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Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis
sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-
30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables,
that is, glucose (organic C source), NaNO

3
(primary N source), and yeast extract (supplementary N, amino acids, and vitamins)

on biomass concentration, 𝑋max, and lipid yield, 𝑃max/𝑋max. RSM capability was also weighed against an artificial neural network
(ANN) approach for predicting a composition that would result inmaximum lipid productivity, Prlipid. A quadratic regression from
RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results,
albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO

3
(4.70 g/L),

and yeast extract (0.93 g/L) concentration, affected an increase of 𝑋max to 12.38 g/L and lipid a accumulation of 195.77mg/g dcw.
This contributed to a lipid productivity of 173.11mg/L per day in the course of two-week cultivation.

1. Introduction

Themicroalga Tetraselmis has been used extensively in aqua-
culture, especially for rearing larval stages of mollusks and
crustaceans [1]. In light of favorable outlooks [2], an emerging
application of Tetraselmis or other oleaginous microalgae is
currently centered on carbon biofixation in tandem with
bioconversion towards renewable fuels. The whole process is
considered to be efficient and encouragingly leaves a small
pollution footprint [3]. Several species of Tetraselmis are
acknowledged to possess metabolic plasticity, whereby in
response to the culture conditions, these species canmanifest
in alternative phenotypes resulting in altered formation of
algal bioproducts [4].

Heterotrophy of exogenous nutrients by microalgae is
now being regarded as the practical means to increase the

volumetric productivity of algal biomass [5]. Nonetheless, the
amount of neutral lipid, a principal component in biodiesel
synthesis, was significantly diminished for Tetraselmis cul-
tured with organic carbon substrates without illumination.
For an unspecified species of Tetraselmis, Day and Tsavalos
[6] found that cultivation with glucose yielded only 0.64%
w/w cellular lipid obtained under complete darkness, as
opposed to 3.71%w/w for culture exposed to light. A study by
Azma et al. [1] on the heterotrophy of T. suecica has reported
a respectable 28.8 g/L dried cell weight. Lipid productivity
was claimed to increase by about 2 times. However, com-
parison was made solely against photoautotrophic culture,
by which the typical biomass concentration is in the range
of 0.1 to 1.0 g/L, owing to the effect of mutual shading [7].
Alternatively, researchers are looking into the potential of
mixotrophic (photoheterotrophic) mode upon realization of
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enhanced growth and unrepressed light-dependent bioprod-
ucts formation from the combined effects of photosynthesis
and the cells’ own ability to ingest either prey or dissolved
organic materials [8].

Mixotrophy in the commercial-scale open ponds of
Chlorella and Spirulina has been practiced for some time
through continuous addition of acetate in small quantities
during daytime to support greater growth [9]. Zhao et al. [10]
had found that themode was conducive for both biomass and
lipid accumulations of Scenedesmus quadricauda, wherein
𝑋max and lipid, 𝑃max, were registered at 3.36 g/L and 0.79 g/L,
respectively when culture was fed with starch wastewater. In
addition, Isleten-Hosoglu et al. [11] also proposed that the
mixotrophicallygrown Ettlia texensis isto be a good biofuel-
producer candidate, where imposing optimized mixing and
medium in stirred tank environment would lead to 𝑋max of
10.1 g/L, with microalga retaining 35% of lipid bodies during
its 11 days of cultivation, corresponding to biomass and lipid
productivities of 0.92 g/L per day and 322mg/L per day,
respectively.

Previous observations on the native isolate Tetraselmis
sp. FTC 209 in our laboratory revealed the strain preference
towardsmixotrophic over other forms ofmetabolisms. Initial
attempt on medium design was based on the concept of
elemental balance of aqueous nutrients to match the stoi-
chiometry of the particular algal species [12]. The technique
comprises a straightforward increase of nutrients found lack-
ing to promote a higher cell-density culture, but neglecting
the combined interactions between medium components
involved. In a way, it may not guarantee to pinpoint the exact
optimal condition, which possibly leads to slight inaccurate
conclusions [13]. Statistical methods have been applied for
developing reliable culture system. Of late, response surface
methodology (RSM) coupled with central composite design
(CCD) has been a popular tool to model the probable curva-
ture of the measured responses in algal medium formulation
[1, 11, 13, 14]. However, a major obstacle in reaching model
accuracy and generalization lies in the nonlinearity and
time-varying nature of bioprocesses [15]. Artificial neural
network (ANN) has been progressively applied in a number
of optimization works [16]. ANN is a highly interconnected
network of processing elements (neurons) capable of massive
parallel computations, representing a data-centric modeling
inspired by biological nervous system. Contrary to the
conventional model requiring that the order needs to be
stated (i.e., second, third or fourth order), ANN is more
flexible and does not impose any restriction on the type of
relationship governing the dependence output parameters
on the various running conditions [17]. ANN essentially
transforms inputs that passed through network of neurons
with weighted interconnection into outputs predicted to the
best of its ability. It is adaptive or trainable with a given
dataset via adjusting many network factors (no. of layers, no.
of neurons in hidden layers, types of transfer functions, or
learning algorithms). The process continues until a defined
accuracy has been reached [18].

Linear regression modeling via RSM has been con-
structed in the past for T. suecica [1]. However, no study to

date has made use of ANN capacity for simulating the struc-
ture and functional aspects of neural networks to precisely
develop an optimal growth medium for Tetraselmis. The aim
of this study was to analyze the potential improvement of
predictive microbiology afforded by RSM and ANN-based
models, in this case, by assessing the contribution of major
organic carbon and nitrogen sources such as glucose, NaNO

3
,

and yeast extract towards enhancing the lipid productivity.

