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Abstract

Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their
surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on
sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic
response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a
deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance
network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we
show that a combination of interlinked positive and negative feedback loops plays an important role in setting the
dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback
serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low
cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic
variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are
sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that
variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress
environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a
stressor.
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Introduction

Antimicrobial drug resistance has been studied extensively due

to its clinical importance. Traditionally, research has focused on

heritable genetic mechanisms, but transient mechanisms, where

only a subset of the population expresses resistance genes, are

beginning to receive attention for their role in the recalcitrance of

chronic infections [1]. Examples of transient resistance include

bacterial persistence, inducible expression of antibiotic efflux

pumps, and biofilm formation [1–3]. Although these mechanisms

can provide resistance or tolerance to a broad spectrum of

chemicals, they are often taxing to the cell, slowing growth or

utilizing resources [4,5]. Importantly, transient resistance can

occur within an isogenic population, where phenotypic variation

can provide diversity to hedge against catastrophic events due to

unpredictable fluctuations in the environment by insuring that

some fraction of the population is always in a resistant state [6–11].

MarA, the multiple antibiotic resistance activator, is a global

regulator of resistance genes. It is conserved across enteric bacteria

including Klebsiella, Salmonella, Escherichia, Enterobacter, and Shigella

species, but is best studied in Escherichia coli [12]. Bulk population

studies have shown that MarA plays an important role in

multidrug tolerance by inducing expression of over 40 genes

implicated in antibiotic resistance [13–19]. Examples include the

AcrAB multidrug efflux pump; micF, an antisense RNA that

represses expression of the outer membrane porin OmpF; SodA, a

manganese-containing superoxide dismutase; and the outer

membrane channel TolC [15,20,21].

Expression of MarA is inducible, providing increased resistance

in response to a sensed compound. As shown in Fig. 1A, marA is

arranged in an operon with two other genes: marR, the multiple

antibiotic resistance repressor and marB, which does not play a role

in regulation [14]. The marRAB operon is activated by monomeric

MarA, which binds to a single site upstream of the 235 site, and is

repressed by dimeric MarR (denoted MarR2), which binds to two

sites, one between the 210 and 235 sites and one downstream of

the transcriptional start site of the operon [14]. A variety of

chemicals including phenolic compounds, uncoupling agents,

redox-cycling compounds, and aromatic acid metabolites can

activate transcription of marRAB [12,22,23]. Of the known

inducers of marRAB, the weak aromatic acid salicylate is the best

studied and is known to bind directly to MarR [24,25]. Upon

addition of 5 mM salicylate, transcription of marRAB increases 21-

fold [19]. Not all genes in the mar regulon are activated by the

same MarA concentrations, suggesting that a graded response is

possible with less costly genes expressed first and more burden-
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some genes expressed only once high MarA levels are reached

[15,26].

The regulatory network controlling MarA consists of interlinked

positive and negative feedback loops (Fig. 1A). We asked what role

these opposing actions play in controlling the dynamics of MarA.

Recent studies have shown that interlinked positive and negative

feedback can produce a wide range of dynamic behaviors.

Examples include robust oscillations, bistability, monostability, or

stochastic pulsing [27–29]. Several synthetic oscillators have been

constructed using interlinked feedback [30–32] and it has also

been shown to be a common feature in many natural examples of

biological oscillators [28]. Stochastic pulsing is emerging as an

important feature in gene regulation, regulating competence,

sporulation, and stress response in Bacillus subtilis [33–36],

persistence in bacteria [37,38], calcium stress response and glucose

repression in Saccharomyces cerevisiae [39], and virulence factors in

bacteria [11,40–44]. More generally, phenotypic diversity within a

population has been shown to increase the net growth rate under

uncertain environments [6–11]. Although bulk population studies

have demonstrated that MarA expression can be induced by

inhibition of the negative feedback loop, we asked what role the

opposing interlinked loops play and how these effects are

manifested at the single-cell level.

To study this, we developed a stochastic model of the marRAB

network. Our findings suggest that the interlinking of positive and

negative feedback can produce stochastic pulses in MarA

expression when the system is uninduced. Induction with salicylate

leads to elevated levels of MarA and decreased variability. By

comparing the native network with a reduced noise variant

computationally, we show that stochastic pulsing can act as a bet

hedging mechanism to insure that some fraction of the population

is always expressing resistance genes. The combination of

stochastic pulsing and inducible non-noisy expression of MarA

can serve to tune the stochasticity of the system to hedge against

environmental uncertainty, while allowing for a deterministic

response when a stressor is sensed.

