shunt/paracellular pathway is much larger than
that of the transcellular pathway. That is, Rt is very low
(∼100 � cm−2) and Gt is very high (∼10 mS cm−2). Due
to this, the changes in apical membrane Na+ or Cl−

permeability seen in normal versus CF airways do not
affect the overall shunt-dominated conductance. Because
Rt and Gt were unchanged, according to Ohm’s law
(V = IR), V and I were directly proportional, suggesting
that the enhanced V t seen in vivo was due to increased I sc.
Consistent with these observations, the radioactive Na+

flux was elevated in CF tissues in the absorptive direction
under both short circuit and open circuit conditions
(Boucher et al. 1986; Boucher, 1994).

Figure 1. Na+ hyperabsorption leads
to increased O2 consumption and
airway surface liquid (ASL) volume
depletion
A and B, schematic diagrams of Na+
absorption in normal and cystic fibrosis
(CF) airway epithelia, respectively. Na+ is
transported down its electrochemical
gradient through epithelial Na+ channel
(ENaC) in the apical membrane and is
pumped out across the basolateral
membrane by the Na+/K+-ATPase.
Because airway epithelia are highly water
permeable and have NaCl-permeable
paracellular pathways, Cl− and H2O follow
Na+. C, under thin-film conditions (in this
case, ASL height was set at ∼10 μm in
both normal and CF), the near apical
membrane PO2 is ∼21%. D, when
cultures are flooded with 500 μl Ringer,
PO2 declines with depth. Due to
upregulated Na+/K+-ATPase activity, CF
HBECs consume more O2 than normal
cultures. E, representative ASL images
obtained by XZ-confocal microscopy of
Texas red-dextran (10 kDa) on normal and
CF HBECs. F, mean ASL height with time
in normal and CF HBECs taken from E,
following addition of 20 μl Ringer solution
at t = 0. ∗P < 0.05 difference between
normal and CF. CFTR, cystic fibrosis
transmembrane conductance regulator;
periciliary liquid layer (PCL).
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Consistent with the increase in mucosal to submucosal
Na+ flux, basolateral Na+/K+-ATPase activity was also
elevated in airway epithelia, leading to increased O2

consumption (Stutts et al. 1986; Worlitzsch et al. 2002; Fig.
1C and D). This increase in Na+/K+-ATPase activity was
required to remove excess cellular Na+ due to hyperactive
ENaC and served as an independent marker of increased
Na+ absorption in CF airways. With the advent of reliable
tissue culture techniques, these bioelectric measurements
were reprised in polarized airway epithelia, and elevated
Na+ currents, potential differences and absorptive fluxes
were identified in CF as compared with normal airway
cultures, while Rt and Gt remained unchanged (Boucher
et al. 1988).

It has been proposed that the elevated V t and I sc seen in
CF airway epithelia were artifacts caused by: (i) increased
driving force for Cl− in CF airway epithelia due to the lack
of CFTR; and (ii) amiloride-induced hyperpolarization of
the apical plasma membrane and subsequent increased
Cl− secretion due to this increased driving force (Chen
et al. 2010). However, driving forces have been directly
measured in excised nasal epithelia using intracellular
microelectrodes, and the apical membrane potential (V a)
was found to be reduced in CF tissues (−11 ± 5 mV)
as opposed to normal tissues (−29 ± 4 mV) due to the
dominance of EK/ENa in the absence of ECl (Cotton et al.
1987), suggesting that raised I sc/V t is not due to increased
driving force. Furthermore, microelectrode studies have
been performed under thin-film conditions in normal
versus CF bronchial epithelia (Tarran et al. 2005, 2006).
These studies revealed that the magnitude of V t was
not different between normal and CF bronchial epithelial
cultures (both were ∼11 mV), which is similar to levels
reported in vivo (∼12 mV; Alton et al. 1991). However,
the bumetanide-sensitive component (i.e. Cl− secretion)
was significantly greater in normal than CF cultures, and
the amiloride-sensitive component (i.e. Na+ absorption)
was significantly greater in CF than normal cultures. These
data indicate that increased ENaC activity is preserved in
primary cultures. Importantly, in these experiments, Cl−

secretion was inhibited before the amiloride-sensitive V t

was measured, thus avoiding any confounding effects of
apical membrane hyperpolarization due to the effects of
amiloride on Cl− secretion (Tarran et al. 2005, 2006).