2. Materials and Methods

2.1. Microalga Strain, Maintenance, and Inoculum Prepa-
ration. The microalga, Tetraselmis sp. FTC 209 previously
isolated from the coastal waters of Port Dickson, Negeri Sem-
bilan (Malaysia), was obtained from the collection of Fermen-
tation Technology Unit (FTU-GMP@BIOTECH) of Univer-
sity Putra Malaysia. Prior to microalgal characterization via
morphological, 16S rDNA partial gene sequencing and phy-
logenetic analysis had disclosed a taxonomic position of the
strain as closely related to Tetraselmis striata. The axenicity
of Tetraselmis isolate was maintained by culturing the cells
onto Walne’s medium agar treated with antibiotics cocktail
comprising of 100/25mg/L of ampicillin/streptomycin and
fortified with 5 g/L glucose.

Four-week old colonies grown on agar plates were
collected with disposable loops and cultivated in liquid
medium formulated beforehand according to the principle of
elemental balance. In brief, the technique requires increasing
the concentrations of any bioelements found deficient in
the standard Walne’s medium by matching to the alga’s
cellular elemental composition. Nonetheless, a drop in
Tetraselmis sp. FTC 209 growth rate and cell density was
observed if such increment, expressed in “percent biomass
capacity” for all macronutrients that were raised higher
than 30%. The modified basal medium, designated as W-30
used throughout this study, was formulated using sterile
double-filtered seawater and composed of (g/L): (NH

4
)
2
SO
4
,

0.377; KH
2
PO
4
, 0.362; K

2
HPO
4
, 0.200; MgSO

4
⋅7H
2
O, 0.144;

CaCl
2
⋅2H
2
O, 0.327; FeCl

3
⋅6H
2
O, 0.0091; MnCl

2
⋅4H
2
O,

0.0044; Na
2
EDTA⋅2H

2
O, 0.200; H

3
BO
3
, 0.336; C

6
H
8
O
7
,

0.020; ZnCl
2
, 0.0021; CuSO

4
⋅5H
2
O, 0.002; CoCl

2
⋅6H
2
O,

0.002; Na
2
MoO
4
⋅2H
2
O, 5.0 × 10−4; thiamine-HCl, 2.0 ×

10−5; cyanocobalamine, 1.0 × 10−5, and biotin, 2 × 10−7. The
microalga was serially subcultured by aseptically transferring
10% (v/v) of culture into fresh liquid medium at two-week
intervals. Cultures having the cell number of approximately
32 × 106 cells/mL were used as a standard inoculum in all the
following optimization experiments.

2.2. Mixotrophic Experiments. All mixotrophic cultivation
experiments of Tetraselmis sp. FTC 209 were performed
in 500mL Erlenmeyer flasks containing 200mL of liquid
medium. The sterile flasks were inoculated with 20mL
inoculum and incubated in an orbital shaker (Ecotron,
Infors-HT, Switzerland) at 27∘C with agitation fixed at
130 rpm. Light source was provided through manual instal-
lation of T5 fluorescent tubes (OSRAM, Germany) inside
the shaker unit, illuminating the cultures at about 2280 ±
250 lux or an equivalent photosynthetic photon flux (PPF)
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of 30 ± 3.3 𝜇mol/m2⋅s for a constant diurnal cycle of 12 h
(light) : 12 h (dark). All runs were carried out in triplicates for
a total duration of 2 weeks cultivation.

2.3. Experimental Design. Based on prior mixotrophic culti-
vations with W-30 medium, 𝑋max was recorded at 8.08 g/L
with lipid embodied about 20–22% of the Tetraselmis cell
after 500 h of cultivation, by having the presence of glu-
cose in the range of 20–30 g/L, and NaNO

3
being supplied

at 3.50–5.23 g/L, respectively. Addition of organic complex
nutrients, for example, peptone, yeast extract, malt extract,
or beef extract to further boost the biomass propagation,
and therefore indirectly, the lipid yield, have been suggested
in the reports pertaining to mixotrophy or heterotrophy of
several Tetraselmis species [1, 4, 19]. The foremost among
the proposed supplements is yeast extract, by and large
sourced from the autolysate of spent Saccharomyces cells, an
underutilized waste by-product of brewing industry [20]. It
has a competitively lower price compared to other organic N
sources [11] and generally the most preferred for production-
scale bioreactor [5].

A five-level, full-factorial central composite design
(CCD) with three independent variables, that is, the
concentrations of glucose (Merck Co.), yeast extract (Merck
Co.), and NaNO

3
(Kollins Chemicals) was applied in this

study (Table 1), requiring 19 sets of experimental runs
consisting of 8 factorial (cubic points), 6 axial (star points),
and 5 replicates of center points. The effects of these medium
constituents towards ultimately achieving the maximum
lipid productivity, Prlipid (mg/L per day), were identified.
Subsequent experimental values acquired from the runs
using predicted optimal conditions were then used as
validating set and were compared with the computed
optimal values.

2.4. Response Surface Methodology Modeling. RSM was
employed to optimize the cultivation plus to investigate the
relative and interactive effects the threemedium constituents.
To comprehend the algal growth and lipid secretion behavior,
three responses comprising of biomass concentration (g/L),
lipid yield (mg lipid/g dcw), and lipid productivity (mg/L
per day) were initially measured. Design Expert (version
7.1.6, Stat-Ease Inc., Minneapolis, MN, USA) was used for
regression modeling and data interpretation. The observed
responses from CCD design were then fitted to the following
polynomial equation as shown by
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where 𝑌 is the predicted response; 𝑖 and 𝑗 are the index
numbers for the pattern; 𝛽 is the offset term; 𝛽
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are the coefficients for the linear, quadratic, and interaction
effects, respectively; 𝑥
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and 𝑥

𝑗
are the coded variables; and

𝜀 is the error. The regression equation was optimized by an
iterative method to achieve the optimum values.