Results

Stochastic pulsing and noise control
We developed a stochastic model to study MarA expression

dynamics. In the model, protein production is the result of a series

of single random events [45], including reactions for transcription,

translation, and folding of MarA and MarR, dimerization of

MarR to MarR2, MarA and MarR2 association and dissociation

events at the marRAB promoter, MarR2 inhibition by salicylate,

and mRNA and protein degradation. Reaction rates and constants

were drawn from the literature using experimentally derived

values (Methods, Table S1) and simulations were conducted using

the Gillespie stochastic simulation algorithm [46].

We first asked how the dynamics of MarA expression change

with and without induction at the single-cell level. Bulk population

studies have shown that MarA expression can be induced [19,23],

however it is not clear whether these population-level results

obscure more complex dynamics in individual cells. Using a

stochastic computational model, we observed distinct pulses in

expression of MarA and MarR2 in the absence of induction

(Fig. 1B). The pulses are caused by brief periods when both MarR2

molecules dissociate from the marRAB promoter and MarA binds,

initiating expression of the marRAB genes. This is terminated when

one or two copies of MarR2 bind to the operator, shutting down

transcription, and resulting in a pulse in the expression of marRAB

Figure 1. The marRAB operon and stochastic modeling results. (A) Schematic representation of the marRAB operon encoding marR (R,
repressor) and marA (A, activator). MarA and two copies of the MarR2 dimer bind to the marRAB operator; salicylate and other aromatic compounds
allosterically inhibit repression by MarR2. (B) Stochastic simulations of the uninduced marRAB operon show stochastic pulses in MarA and MarR2

protein expression. Pulses correspond to times when promoter is in the active state, i.e. one MarA and no MarR2 molecules are bound to the marRAB
promoter. (C) Stochastic simulations of the marRAB operon induced with 5 mM salicylate. MarR2 levels shown in (B) and (C) include the dimeric form
of the protein both with and without salicylate bound. Note the difference in y-axis scale between the uninduced and induced simulations.
doi:10.1371/journal.pcbi.1003229.g001

Author Summary

Cells can sense their environment and respond to changes,
however the sudden appearance of a stressor can be
catastrophic if the time it takes to sense and initiate a
response is slow relative to the action of a stressor. A
possible solution is to couple a sensory response with a
stochastic, random approach. In the absence of stress, a
random subset of cells expresses resistance genes,
ensuring that if a stressor appears there will be some cells
that are able to survive and regenerate the population;
once stress is sensed all cells should respond by expressing
resistance genes. Such an approach is particularly advan-
tageous when resistance mechanisms are taxing to the cell
because it limits their expression when no stress is present.
We studied this phenomenon computationally using a
model of the multiple antibiotic resistance activator, MarA.
MarA controls over 40 resistance genes and can be
induced by many harmful compounds. We show that
when uninduced, the gene regulatory network controlling
MarA is capable of producing stochastic pulses that can
serve to hedge against sudden changes in the environ-
ment with minimal cost to the population. When induced,
MarA expression is elevated and has low variability to
ensure a uniform response.

Tunable Stochastic Pulsing in the mar Network
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genes. Stochastic pulsing has been shown experimentally for

several bacterial systems [6–11,33–38,40–44]. The phenomenon

observed here is consistent with data from other well-characterized

repressed systems such as the lactose [47], tryptophan [48], and

arabinose [49] operons, where a transcriptional burst occurs when

the repressor randomly dissociates from its binding sites.

In contrast to the uninduced system, our simulations show

elevated levels of MarA expression when induced, but lack the

pulsing behavior observed in the uninduced state (Fig. 1C). In the

presence of a harmful compound, constant, high MarA expression

would allow the cell to counteract the noxious effects of a stressor

without dipping into a state of low tolerance or rising into a regime

with unnecessary cost. When induced, the marRAB promoter

spends most of the time in an active state with MarA bound and

no MarR2 present, resulting in reduced noise and elevated

expression of MarA. To further clarify the mechanism behind the

pulsing behavior, we analyzed the corresponding deterministic

system, finding a single stable fixed point for all values of salicylate

(Fig. S1).