Beyond electrophysiology: ENaC and ASL regulation

ENaC activity is frequently assayed using Ussing chambers,
which have been a mainstay of ion transport studies for
over 50 years, but were originally designed by Hans Ussing
to study frog skin (Ussing & Zerhan, 1951; Li et al. 2004).
To allow for sufficient clamping, epithelial surfaces must
be flooded in several milliliters of Ringer solution. While
this flooding is appropriate for many types of epithelia,

the airways are normally bathed by only a thin-film of
ASL (as low as 1 μl cm−2). Over 100 proteins, as well
as nucleotides and nucleosides, have been detected in
the ASL, which are likely involved in various aspects of
innate defense (Kesimer et al. 2009). We have proposed
that some of these molecules act as soluble ‘reporter
molecules’ that sense ASL height/volume and signal to the
underlying epithelia to turn on or off CaCC, CFTR and
ENaC as required. Known reporter molecules include ATP,
adenosine and SPLUNC1, which primarily regulate CaCC,
CFTR and ENaC, respectively. However, ATP and ADO
may also regulate ENaC (reviewed elsewhere; Chambers
et al. 2007; Gaillard et al. 2010). Thus, the flooding method
of experimentation: (i) washes away endogenous ATP and
ADO to deactivate spontaneous Cl− secretion; (ii) washes
away SPLUNC1, inducing cleavage of ENaC; and (iii)
triggers trafficking of ENaC into the plasma membrane
through an unknown mechanism that also increases ENaC
activity (Myerburg et al. 2006, 2010; Tarran et al. 2006;
Tan et al. 2011). As such, airway epithelia mounted in
Ussing chambers strongly suffer from the ‘Observer Effect’.
That is, the mounting/flooding of airway cultures itself
changes ENaC activity. Thus, any experiments performed
in Ussing chambers with airway epithelia must take
flooding-induced ENaC activation/insertion into account,
and should be interpreted accordingly.

In airway epithelia, up to 40% of all O2 is consumed
by the Na+/K+ATPase in order to pump Na+ absorbed by
ENaC out of the cell. The cardiac glycoside oubain inhibits
the Na+/K+ATPase and reduces O2 consumption by air-
way epithelia. As such, oubain-sensitive O2 consumption is
a marker of Na+ absorption and is increased two–threefold
in CF airway epithelia, which is consistent with increased
ENaC activity (Stutts et al. 1986). Airway epithelia are also
sensitive to flooding with regards to changes in ASL O2

levels. O2 has a very low solubility level in ASL, which
is ∼98% H2O. However, the diffusion rate of O2 across
the ASL is not outpaced by the metabolic demands of
the epithelia, and under thin-film conditions, PO2 in the
ASL is close to atmospheric O2 levels (∼20%; Fig. 1C;
Worlitzsch et al. 2002). Tissues bathed in Ussing chambers
are typically circulated with 95% O2/5% CO2 gas mix and
are not hypoxic. However, addition of Ringer solution
with out the gas mix causes the PO2 to drastically drop
to ∼3% (Fig. 1D; Worlitzsch et al. 2002). Consistent
with this finding, application of 100 μl of media to the
mucosal side of polarized airway epithelia induced hypo-
xic stress and resulted in the activation of AMP-activated
protein kinase, a cellular energy sensor (Tan et al. 2012).
Other groups found no difference in 22Na+ flux rates
between normal and CF airway cultures (Chen et al. 2010).
However, they performed their 22Na+ flux experiments
with 500 μl Ringer solution flooding the apical surface
and with atmospheric O2. Thus, Na+ transport would
have been inhibited in these hypoxic conditions due to