2.5. Artificial Neural Network Modeling. NeuralPower (ver-
sion 2.5, CPC-X Software, USA) is a powerful ANN module

Table 1: Actual levels for independent variables (medium compo-
nents) designed through CCD approach.

Factors Symbols Coded levels
−1.6818 −1 0 +1 +1.6818

Glucose (g/L) 𝑥
1

16.59 20 25 30 33.50
Yeast extract (g/L) 𝑥

2
0.06 0.50 1.15 1.80 2.25

Sodium Nitrate (g/L) 𝑥
3

1.65 3 5 7 8.35

for forecasting nonlinear regression. It was chosen to conduct
pattern recognition on similar dataset subjected to RSM
analysis. Data were divided into two sets; training set (15
data) and testing set (4 data) which was randomly picked
from Table 2 (bold numbers). Every network possesses three
input variables and one output response, each underwent
training for computation of network parameters. Network
performance was simultaneously consulted with the testing
set during training to avoid becoming “over trained” and
thereby improves the prediction (i.e., generalization) towards
any data excluded from the training sets [21]. In the event of
supervised training, designed networks were trained to the
point of exhibiting root mean square error (RMSE) as shown
by (1) to be as closest to 0.01, whereas the networks’ corre-
lation coefficient (𝑅) and determination coefficient (DC) as
defined by (2) and (3), respectively, are closest or equal to 1:

RMSE = [

[
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, (4)

where 𝑁 is the number of data points, 𝑥obs is the observed
value, 𝑥

𝑝
is the predicted value obtained from ANN model,

𝑥
𝑚
is the average of actual values, and 𝑥

𝑝𝑚
is the average of

predicted values.
A full feed-forward network structure was selected for

modeling of lipid productivity. In this case, network com-
prises of three input neurons, one output (response) neuron,
and a single hidden layer, which is highly recommended for
most practical feed-forward network designs [18]. Networks
were consecutively trained via different learning algorithms
(the “standard” back propagation package; genetic algorithm,
GA; and Levenberg-Marquardt, LM). Adjustment of network
parameters encompassed on the number of neurons in
hidden layer and the types of transfer functions for both
hidden and output layers. The trial and error approach was
sufficient in choosing the optimal number of neurons that
translates to the best network topology [22]. In NeuralPower;
the numberswere tested from5 to 30, eachwith the increment
of one neuron at a time.The common transfer functions used
for nonlinear regression are sigmoid, hyperbolic tangent,
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Table 2: Central composite design (CCD) used in RSM and ANN studies showing the actual levels and observed responses during the
mixotrophic cultivation Tetraselmis sp. FTC 209.

Run 𝑥
1

𝑥
2

𝑥
3

𝑋max (g/L)
Lipid yield, 𝑃max/𝑋max

(mg/g dcw)
Lipid productivity, Prlipid

(mg/L per day)
1 20.00 0.50 3.00 4.955 76.81 31.72
2 30.00 0.50 3.00 8.15 87.36 59.33
3 20.00 1.80 3.00 9.325 75.60 58.75
4 30.00 1.80 3.00 9.65 77.99 62.72
5 20.00 0.50 7.00 7.365 98.30 60.33
6 30.00 0.50 7.00 10.1 72.67 61.17
7 20.00 1.80 7.00 7.245 105.31 63.58
8 30.00 1.80 7.00 12.69 58.87 62.26
9 16.59 1.15 5.00 6.835 130.03 74.06
10 33.50 1.15 5.00 13.05 70.25 76.40
11 25.00 0.06 5.00 8.6 85.28 61.12
12 25.00 2.25 5.00 10.195 61.11 56.00
13 25.00 1.15 1.65 4.315 108.95 39.18
14 25.00 1.15 8.35 6.275 81.17 42.44
15 25.00 1.15 5.00 11.555 168.83 162.57
16 25.00 1.15 5.00 10.175 204.29 173.22
17 25.00 1.15 5.00 12 177.18 177.18
18 25.00 1.15 5.00 11.07 171.40 158.11
19 25.00 1.15 5.00 11.55 183.30 176.42
ANN training set: normal numbers; ANN testing set: bold numbers.

and Gaussian [23]. Linearity of network was also tested
using linear, bipolar linear, and threshold linear-types of
transfer functions. The search for optimal network topology
proceeded by iteratively developing several networks. Each
would be trained to meet the acceptable residual error terms
as stipulated by (2) to (4). Other parameters such as the
learning rate and momentum coefficient were kept to the
default values of the software.

2.6. Verification of Predicted Data. The estimation capabil-
ities of both RSM and ANN models were evaluated by
means of comparing the responses computed from both
methods to the observed data. The calculated coefficients of
determinations, 𝑅2 or DC (4), were exploited for the purpose
of comparison, whether to determine the most accurate
ANNmodel amongst various generated topologies, and from
such outcome, the aforementioned best model would be
compared to RSM results.𝑅2 represents the proportion of the
total sample variability as explained by the given regression.
Nonetheless, it is not a sole measurement of model accuracy.
The use of RMSE (2) or an absolute relative error test is
more appropriate to describe the deviations. Apart from 𝑅2,
RMSE andmean absolute error (MAE) as defined by (5) were
chosen as ancillary statistical indicators tomeasure themodel
performance

MAE = 1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑥obs − 𝑥𝑝

󵄨󵄨󵄨󵄨󵄨
. (5)

Model is considered accurate when 𝑅2 is closest to 1.0,
while RMSE and MAE between predicted and observed data

must be as small as possible. Acceptable values of 𝑅2, RMSE,
and MAE mean that model equation is able to describe
the true behaviour of the system, and it can be applied for
interpolation in the experimental domain [16].