We hypothesized that the stochastic pulses in MarA observed in

the uninduced system were caused by the interlinked positive and

negative feedback loops that control expression of the marRAB

operon. To study the relationship between the feedback loops and

noise dynamics we compared four variations on the marRAB

operon model (Fig. 2A): (i) Wildtype, which includes the complete

operator with all binding sites intact; (ii) Only Positive, which

eliminates both MarR2 binding sites, leaving only the positive

feedback loop; (iii) Only Negative, which eliminates the MarA

binding site, leaving the negative feedback loop; and (iv) No

Feedback, which removes both feedback loops so that the marRAB

operon is constitutively expressed. To allow for a controlled

comparison between the four networks, we fixed the mean

expression of MarA such that it was the same for all networks

when the systems were uninduced.

Our findings show that stochastic pulsing is the result of the

interaction between the positive and negative feedback loops. We

tested the four network variants to quantify how the individual

loops influenced the dynamics of MarA (Fig. 2B). In the No

Feedback variant expression is constitutive and low levels of noise

come from small fluctuations in the birth and death of mRNA and

proteins. In the Only Positive case the random fluctuations in MarA

levels are amplified. Random increases in MarA lead to further

elevated levels of MarA due to positive feedback, while fluctuations

that decrease protein levels lower the probability of expression,

leading to slow fluctuations in MarA expression. In the Only

Negative variant we observe transcriptional bursting when both

MarR2 molecules dissociate from the promoter, but because the

system lacks positive feedback, bursts in expression are not

amplified. Finally, in the Wildtype variant transcriptional bursts

created by negative feedback are amplified by positive feedback,

since MarA levels increase faster than MarR2 levels [19] and the

presence of MarA decreases the apparent binding rate of MarR2

[16], likely due to steric hindrance [50]. Thus, stochastic pulsing is

caused by the combination of positive and negative feedback

loops, where the negative feedback loop produces pulses and the

positive feedback loop serves to amplify them.

To analyze the contributions of the two feedback loops in the

presence of increasing levels of the inducer salicylate, we measured

the coefficient of variation and noise strength of MarA for each

system (Figs. 2C and D). The coefficient of variation (CV) is the

standard deviation divided by the mean. It measures the relative

variation in the system, however decreases in CV can be the result

of either decreased noise or increased mean [7]. Therefore, we

also considered noise strength as a measure of variability. Noise

strength is defined as the variance divided by the mean (also

known as the Fano factor); higher noise strengths imply that the

variability is high relative to the mean, giving a sensitive measure

of noise [45]. As salicylate is added, mean MarA levels go up in the

Figure 2. Stochastic pulsing mediated by interlinked positive and negative feedback and tuned by inducer levels. (A) Schematic
representation of the four variants of the marRAB network studied. The Wildtype case has binding sites for MarA and MarR2, Only Positive eliminates
both binding sites for MarR2, Only Negative eliminates the MarA binding site, and No Feedback has constant, constitutive expression. (B) Stochastic
simulations of the four network variants. Noise amplification is observed in the Only Positive variant, transcriptional bursting appears in the Only
Negative case, and both characteristics are combined to create high-amplitude stochastic pulsing in the Wildtype network. (C) Coefficient of variation
(CV, std/mean) of MarA as a function of salicylate concentration. Constant noise is observed for the variants that do not respond to salicylate (Only
Positive and No Feedback). The salicylate-responsive variants (Wildtype and Only Negative) show a decrease in CV upon induction. (D) Noise strength
(var/mean) of MarA as a function of salicylate. Error bars in (C) and (D) show standard deviation across 100 replicates.
doi:10.1371/journal.pcbi.1003229.g002

Tunable Stochastic Pulsing in the mar Network
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variants with negative feedback (Fig. S2). For the systems without

negative feedback both CV and noise strength are independent of

salicylate concentration.

The combination of positive and negative feedback amplifies

noise in the absence of induction, while allowing for tunable noise

levels. Histograms of MarA expression for the four network

variants show that the Wildtype system produces a long-tailed

distribution of MarA, while none of the other networks show this

behavior (Fig. S3). This subpopulation of cells with high MarA

levels will induce resistance mechanisms, which can hedge against

the sudden appearance of a stressor. In the No Feedback and Only

Positive variants, both CV and noise strength are constant, with

positive feedback leading to higher noise (Figs. 2C and D).