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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the lack of Na+/K+ATPase activity, which likely accounted
for their failure to detect increased mucosal-serosal 22Na+

flux in CF epithelia.
New techniques for indirectly measuring ENaC activity

by gravitational methods and XZ-confocal micro-
scopy emerged in the 1990s, which interfaced with
well-differentiated human bronchial epithelial cultures
(HBECs; Jiang et al. 1993; Matsui et al. 1998) and were
suited to measuring ASL height/volume under thin-film
conditions without inducing flooding-type effects seen in
Ussing chambers (Fig. 1E and F). Using these methods,
it was demonstrated that normal HBECs simultaneously
absorb and secrete ions/water, and vary the relative
contribution of each process to bulk fluid movement
(Tarran et al. 2001a, 2005, 2006). While this is inefficient,
it allows for a rapid reversal of net flux and the ability to
switch between absorptive and secretive modes. CF HBECs
were found to consistently hyperabsorb ASL as compared
with normal cultures (Jiang et al. 1993; Matsui et al. 1998;
Tarran et al. 2006), which was consistent with the elevated
Na+ fluxes and I scAmil/V tAmil seen elsewhere (Boucher et al.
1986; Mall et al. 1998). Thus, the decrease in ASL volume
is most likely due to both Cl− hyposecretion and Na+

hyperabsorption.

Animal model systems for studying ENaC in the
context of CF lung disease

The trachea and pancreas of the CFTR knockout
mouse (cftr−/−) do not develop a CF disease phenotype
(Snouwaert et al. 1992; Colledge et al. 1996; Grubb &
Boucher, 1999), which may be due to the predominance
of Ca2+-activated Cl− currents in these tissues (Clarke et al.
1994). However, cftr−/− murine nasal epithelia do exhibit
signs of pathology (Snouwaert et al. 1992) and also display
reduced ASL volume (Tarran et al. 2001b). cftr−/− murine
nasal epithelia had elevated Na+ currents as compared
with wild-type controls, which persisted in the presence of
bilateral Cl−-free media and precluded the possibility that
altered driving force due to Cl− could influence the results
(Grubb, 1995). Thus, the appearance of disease correlates
well with the appearance of Na+ hyperabsorption in mice.

Because the lower airways of cftr−/− mice failed to
display CF-like pathology, mice overexpressing β-ENaC
on the Clara cell-specific promoter were developed. These
mice displayed constitutive increases in Na+ absorption,
though CFTR expression and function were not altered
in these mice (Mall et al. 2004; Zhou et al. 2011). As
a result, the β-ENaC mouse provided a model to test
the effect of ENaC hyperactivity on ASL volume and
mucus dehydration in vivo. The β-ENaC mice displayed
mucus dehydration that was broadly similar to that seen
in patients with CF. In turn, this dehydration resulted
in a decrease in mucociliary clearance, confirming that

ENaC-led Na+ hyperabsorption can initiate mucus stasis
(Mall et al. 2004). Similar to patients with CF, the
β-ENaC mouse also exhibited mucus plugging, goblet
cell metaplasia, mucus hypersecretion and chronic air-
way inflammation. CF-like lung disease was also seen in
mice lacking NEDD4–2, which leads to an abundance
of ENaC in the apical membrane (Kimura et al. 2011).
Taken together, these data strongly suggest that Na+

hyperabsorption-induced mucus dehydration is sufficient
to trigger the inflammation and pathology seen in CF air-
ways.

Crossing the β-ENaC mouse with either a CFTR−/−

or a �F508−/− mouse enhanced the spontaneous lung
disease seen in the β-ENaC mice (Johannesson et al.
2012; Livraghi-Butrico et al. 2013), suggesting that existing
CFTR is moderately protective against unrestrained Na+