2.7. Analytical Methods. Tetraselmis biomass concentration
(g/L) was determined gravimetrically after the cells were
lyophilized overnight in a preweighed sample vials. Culture
samples of known volume were washed beforehand with
0.5M ammonium formate to remove excess sea salts, fol-
lowed by at least twice with distilled water. The resuspended
cell pellets following recentrifugation at 2465 rcf for 5min
(5810 R, Eppendorf, Germany) were later subjected to freeze-
drying. The procedure consists of prefreezing (−30∘C) at 1
bar for 4 h, sample preparation for 15min at 1 bar, main
drying (30∘C) for 20 h at 0.001mbar, and concluded with
final drying at 0.0001mbar for 15min (Epsilon 1-8D, Martin
Christ, Germany).

Lipid was extracted from 300 to 400mg of dried cells
according to a method modified from Folch et al. [24]. Cells
were first pulverized to fine granules by pestle and mortar,
followed by adding 4mL methanol containing 500 ppm
butylated hydroxytoluene (BHT), 2mL chloroform, and
0.4mL water. The mixture was homogenized and disrupted
in an ultrasonic bath (Thermo-10D, Thermoline, Australia)
for 15min. Additional chloroform (2mL) was added, and
the mixture was left standing for one day. Water (2mL)
was later added, and the mixture was vortexed for 60 s.
After centrifugation and siphoning off the upper phase, the
lower chloroform phase containing lipid was collected in



The Scientific World Journal 5

a pre-weighed vial. Organic solvent was heated to 62∘C and
purged with a passing nitrogen stream. The total lipid was
also determined gravimetrically.

Qualitative inspection of intracellular lipid was also
conducted using fluorescent microscopy. Nile red (9-(dieth-
ylamino)-5H-benzo [a] phenoxazin-5-one), a photostable,
selective fluorescent dye, was used for in situ staining of
neutral lipid. 30𝜇L of algal cells suspensions sampled at the
end of cultivation as mixed with 10 𝜇L of 0.1mg/mL Nile red
solution (Sigma) (dissolved in acetone). 1960𝜇L of a freshly
prepared 25% (v/v) dimethylsulfoxide (DMSO) solvent was
then added as stain carrier since the thick, rigid cell walls
of Tetraselmis sp. could inhibit the permeation of fluorescent
dye [25]. The mixture was vortexed for about 60 s and
incubated in the dark at 40∘C for 10min.Microalga cells were
photographed using light microscope (Leica DMLB, Wetzlar
GmbH, Germany) with an eye-piece digital camera (Dino-
Eye AM4023X, ANMO Electronics, Taiwan). Epifluorescent
images of Nile red stained cells were captured using D filter
cube (broad-range UV+ violet excitation) or N2.1 filter cube
(green excitation) obtained at 1000x magnification with oil
immersion (Leica Microsystems).

3. Results and Discussion

3.1. RSM Modeling. Table 2 displays the CCD design matrix
of the medium constituents chosen, together with the actual
responses, that is, biomass concentration, lipid yield, and
productivity. Sequential comparison of all the potential
RSM models’ sum of squares by Design Expert software
has demonstrated that the quadratic type is the highest
order polynomial regression aptly suitable to explain the
relationship between input variables and responses. The
corresponding uncoded second-order polynomial response
equations derived accordingly for the algal biomass (6), lipid
yield (7), and lipid productivity (8) are as follow:

𝑋max = −20.02 + 0.85𝑥1 + 6.26𝑥2 + 4.50𝑥3 − 0.015𝑥
2

1

− 1.00𝑥
2

2
− 0.50𝑥

2

3
+ 0.025𝑥

1
𝑥
2

+ 0.052𝑥
1
𝑥
3
− 0.375𝑥

2
𝑥
3
,

(6)

𝑃max
𝑋max
= −1018.70 + 65.73𝑥

1
+ 245.59𝑥

2
+ 107.03𝑥

3

− 1.20𝑥
2

1
− 91.53𝑥

2

2
− 7.74𝑥

2

3

− 1.49𝑥
1
𝑥
2
− 1.19𝑥

1
𝑥
3
− 0.60𝑥

2
𝑥
3
,

(7)

Prlipid = −1188.07 + 69.87𝑥1 + 257.95𝑥2 + 128.27𝑥3

− 1.31𝑥
2

1
− 89.96𝑥

2

2
− 11.07𝐶

2

− 1.25𝑥
1
𝑥
2
− 0.49𝑥

1
𝑥
3
− 3.17𝑥

2
𝑥
3
.

(8)

The goodness of fit of each equation is denoted by 𝑅2Adj.
Model assessment that was based on 𝑅2Adj in place of 𝑅2
was more accurate, given that the presence of extraneous

factorial terms in a derivedmodel equationwill result in some
reduction in the error sum of squares. 𝑅2Adj will compensate
for the added explanatory variables since 𝑅2 value naturally
increases with the addition of new variable terms. 𝑅2Adj in
this case are 0.868, 0.914, and 0.970 for (6) to (8), respectively,
indicating good model agreement between the observed
against predicted values for all the output responses.