Interestingly, in the Only Negative case, the CV level depends upon

induction, while noise strength does not. This is because salicylate

produces a reduction in active MarR2 levels, which is equivalent to

a reduction in the MarR2-promoter association constant kr. This

parameter is independent of noise strength for a wide range of

values in negative autoregulation [51]. The decrease in Wildtype

variability observed in Figs. 2C and D arises from a disruption of

stochastic pulsing and is not solely the result of an increase in

MarA levels as the system is induced.

Stability, noise, and feedback strength
We next asked if the Wildtype dissociation constants we derived

from the literature place the system in a favorable regime that

minimizes the cost of expressing burdensome resistance machinery

while maximizing the chance of survival in an uncertain

environment. To study this, we tested a range of association rates

for MarA and MarR2 promoter binding while keeping the

dissociation rate fixed and calculated both the cost of expressing

MarA and the noise strength of MarA.

MarA induces many genes within the mar regulon that provide

resistance to stressors, but expression of these genes is taxing to the

cell [4,5,15]. We calculated the cost of MarA expression by using

the experimentally-derived function from [5], which gives cost as a

function of salicylate. We related salicylate levels from this function

to MarA expression directly by using data from previously

published studies [5,12] (Fig. S4, Text S1). Increased positive

feedback and decreased negative feedback strengths, given by

association rates ka and kr, produce higher levels of MarA, which

result in a higher cost. By this metric, the Wildtype network is in a

very low cost regime (Fig. 3A).

We also calculated the noise strength as a function of the

association rates, showing that a region of high noise strength

exists when the association rates of the activator and repressor are

balanced (Fig. 3B). The nominal feedback strengths of the Wildtype

system place the system on a plateau of high noise strength,

guaranteeing stochastic pulsing and relative insensitivity to

feedback strength. The curvature of the elevated noise strength

regime is due to the nonlinear nature of the interactions between

the binding of MarA and MarR2 to the promoter. The high noise

strengths observed when the MarR2–promoter association rate kr

is low are the result of very slow fluctuations in MarA and MarR2

that keep the system far from the mean. The Wildtype system is in a

region with low cost and high noise strength. This combination of

conditions enables the creation of MarA pulses, which can trigger

the induction of antibiotic resistance genes without undue burden

to the population.

Parametric sensitivity analysis
To study the robustness of our results, we conducted a

sensitivity analysis for all model parameters to ensure that our

findings were not specific to a particular set of values. For

equivalent systems with 2-fold increases and decreases relative

to the wildtype parameters, we calculated the number of MarA

pulses and the noise strength of MarA and compared them to

the results observed in the original system (Fig. S5). In all cases,

results mirrored those from the original system with pulses in

MarA observed with 0 mM salicylate but not with 5 mM

salicylate. Additionally, we calculated the noise strength for

MarA, which showed similar results: noise strength is higher in

the absence of salicylate. The sensitivity analysis provides insight

into the model parameters that have the largest impact on

pulsing dynamics. When the transcription, translation, or

degradation rates are modified, the number of pulses and the

noise strength are correlated with MarA levels. In other words,

when MarA levels go up due to changes in these parameters,

MarA pulse numbers and noise strength increase; decreases

result when the protein levels go down.

Figure 3. Positive and negative feedback strengths place the system in a low cost, high noise regime. (A) Cost of MarA expression as a
function of the activator and repressor association rates, ka and kr. (B) Noise strength (var/mean) as a function of ka and kr. White circles in (A) and (B)
show the nominal Wildtype system parameters. Data show mean values of five replicates.
doi:10.1371/journal.pcbi.1003229.g003
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Noise in time-varying stress environments
Antibiotics and other harmful compounds are ubiquitous in the

environments where bacteria grow, however their appearance is

often non-constant and time varying. Such dynamic stress profiles

have forced prokaryotes to develop mechanisms to protect

themselves, including expression of pumps, superoxide dismutases,

and other enzymes [52–54]. Cells can take several approaches

when expressing resistance genes. First, they could always express

the resistance genes ensuring that they will be prepared for the

sudden appearance of a stressor, but the downside of this approach

is that expression can be burdensome. Alternatively, cells could

induce resistance genes in response to a sensed stressor. Finally,

individual cells within a population could stochastically express

resistance genes such that at any given time some cells in the

population would be in a resistant state. Bulk population studies

have demonstrated that expression of MarA and subsequent

resistance is inducible. Here, we have shown computationally that

in addition to this inducible resistance, expression of MarA can

exhibit stochastic pulses when uninduced. We asked what benefit

the combination of stochastic pulsing and inducible resistance

provides to cells.