hyperabsorption. The β-ENaC mouse also was back-
crossed onto C57/Bl6 or BalbC backgrounds. C57/Bl6
β-ENaC mice had both more endogenous Cl− secretion
and a significantly increased survival as compared with
BalbC β-ENaC mice (Johannesson et al. 2012). However,
the β-ENaC mice were also crossbred with a human
CFTR-overexpressing mouse, which resulted in increased
CFTR-mediated Cl− currents but no reduction in either
ENaC-mediated currents or pathology (Grubb et al. 2012).
There are several possibilities as to why this cross did
not affect disease severity, while cross-breeding onto
the C57/Bl6 background did. The increased survival in
C57/Bl6 mice may have been due to an as-yet unidentified
difference that had nothing to do with Cl− secretion.
Alternatively, human-CFTR and mouse-ENaC may not
have been expressed in the same cells. Furthermore,
while CFTR currents were increased ∼fivefold, ENaC
currents were increased up to 100-fold. Thus, there may
not have been enough CFTR to regulate ENaC. Finally,
enhanced β-ENaC expression may cause the formation
αβ-ENaCs, which could be differentially regulated than
αβγ-ENaCs. While neither biochemical nor biophysical
evidence for αβ-ENaC has been produced, Mall et al.
(2010) demonstrated altered proteolytic regulation of
amiloride-sensitive I sc in β-ENaC mice, which they
speculated was due to the existence of αβ-ENaCs. These
data highlight a deficit in the field, namely that ENaC
stoichiometry and regulation is not well understood in
native airway epithelia.

CFTR−/− pigs that share characteristics with human CF
neonates, including pancreatitis, meconium ileus, early
focal biliary cirrhosis and microgallbladder, have recently
been developed (Stoltz et al. 2013). Like newborn humans,
CF piglets lack airway inflammation at birth, and their
lungs appear relatively normal (Rogers et al. 2008). One
hurdle to the widespread use of the CF pig is that 100%
of the pigs develop meconium ileus, which is fatal if
not treated with surgery soon after birth. Accordingly,
many studies have been performed on ≤24 h old pigs,
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or on tissues derived therein. Mammalian neonates use
Cl− secretion to help expand their lungs in utero and
then transition from having fluid-filled lungs to air-filled
lungs post-partum. Much of this excess fluid is rapidly
absorbed via an ENaC-led process (Hummler et al. 1996).
Importantly, ENaC activity significantly declines after
birth and takes about 6 weeks to reach levels seen in the
fetus or in adult animals (Egan et al. 1975). Chen et al.
(2010) did not see Na+ hyperabsorption in tissues from
24 h old CF piglets. However, as with other mammals, 24 h
old piglets may not have much absorbing capacity due
to post-partum downregulation of ENaC, which could
explain why there is a discrepancy between the piglet
studies (Chen et al. 2010) and the results obtained from
adults human and adult human tissues (Boucher et al.
1986). Clearly, detailed studies need to be performed
to better understand the post-partum changes in ion
transport in piglets as well as in older CF pigs once the
meconium ileus issue is resolved.

CFTR–ENaC Interactions and Na+ hyperabsorption

The effect of cAMP on Na+ transport is CFTR-dependent.
Isoprenaline/forskolin inhibited I scAmil and V tAmil in
normal nasal epithelia, while it activated Na+ absorption
in CF nasal epithelia (Boucher et al. 1986; Mall et al.
1998). Subsequently, using patch-clamping, Stutts et al.
demonstrated that, when transfected into fibroblasts,
αβγ-ENaC was activated by agonists that elevate
cAMP/PKA. However, when CFTR was cotransfected into
the cells, the regulation reversed, and ENaC became
inhibited by cAMP/PKA (Stutts et al. 1995). More
recently, Blouquit-Laye et al. (2012) demonstrated that
cGMP/NO regulation of ENaC was defective in CF
airways. In H441 cells, which do not express CFTR,
forskolin induced α-ENaC translocation to the apical
membrane and increased amiloride-sensitive Na+ trans-
port (Woollhead & Baines, 2006). This variable sensitivity
to cAMP/PKA appears to be tissue specific, and in sweat
glands and alveolar epithelia, the sensitivity of ENaC to
cAMP is unaffected by CFTR (Reddy et al. 1999; Bove
et al. 2010).