Statistical testing for significances of the proposedmodels
is presented by the analysis of variance (ANOVA) in Table 3.
According to the results, the individual 𝑅2 obtained at 0.934,
0.957, and 0.985 shows that the three derived models could
explain more than 93% of the variability. The 𝐹-test value
of 14.20 for biomass concentration, 22.14 for lipid yield,
and 64.82 for lipid productivity, plus the probability values
(𝑃model > 𝐹) of less than 0.05, indicates that each of
these models were considered significant. Besides, relative
variability of the experimental results was confirmed to be
acceptable based on the individual coefficient of variation
(CV) for biomass (10.30%), lipid yield (12.72%), and pro-
ductivity (10.51%). Another cue for the goodness of fit is
represented by the models’ lack of fit (LOF) terms which
were proven to be insignificant, whereby (𝑃model > 𝐹) were
determined at 0.1907, 0.5391, and 0.4416, respectively. The
optimal conditions and interactions between the medium
constituents are shown in the three dimensional response sur-
face plots (Figure 1). The biomass concentration was varied
from4.95 (g/L) to 13.05 (g/L). On the other hand, the intracel-
lular lipid yield range was varied from 58.87 (mg lipid/g dcw)
to 204.30 (mg lipid/g dcw), while its related productivity was
varied from 31.72 (mg/L per day) to 177.20 (mg/L per day).

As per ANOVA analysis, all three independent input
variables directly contributed to the first-order effect on the
cell growth model. However, the quadratic effect of NaNO

3

(𝑥2
3
) was more prominent (𝑃 < 0.0001) compared to the

other inputs. By maintaining the NANO
3
concentration at its

center point, the cell density was observed as increasing in an
almost linear fashion with the increase in both glucose and
yeast extracts (Figure 1(a)). From the examination of contour
plots, the highest biomass concentration was obtained with
glucose ranging from 26.0 to 30 g/L, and yeast extract from
0.83 to 1.80 g/L, provided that the NaNO

3
concentration as

kept below 6.0 g/L (Figures 1(b) and 1(c)).
Compared to the results of biomass concentration,

the responses associated with lipid production were more
bounded by the range of the input variables selected. Glucose
of about 25 g/Lwas devoted to attain themaximum lipid yield
and productivity at a given yeast extract (Figures 1(d) and
1(g)) andNaNO

3
(Figures 1(e) and 1(h)) concentrations.Here,

keeping the glucose at the center point would correspond
to an optimal range of NaNO

3
at 4.5 to 5.5 g/L, while yeast

extract would be confined to a narrower range of 1.0 to
1.48 g/L (Figures 1(f) and 1(i)). Response surfaces with regard
to lipid productivity depict an excellent circular contour, sug-
gesting that the interaction between the input variables pose
very little role in predicting the response [1]. Moreover, the
quadratic terms were recognized to impart more influence
towards regression modeling. Nonetheless, contour plots
exhibiting a defined elliptical shape would otherwise indicate
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Table 3: ANOVA tables showing the regression model on abiomass concentration, blipid yield, and clipid productivity.

Source Sum of squares DF Mean squares 𝐹 value Prob > 𝐹
Biomass concentrationa

Model 115.55 9 12.84 14.20 0.0003 Significant
A (glucose) 37.52 1 37.52 41.49 0.0001
B (yeast extract) 12.12 1 12.12 13.41 0.0052
C (NaNO3) 6.09 1 6.09 6.73 0.0290
A2 1.91 1 1.91 2.11 0.1804
B2 2.45 1 2.45 2.70 0.1345
C2 55.43 1 55.43 61.30 <0.0001
AB 0.05 1 0.05 0.06 0.8117
AC 2.16 1 2.16 2.39 0.1563
BC 1.90 1 1.90 2.10 0.1810
Residual 8.14 9 0.90
Lack of Fit 6.21 5 1.24 2.57 0.1907 Not significant
Pure Error 1.93 4 0.48
Cor Total 123.69 18

Lipid yieldb

Model 38640.62 9 4293.40 22.14 <0.0001 Significant
A (glucose) 1454.22 1 1454.22 7.50 0.0229
B (yeast extract) 168.75 1 168.75 0.87 0.3752
C (NaNO3) 27.36 1 27.36 0.14 0.7159
A2 12340.99 1 12340.99 63.65 <0.0001
B2 20415.60 1 20415.60 105.30 <0.0001
C2 13070.60 1 13070.60 67.41 <0.0001
AB 189.90 1 189.90 0.98 0.3482
AC 1128.46 1 1128.46 5.82 0.0391
BC 4.83 1 4.83 0.02 0.8781
Residual 1744.99 9 193.89
Lack of Fit 942.45 5 188.49 0.94 0.5391 Not significant
Pure Error 802.53 4 200.63
Cor Total 40385.61 18

Lipid productivityc

Model 48411.82 9 5379.09 64.82 <0.0001 Significant
A (glucose) 160.43 1 160.43 1.93 0.1978
B (yeast extract) 80.03 1 80.03 0.96 0.3518
C (NaNO3) 163.34 1 163.34 1.97 0.1942
A2 14549.79 1 14549.79 175.32 <0.0001
B2 19719.16 1 19719.16 237.61 <0.0001
C2 26767.04 1 26767.04 322.53 <0.0001
AB 133.84 1 133.84 1.61 0.2360
AC 190.05 1 190.05 2.29 0.1645
BC 136.06 1 136.06 1.64 0.2324
Residual 746.92 9 82.99
Lack of Fit 448.49 5 89.70 1.20 0.4416 Not significant
Pure Error 298.43 4 74.61
Cor Total 49158.74 18

perfect interactions between the medium constituents used
in formulation [14]. Such topology was visually evident in
Figures 1(d) and 1(e). A cross referencing to ANOVA table
confirms that the interaction between glucose and sodium
nitrate (𝑥

1
𝑥
3
) was actually very significant for directly pro-

moting lipid yield in Tetraselmis cell (Prob > 𝐹 = 0.0391).