For inducible resistance mechanisms, a system must respond to

a sensed signal and turn on expression of resistance genes, thus,

there is a delay between the time when a stressor appears and

when the response in mounted. Following induction with

salicylate, maximal transcription of marRAB is observed after

30 minutes [55]. MarA must activate downstream genes, further

delaying appearance of the resistance phenotype, as demonstrated

in experiments with the MarA homolog SoxS [56]. Because

expression of resistance mechanisms is not instantaneous with an

inducible system, the system is vulnerable to the sudden

appearance of a stressor. Stochasticity in expression of MarA in

the uninduced state would allow for some fraction of cells to

always be in an elevated state of resistance, ready to counter the

unexpected appearance of a stressor.

We hypothesized that tunable variability would increase

survival in a time-varying stress environment. To test this, we

implemented a stochastic competitive growth assay to compare the

fitness of the Wildtype network to a new variant with reduced noise

(Reduced Noise). Competition assays can be used to discriminate

between genotypes in order to identify those that achieve higher

population fitness [57–59]. We developed a stochastic competition

assay by using a modified evolutionary algorithm: cells are first

initialized with equal representation of each of the alternative

networks, simulation are performed, the cost for each cell is

calculated, and cells with poorly performing phenotypes are

replaced by top performers (Methods). To allow for a controlled

comparison between the networks, we required that the Reduced

Noise network have the same mean MarA and MarR2 expression

as Wildtype for all salicylate levels and the same response time after

induction with salicylate when simulations are started from the

same state (Fig. S6), satisfying the equivalence requirements from

[60]. The Reduced Noise network exhibits less variability than the

Wildtype system, as shown in Fig. S6, due to a reduction in the

MarR2 inhibition constants and independent binding by MarA

and MarR2 at the promoter (Methods). Therefore, the time scale

and mean levels of the induced response are identical for both

variants, while the stochastic response is attenuated in the Reduced

Noise variant.

We found that the optimal strategy for surviving antibiotic stress

depends on the frequency with which the stressor appears. We first

varied the probability of antibiotic addition in a time-varying stress

profile (Fig. 4A). The Wildtype network outperforms the Reduced

Noise network with large improvements coming when fluctuations

in antibiotic levels jump from off to high in a short period of time.

When high antibiotic levels are preceded by a period of low or

moderate antibiotics, the Reduced Noise network is at a slight

advantage because the resistance genes are already induced for

both variants and the variability is lower in the Reduced Noise case.

Fig. 4B summarizes the average response of the two networks as a

function of the probability of antibiotic addition. For time-varying

stress profiles we found that phenotypic variability allows cells with

the Wildtype network to outperform the Reduced Noise variant since

they are able to survive sudden, large increases in antibiotic

concentration.

In contrast, we found that when we competed the Wildtype and

Reduced Noise variants in a constant environment the Reduced Noise

variant outperformed the Wildtype system (Fig. 4C). In a constant

environment there is no advantage to having variability in MarA

and rises and dips will send the system into states that are more

costly or less fit. Findings from the constant environment

demonstrate that the results shown in Fig. 4B are not the result

of a systematic bias in favor of the Wildtype variant. Instead, we

find that the Wildtype variant outperforms the Reduced Noise system

only in fluctuating, non-constant stress environments, suggesting

that variability can be helpful under certain dynamic stress

profiles.

Results from the competition simulations with time-varying

stress show that variability in MarA is important for surviving the

sudden appearance of antibiotics. We asked whether stochastic

pulses in MarA expression could be used as a bet hedging strategy

by a population of cells. To test this we simulated cells for an

initialization period in the absence of antibiotics and then

introduced a single pulse of antibiotic, quantifying the fraction of

the population that was able to survive (Fig. 4D). As the magnitude

of the antibiotic pulse increases, the fraction of cells that survived

decreases. However, the survival percentages depend upon how

MarA expression is controlled. When antibiotic pulses are of high

magnitude, the Wildtype populations have some cells that are in a

high MarA state and are able to survive the treatment. Low

amplitude pulses favor the Reduced Noise system because at any

given time more cells are in a resistant state than with the Wildtype

network where a larger range of MarA levels are sampled. Those

cells in a low MarA state do not have enough time to mount a

response when the appearance of antibiotics is sudden. Conse-

quently, stochastic pulses help populations of cells to insure against

the sudden appearance of an antibiotic where sensing-based

mechanisms would be too slow to respond.