While the mechanism that underlies altered cAMP
regulation of ENaC in CF airways is not well under-
stood, CFTR and ENaC do co-immunoprecipitate and
undergo fluorescence resonance energy transfer (Berdiev
et al. 2007; Gentzsch et al. 2010), suggesting that they can
be functionally linked. Direct binding between CFTR and
ENaC has not been demonstrated using purified proteins.
However, functional regulation of ENaC by CFTR has
been demonstrated in planar lipid bilayers, suggesting that
minimal accessory proteins are needed for this interaction
(Berdiev et al. 2000). Co-expression of ENaC and CFTR
also decreased the open probability (Po) without affecting

the surface expression of ENaC (Konstas et al. 2003).
It has been suggested that the first nucleotide binding
fold of CFTR may regulate ENaC (Schreiber et al. 1999).
Inhibition of ENaC by intracellular Cl− has also been
proposed as an indirect mechanism for the regulation
of ENaC by CFTR (Konig et al. 2001; Bachhuber et al.
2005). While this cannot be excluded as a physiological
mechanism to regulate ENaC, CFTR mutants that can still
conduct Cl−, such as N1303K, also fail to inhibit ENaC
(Suaud et al. 2007), suggesting that the exact mechanism
whereby CFTR regulates ENaC remains unknown.

Protease-antiprotease imbalance and chronic Na+

hyperabsorption

In Ussing chambers, ENaC can be inhibited equally well
by inhibitors of trypsin-like serine proteases in normal
and CF HBECs (Bridges et al. 2001). However, under
thin-film conditions (i.e. in the presence of native ASL),
ENaC was inhibited by the serine protease inhibitor
aprotinin in CF HBECs but not in normal HBECs.
This indicates that ENaC was spontaneously inhibited in
normal but not CF HBECs (Tarran et al. 2006; Gaillard
et al. 2010). Subsequently, under thin-film conditions,
Gentzsch et al. noted an increase in proteolytic cleavage
of α-ENaC in CF HBECs as compared with normal
HBECs (Gentzsch et al. 2010). This could be the result
of the upregulation of channel-activating proteases in the
absence of CFTR (Tarran et al. 2006; Myerburg et al. 2006)
or the accumulation of soluble ENaC inhibitors such as
SPLUNC1, which are hypothesized to be functional in
normal but not CF ASL (Garcia-Caballero et al. 2009).
These data suggest that different results may be returned
regarding ENaC proteolysis under thick- versus thin-film
conditions, especially in normal airways. Importantly,
there may be an inherent protease/inhibitor imbalance in
CF airways that is extenuated under thin-film conditions
and contributes to ENaC hyperactivity in CF airways.

We have identified short palate lung and nasal epithelial
clone 1 (SPLUNC1, now renamed BPFIA1, but also
known as LUNX and SPURT) as a soluble ENaC inhibitor
that is contained in the ASL and acts as an ASL
height reporter molecule (Garcia-Caballero et al. 2009).
SPLUNC1 is primarily expressed in the upper airways
and nasopharyngeal regions (Bingle & Bingle, 2011).
SPLUNC1 is also expressed in the auditory canal, and
knockdown of SPLUNC1 in this tissue led to a failure of
mucus clearance and dehydration in this organ, suggesting
that ENaC activity was enhanced following SPLUNC1
knockdown (McGillivary & Bakaletz, 2010). SPLUNC1
binds to ENaC, causing ENaC removal from the plasma
membrane, which prevents it from being proteolytically
cleaved (Garcia-Caballero et al. 2009). Indeed, stable
knockdown of SPLUNC1 in normal airway cultures caused

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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ASL volume to become unregulated and to drop to CF-like
levels (Garcia-Caballero et al. 2009). SPLUNC1 is also pre-
sent in CF airways (Bingle et al. 2007), but because CF air-
way cultures cannot regulate ENaC activity or ASL height
(Tarran et al. 2005, 2006), we postulate that CF SPLUNC1
is non-functional, although the underlying cause of this
dysfunction remains unknown.