3.2. ANN Modeling. The overall lipid productivity was given
more emphasis in algal cultivation. Biomass concentration
on the other hand usually affects the downstream costs [11].
Thus, maximizing the main response of interest became
the focal point of ANN optimization exercise. In the net-
work training/testing process, a total of 330 neural network
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Figure 1: Continued.
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Figure 1: Surface response plots of (a, b, c) biomass concentration, (d, e, f) intracellular lipid, and (g, h, i) overall lipid productivity asmodeled
via RSM.

Table 4: The effect of different full feed-forward network architectures on the model residual error (RMSE, 𝑅, and DC) in the prediction of
lipid productivity from mixotrophic Tetraselmis sp.

Set Model Learning
algorithm

Transfer
function
hidden

Transfer
function
output

Training
set RMSE

Training set
𝑅

Training set
DC

Testing set
RMSE

Testing set
𝑅

Testing set
DC

1 3-15-1 GA SIGMOID LIN 4.122 0.996 0.993 6.517 0.999 0.986
2 3-10-1 LM TANH LIN 4.122 0.996 0.993 8.074 0.995 0.978
3 3-15-1 LM TANH LIN 4.126 0.996 0.993 9.790 0.991 0.968
4 3-9-1 GA GAUSS LIN 4.126 0.996 0.993 10.294 0.992 0.965
5 3-10-1 GA GAUSS LIN 4.126 0.996 0.993 13.033 0.999 0.947

architectures were tested for the prediction of Prlipid, each
having a diverse configuration of hidden neurons, learning
algorithm, and transfer functions of output and hidden layer.
Nonetheless, it was necessary to ultimately choose only one
of them, which provides the best compromise between bias
and variance and also generates a good generalization. Table 4
summarizes the top five ANNmodels.

Network training entails selecting a particular model that
minimizes the error or cost criterion. Judging from Table 4,
models with the least residual error were either trained
using the Levenberg-Marquardt (LM) or Genetic algorithm
(GA). LM is often regarded as the most efficient in terms of
speed and accuracy in finding the optimal point compared
to others [22]. Networks designed throughout this study
were considered suitable to be trained by LM by abiding
to the algorithm restrictions. Namely, LM is only effective
for a small network (containing a few hundred weights) as
its memory requirements are proportional to the square of
the number of weights in the network, and the algorithm
can only be used for network with a single output response.
Additionally, LM is specifically used to minimize the sum
of squares error and cannot be applied for other types of
network errors. GA on the other hand is a stochastic method
mostly associated with simulation of biologic heredities and
evolutionary processes. Each possible solution to a set of
problems is taken as an “individual” among population, and
each individual is coded as a character string. GA applies
its unique selection, crossing, and mutagenesis operators

on a random population in order to compute a new one,
eventually introducing some diversity to the algorithm [17].
An interesting trait of GA is that the algorithm is able to avoid
a one-point optimal search usually associated with gradient
descent or LM back propagation. Instead, GA is capable of
global optimum exploration of the design space [23].

The choice of transfer function also directly affects the
ANN’s learning rate and is deemed instrumentally to its
performance. In this study, most of the statistically accepted
models were produced with linear function for output layer.
Linear was frequently chosen for output layer for simulating
functions without discontinuities. Gaussian, hyperbolic tan-
gent, and sigmoid were all found to be suitable for hidden
layer. Evidently from the tabulated results, the network using
linear and sigmoid for the output and hidden layer produced
the lowest RMSE (6.517) and a very high 𝑅 (0.999) and DC
(0.986). It has become a rule-of-thumb to choose sigmoid as
the activation function for excellent non-linear model, but at
the expense of slower learning [26]. Its hyperbolic tangent
(Tanh) counterpart has the same response shape as that
of sigmoid; thus, their computational cost is insignificantly
different, and both functions can create a very smooth
model. However, it was noted that the convergence perfor-
mance of error functions was faster when Tanh function
was employed for hidden layer. Calculated RMSE is slightly
higher at 8.074, in addition to comparable 𝑅 (0.995) and DC
(0.978). Unlike sigmoid or Tanh function that acts as a gate
(open or closed) for a neuron’s output response when given



The Scientific World Journal 9

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

Pr
od

uc
tiv

ity
A

N
N

(m
g/

L 
pe

r d
ay

)

ProductivityOBS (mg/L per day)

Data point
Best fit line

GA trained neural network: 3-15-1
R
2
= 0.922

MAE = 10.043

(a)

0 20 40 60 80 100 120 140 160 180 200

ProductivityOBS (mg/L per day)

Data point
Best fit line

0

20

40

60

80

100

120

140

160

180

200

Pr
od

uc
tiv

ity
A

N
N

(m
g/

L 
pe

r d
ay

) LM trained neural network: 3-10-1
R
2
= 0.953

MAE = 6.048

(b)

Figure 2: Parity plots correlating the observed and predicted values of the ANN models with respect to different testing dataset.

a set of inputs, Gaussian behaves like a probabilistic output
controller, producing output that can be described as a type of
partial response. This transfer function tends to map pattern
quicker than sigmoid; nevertheless, its prediction can be
prone to memorization.

The optimal number of neurons is an idiosyncrasy of
the system in question. Increasing the neurons would ratio-
nally improve the learning performance, as too few would
consequently lead to erratic learning or nonconvergence as
observed in networks trained either with GA or LM.Network
with too many neurons however may allow for too much
freedom for the weights to adjust and, hence, invariably learn
the noises that present in the training dataset [27]. To evaluate
the fidelity of ANN architecture, parity plots of a testing
set with 10 altogether different data points (Figure 2) were
constructed for the top two networks in Table 4. The 𝑅2
and MAE of the plots were then determined. Based on the
fitting criteria, the LM-trained network of 3-10-1 architecture
with Tanh function for hidden layer (Figure 3) was better in
predicting the lipid productivity (𝑅2 of 0.953 and MAE of
6.048). Hence, the designed network could properly correlate
the input and response. In most cases, good generalization
could be obtained with ANN incorporating between 4 to 15
neurons [21].