Discussion

The analysis presented here reveals how the combination of

stochastic gene expression with inducible tolerance can serve to

increase population-level survival in dynamic, time-varying stress

environments. We consider the regulatory network controlling

expression of the multiple antibiotic resistance activator MarA,

which regulates many downstream genes that confer tolerance to

antibiotics and other inhibitors. Previous studies have shown that

expression of MarA can be induced by compounds like salicylate

or through mutations that eliminate transcriptional repression of

the marRAB operon [19,61]. However, the regulatory topology that

controls expression of marRAB consists of a pair of interlinked

positive and negative feedback loops, begging the question what

role this additional regulatory structure provides, given that simple

negative feedback would be sufficient to allow for inducible

expression of MarA. Using a stochastic mathematical model, we

studied the role of the feedback loops both separately and in

combination. Our findings suggest that the negative feedback loop

Tunable Stochastic Pulsing in the mar Network
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alone can produce inducible expression of MarA that exhibits low

amplitude variability when both MarR2 molecules unbind from

the promoter. Positive feedback serves to amplify this effect,

creating stochastic pulses in MarA. Furthermore, we find that the

nominal system parameters derived from the literature place the

marRAB network in a regime with high variability and low cost.

Thus, individual cells exhibit noisy MarA expression without an

undue burden from expression of taxing resistance mechanisms.

Phenotypic heterogeneity in isogenic populations can provide a

strategy for survival in uncertain environments. Our modeling

results predict that MarA expression exhibits stochastic pulsing

when uninduced. This variability, as measured using the

coefficient of variation and noise strength, decreases as the system

is induced. In the induced state there is little need for variability

and it may be detrimental, causing some cells to move into a

regime with low stress tolerance or unnecessary cost. Controlling

for the mean levels of MarA expression and the timing of

induction, we compared the fitness of two similar marRAB

regulatory networks with differing levels of noise. We found that

under constant conditions, it is disadvantageous to have variable

MarA expression; in contrast, when stress profiles are dynamic,

increased variability places a fraction of the population in a state

that can tolerate the sudden appearance of a stressor such as an

antibiotic.

There are several possible extensions to the findings presented

here. For example, the cost of expressing MarA when the system is

induced has an impact on the growth rate. Previous studies have

shown that this affects processes such as protein dilution,

transcription, and gene dosage [62,63], all of which will have an

impact on the system dynamics by introducing an additional

indirect source of feedback. Other significant sources of feedback

may also arise from changes in the nutrient environment or in

expression of the proteolytic degradation machinery. Empirical

growth laws, such as those presented in [62,63], could be used to

extend the model to account for these growth rate effects. In

addition, it would be interesting to include the contributions of

MarA homologs SoxS and Rob in our model to examine how

crosstalk between the regulators affects the dynamics of MarA

[14,64]. Future studies to test our modeling predictions in vivo, are

also of immediate interest. For example, a reporter for MarA could

be used to measure the dynamics of expression at the single-cell

level. These results could be compared to a synthetic gene network

that exhibits external equivalence to the wildtype system, such as a

network with only negative feedback that has the same dynamic

range and induced MarA levels.

Populations of isogenic cells can exhibit phenotypic heteroge-

neity through a variety of dynamic processes. In our model of the

marRAB network we observe stochastic pulsing without induction,

but decreased variability after expression of MarA is induced.

Allowing for tunable stochasticity can provide a flexible approach

to stress tolerance. This strategy of integrating dynamic behaviors

may prove to be a general mechanism for hedging against

Figure 4. Stochastic pulsing acts as a bet hedging strategy. (A) Competitive growth simulation with Wildtype and Reduced Noise network
variants. Gray bars show the antibiotic stress profile as a function of time, with heights indicating the antibiotic concentration. Antibiotic is introduced
randomly with a probability of 0.5. In other words, there is a 50% chance of the antibiotic being introduced. Note that the Wildtype network is at an
advantage when concentrations of antibiotic jump from off to high in a short time span. (B) Final proportion of Wildtype and Reduced Noise cells as a
function of the probability of antibiotic exposure in a fluctuating environment. (C) Final proportion of Wildtype and Reduced Noise cells as a function
of antibiotic concentration in a constant environment. Error bars show standard deviation over three runs. (D) Proportion of surviving cells after a
pulse of antibiotic. Simulations are of 10,000 cells. Error bars show standard deviation over five runs.
doi:10.1371/journal.pcbi.1003229.g004
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environmental uncertainty while allowing for well-defined sensory

mechanisms that behave in a deterministic fashion.