Although the sequence of events at the onset
of inflammation remains the subject of debate, the
response to infection and inflammation response may
further contribute to CF Na+ hyperabsorption. Human
neutrophil elastase is present in CF airways at high
concentrations (1 μM; Konstan et al. 1994) and apical
application of neutrophil elastase to human bronchial
cells increased ENaC activity (Caldwell et al. 2005),
suggesting that neutrophil elastase could contribute to
Na+ hyperabsorption. Pseudomonas aeruginosa’s alkaline
protease can also activate ENaC and increase Na+ trans-
port (Butterworth et al. 2012). Thus, the loss of CFTR
may contribute to Na+ hyperabsorption in CF airways
either directly, through protein interactions, or indirectly,
subsequent to the acquisition of airway disease and the
conversion to a protease-rich environment (Fig. 2). It is
possible that other as-yet undiscovered host and bacterial

proteases are upregulated in diseased CF lungs that can
further exacerbate Na+ hyperabsorption.

Whilst many researchers have focused on decreased
ASL height that is concomitant with Cl− hyposecretion
and Na+ hyperabsorption, we predict that the decrease
in ASL height in an affected airway is only evident for
a short period of time and will then transition into an
airway with a greater ASL height than normal airways
(Fig. 2A–C). Our reasoning is thus: low volume will induce
mucus stasis. However, mucus secretion will continue
in the face of Na+ hyperabsorption and the ASL/mucus
layer will increase in height, albeit with decreased water
availability and increased mucus dehydration as compared
with normal ASL. Indeed, the height of the ASL in a
dehydrated CF culture or CF airway can be ≥100 μm
(Kesimer et al. 2013). This continued secretion of mucus
in the face of ASL hyposecretion and mucus stasis may
explain how mucus plugs form in CF airways. Thus, while
ASL depletion studies are extremely useful for studying
the early consequences of altered epithelial ion trans-
port, under the chronic conditions seen in diseased lungs,
measurements of mucus dehydration, mucus clearance
rates or the simple presence/absence of a periciliary liquid
layer (PCL) may also be useful to assay ASL status.

Figure 2. The contribution of excess protease activity to Na+ hyperabsorption and CF lung disease
progression
Channel-activating proteases (CAPs) can be either secreted or cell attached, and their action is offset by
either anti-proteases or soluble inhibitors such as SPLUNC1. A, normally, the balance between CAPs and inhibitors
allows for controlled Na+ absorption, which removes excess ASL without depleting PCL volume. B, CF airways
are less able to manage the protease-inhibitor ratio, and either basally or following bacterial infection, excess
protease activity contributes to Na+ hyperabsorption, which leads to ASL depletion and mucus stasis. C, mucin
secretion (not shown) continues in the absence of PCL leading to increased height of the mucus layer. Chronic
neutrophilia exacerbates this condition and leads to further protease release. ENaC, epithelial Na+ channel.
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Conclusions

In conclusion, I scAmil and V tAmil are elevated in freshly
isolated CF versus normal airway epithelia despite no
change in Rt or Gt and despite a reduced apical
membrane driving force (Boucher et al. 1986; Cotton et al.
1987). These observations are consistent with biochemical
measurements, confocal measurements, Na+ fluxes,
patch-clamp studies, optical gravitational measurements,
increased ouabain-sensitive O2 consumption and Na+ net
transport measurements in CF airways (Stutts et al. 1986,
1995; Jiang et al. 1993; Matsui et al. 1998; Tarran et al. 2005;
Berdiev et al. 2007; Gentzsch et al. 2010). Furthermore, due
to the protease-rich environment in diseased lungs, ENaC
is likely to become further activated following chronic lung
infections. However, it is the opinion of these authors that
regardless of whether ENaC is more or less active in CF
than in normal airways, any level of ENaC activity will
further exacerbate Cl− hyposecretion and drive the mucus
dehydration seen in CF airways. Importantly, rehydrating
the ASL with hypertonic saline has been shown to improve
lung function and decrease the rate of exacerbations by
∼50% (Donaldson et al. 2006). Thus, understanding the
role that ENaC plays in CF pathogenesis is essential for
devising novel therapeutics for the treatment of CF lung
disease. While ENaC antagonists such as amiloride failed
in the clinic due to their short retention time in the lung
(Knowles et al. 1991), alternate approaches to inhibiting
ENaC activity, such as adjusting the protease/anti-protease
imbalance, may yet prove beneficial.
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