Figure 4 depicts the response surface topologies describ-
ing the interaction effect of the three medium constituents
on lipid productivity as predicted by the optimal network.
Every plot has a dome-shaped surfacemuch similar to Figures
1(g) to 1(i). Notwithstanding, these plots project a distinctive
undulated curvature, representing a graphical refinement
in terms of nonlinearity in the output response compared
with those generated by RSM. Figure 4(a) shows that when
NaNO

3
is fixed at themiddle level (5.0 g/L), lipid productivity

increases when yeast extract and glucose are ramped up to a
certain level before decreasing thereafter with further addi-
tion of these components. Similar trend persists in interaction

Bias Bias

     Lipid 
productivity

OutputHiddenInput

Glucose

 Yeast 
extract

Sodium 
 nitrate

Figure 3: Finalized neural network architecture (3-10-1) trained
via Levenberg-Marquardt algorithm for the estimation of lipid
productivity.

between NaNO
3
and glucose (Figure 4(b)) and also for

interaction between yeast extract and NaNO
3
(Figure 4(c)).

3.3. Comparison of Predictive Capacity between RSM and
ANN Models. The predicted responses computed via RSM
and ANN are presented in Table 5. Evaluation based on the
models’ coefficient of determination actually shows a satis-
factory convergence between the predicted and actual lipid
productivity values. Thus, both models can be considered to
perform well in data fitting and offered stable responses. Yet,
the 𝑅2 of ANN is closer to 1.0, indicating a higher predictive
ability and accuracy as compared to RSM. Furthermore, RSM
produced about 36.95% deviation in RMSE and about twice
the difference in MAE than the error functions calculated
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Figure 4: Response surfaces with regard to lipid productivity showing the interactions between (a) yeast extract with glucose, (b) NaNO
3

with glucose, and (c) NaNO
3
with yeast extract as modeled via neural network.

from ANN-based approach (RMSE = 4.176 and MAE =
2.256).

3.4. Optimization Employing Best Predicted Points of RSM and
ANN Models. In RSM, the finalized medium composition
was searched using the Design Expert optimization module
with the goal of achieving the maximum lipid productivity.
A single set of simulated solution was proposed comprising
of (g/L): glucose, 28.11; NaNO

3
, 5.09; and yeast extract, 1.20.

Highest lipid productivity was estimated at 169.20mg/L per
day with a desirability of 0.862. Alternatively, ANN calculates
the optimum composition by ways of “Rotation Inherit Opti-
mization” (RIO), an evolutionary algorithm much in-line
with Genetic Algorithm (GA) or Particle Swarm Algorithm
(PSA) albeit with faster convergence, and it dispenses with

customized parameters set by experimenter, with the sole
exception of population size. RIO was utilized to improve the
best point searches of the studied system. Population size was
set to 10. By 18000 iterations, themaximum lipid productivity
was predicted at 174.84mg/L per day. The resulting theoret-
ical composition consisted of (g/L): glucose, 24.05; NaNO

3
,

4.70; and yeast extract, 0.93. Validation set was carried out
and the results are compiled in Table 6. Formulation using
RSM (160.17mg/L per day) and ANN (173.11mg/L per day)
saw an increase of 1.76-fold and 1.90-fold of lipid productivity
compared to the previous nonstatistically optimized run, in
which W-30 medium was added with 30 g/L glucose.

The final results were observed to be insignificantly
different for the medium formulated using the two statistical
approaches. Nevertheless, it may still come as a surprise to
see that culture grown in medium with lesser concentrations
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Table 5: Predicted lipid productivity by RSM and ANN together with the residual error functions (𝑅2, RMSE, and MAE).

Run RSM predicted lipid productivity RSM absolute deviation ANN predicted lipid productivity ANN absolute deviation
1 37.150 5.430 31.715 0.005
2 56.735 2.595 59.333 0.003
3 53.952 4.848 58.750 0.050
4 60.632 2.088 62.719 0.001
5 57.594 2.736 60.333 0.003
6 61.140 0.030 61.473 0.303
7 61.356 2.224 63.583 0.003
8 53.997 8.263 62.356 0.096
9 74.311 0.251 74.063 0.002
10 82.909 6.509 74.961 1.439
11 58.749 2.371 61.760 0.640
12 65.189 9.189 54.854 1.146
13 39.258 0.078 35.486 3.694
14 49.187 6.747 43.021 0.581
15 169.466 6.696 171.234 8.664
16 169.466 3.954 171.234 1.986
17 169.466 7.914 171.234 5.946
18 169.466 11.156 171.234 13.124
19 169.466 7.154 171.234 5.186
RSMModel 𝑅2 = 0.985, ANN testing set 𝑅2 = 0.993.
RSMModel RMSE = 5.719, ANN testing set RMSE = 4.176.
RSMModel MAE = 4.750, ANN testing set MAE = 2.256.

Table 6: Validation results of medium compositions as suggested by RSM and ANNmodels.

Tetraselmis sp. FTC 209 cultivation
performance

Optimum points prediction W-30 mixotrophic Walne’s autotrophic
RSM ANN

Glucose (g/L) 28.11 24.05 30 —
Sodium Nitrate (g/L) 5.10 4.70 5.24 0.10
Yeast Extract (g/L) 1.20 0.93 — —
Predicted Prlipid (mg/L per day) 169.20 175.84 — —
Observed Prlipid (mg/L per day) 160.17 173.11 90.90 4.82
𝑋max (g/L) 11.86 12.38 8.10 0.830
𝑃max/𝑋max (mg/g dcw) 189.07 195.77 224.78 122.30

0 5 10 15 20 25 30 35 40

 Yeast 
extract
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Sodium 
 nitrate

Level of importance (%)

Figure 5: The level of importance of effective medium constituents
on lipid productivity.

of glucose, NaNO
3
, and yeast extract could provide higher

biomass and lipid productivity. This could be explained from
the standpoint that unlike any synthetic medium prepared
with distilled water, a workable concentration range of
medium constituents adopted in this study was actually

limited by the inherent physicochemical properties of full-
strength (undiluted) seawater itself. The major obstacle
would be to fully dissolve the nutrient components while
simultaneously maintaining a circum-neutral pH tolerable
to Tetraselmis survival. It was found that a too high con-
centration of yeast extract tends to lower the pH, and an
attempt of readjusting by alkaline buffer (0.5M NaOH)
may be tampered with the existing solutes equilibrium and
promote the constituents to form complexes with seawater,
resulting in precipitation. Elevated alkalinity increases the
supersaturation level of calcium ions in seawater and hence,
leads to formation of amorphous calcium carbonate. This
phenomenon would be enhanced either by the lack of
magnesium ions present in seawater, or if there was an
increased in iron (Fe3+), initiating the precipitation of calcite
or potentially forming the colloidal iron hydroxide [28].
Fe3+ is an abundant and naturally occurring element in
yeast extract (∼2% w/w). In addition, a very high concen-
tration of organic complex nutrient would obviously darken
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(a1) (a2) (a3)

(b1) (b2) (b3)
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Figure 6: Photomicrographs of 1000x (1) phase contrast, (2) fluorescence of Nile red stained microalga viewed under excitation filter of 355–
425 nm and emission filter of 470 nm, and (3) alternatively, excitation filter of 515–560 nm and emission filter of 590 nm of the 2-week old
cultures. Red color, chlorophyll autofluorescence; yellow-gold fluorescence (excitation: 355–425 nm) or bright yellow fluorescence (excitation:
515–560 nm), lipid bodies. Samples were cultivated using (a) Walne’s photoautotrophic medium, (b) W-30 + 30 g/L glucose, and (c) ANN-
based optimized medium.

the medium. This diminishes the photosynthesis ability of
microalga by impeding light penetration into deeper part
of liquid culture. Both factors were postulated to have a
deleterious effect on Tetraselmis growth.

3.5. The Importance of Medium Components. Figure 5 shows
the degrees of importance (expressed in term of percentage

of contribution) of the three medium constituents towards
influencing lipid productivity as determined byNeuralPower.
NaNO

3
is the most important factor at 37.10%, followed by

glucose at 34.06% and yeast extract at 28.84%. In general,
nitrate is a major N source that strongly impacted the
metabolism and growth of plant system. To assimilate
nitrate, microalgae cells need to transport the ion across
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the membrane and subsequently reduce it to ammonia. The
process is said to consume large amounts of energy, carbon,
and protons [9]. Glucose is nonetheless a good choice for
both carbon and energy sources for microalgae, since it
can be easily stored as starch without prior conversion to
glyceraldehyde phosphate (GAP) in Calvin’s cycle. Plus,
some part of it is readily oxidized throughout the glycolytic
pathway [3]. The cheap and easily available yeast extract on
the other hand was specifically chosen as it represents an
economically sound and sustainable alternative for amino
acids and vitamins sources.

Nile Red staining (Figure 6) has revealed the presence
of substantial lipid globules inside Tetraselmis cells fed with
glucose, in contrast with microalga grown under strict
photoautotrophic after two-week cultivation. Introduction
of organic carbon source and medium optimization had
therefore yielded cultures with oil content consistent with the
upper range reported for Tetraselmis species [2] in conjunc-
tion with rapid growth and higher biomass concentration. In
microalgae cell, starch and lipid biosynthesis are two compet-
ing pathways of reduced carbon storage sink, whereby starch
usually dominates over lipid under normal condition. Recent
metabolic study has suggested that the high production rate
of triacylglyceride (neutral lipid) would take place whenever
the carbon supply exceeds the cell’s capacity for starch
synthesis in algal system. Using Chlamydomonas reinhardtii
as model microalga, Fan et al. [29] have reported that feeding
acetate at several-fold the concentration of the standard
growth medium, a strategy termed as “mega-dosing,” would
max out the cellular starch production capacity to the point
that any additional carbonwould be channeled into high-gear
oil production. However, it should be noted that the substrate
should not exceed the growth inhibitory level of the particular
algal species. In essence, carbon precursor availability, as well
as the notion of N starvation, is now accepted as the key
metabolic factors controlling the partitioning of carbon into
lipid in mixotrophic cultivation.

4. Conclusions

This study has shown that statistical techniques such as
RSM and ANN could predict the Tetraselmis’ biomass and
intracellular lipid productivity. Though ANN may appear
to be superior in terms of accuracy over RSM, it is opined
here that both methodologies complemented each other in
interpreting the results, whether in pointing out synergistic
interactions among the input variables via ANOVA, or in
classifying the importance of each component. ANN is unre-
stricted to the order of themodel, and therefore, the approach
is more dynamic in simulating the true behavior of nonlinear
dataset. However, the typical downside of ANN requiring
large amounts of training data for pattern recognition was
circumvented through CCD initially devised for RSM. CCD
is known to be an efficient design-of-experiment method
with a hypercube geometry region, which is the best for
minimizing the number of runs while upholding statistical
significance. Addition of yeast extract into W-30 medium
composition significantly enhanced the algal growth to as

much as 12.38 g/L, but did not increase the proportion of lipid
bodies (195.77mg/g dcw) higher than themaximum reported
in the literature.
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