Methods

Mathematical model
An exact, stochastic model was implemented using the Gillespie

algorithm [46] and custom analysis code. Models are based on the

processes described below, where the reaction rates and param-

eters are detailed and referenced in Text S1 and Table S1. The

model treats cell growth and division implicitly unless otherwise

noted, however results are similar when cell growth and division

are explicitly modeled (Text S1, Fig. S7).

Promoter dynamics. Binding and unbinding of MarA and

MarR2 to the marRAB promoter are modeled using:

P00zA
ka

k{a

P10

P01zA
ka=b

k{a

P11

P02zA
ka=b0

k{a

P12

P00zR2

2:kr

k{r

P01

P01zR2

kr

2:k{r

P02

P10zR2

2:kr=a

k{r

P11

P11zR2

kr=a0

2:k{r

P12

where Pij represents the state of the promoter region, with i M {0,

1} with A (MarA) molecules bound and j M {0, 1, 2} with R2

(MarR2) molecules bound.

The association and dissociation rates take into consideration

the number of binding sites and the competition in the binding

between MarA and MarR2 (a, a9, b, and b9). Further details are

provided in Text S1.

Transcription, translation, protein folding and MarR2

dimerization.

P00

a00
P00zMzRuf zAuf

P01

a01
P01zMzRuf zAuf

P10

a10
P10zMzRuf zAuf

P11

a11
P11zMzRuf zAuf

P12

a12
P12zMzRuf zAuf

P02

a02
P02zMzRuf zAuf

M
br

MzRuf

M
ba

MzAuf

Auf

kfa
A

Ruf

kfr
R

2|R
kdr

k{dr

R2

where M is mRNA, the subscript uf stands for the unfolded form of

the protein, and R and R2 are the monomeric and dimeric forms

of MarR.

Translation in bacteria occurs concurrently with transcription

[65]. The model includes chemical reactions that couple

transcription and translation to account for this. MarA promoter

binding produces a fixed increase in the transcription rate, while

MarR2 binding is assumed to dramatically decrease the transcrip-

tion rate. MarR2 has very low translation efficiency relative to

MarA [19]. MarA and MarR2 folding rates, kfa and kfr, are

assumed to be fast as a result of their small molecular weights (129

and 144 aa) [66] and the coupling of this process with translation

in vivo [65]. MarR dimerization is also modeled. Further details are

provided in Text S1.

Degradation.

M
lM

0

Auf

lauf
0

A
la

0

Ruf

lruf
0

Tunable Stochastic Pulsing in the mar Network

PLOS Computational Biology | www.ploscompbiol.org 7 September 2013 | Volume 9 | Issue 9 | e1003229



R
lr

0

R2
lr

0

The mRNA transcript degradation rate, lM, is constant, giving

rise to an exponential decay. Similarly, protein degradation rates,

la and lr, are fixed; the unfolded molecules are assumed to be

degraded at the same rate as MarR and MarR2, however, since

unfolded protein levels are low, changes to this parameter have

little effect on the results. Because the dissociation rates for MarA

and MarR2 are higher than the degradation rates (Table S1), we

neglect protein degradation when the proteins are bound to the

promoter.

Salicylate inhibition of MarR2. Since extracellular salicy-

late concentrations are 105–106 times higher than MarR2

concentrations, with typical values in our simulations varying

from 1–25 nM for MarR2 (650–16,000 molecules/cell) and 0–

10 mM for salicylate, the intracellular salicylate concentration is

assumed to be several orders of magnitude greater than MarR2

and the reaction R2zSal
kSal

k{sal

R2
:Sal is modeled as the pseudo-

first-order chemical reaction:

R2

½Sal�:kSal

k{sal

R2
:Sal

The two constants, ksal and k2sal, were fit using experimental

data from previous studies [5,12] (Fig. S4). Given the low number

of monomeric molecules, binding of salicylate with MarR was

neglected.

Feedback variants and feedback strength
Four alternative feedback combinations were created. To allow

for a controlled comparison, we fixed the mean expression of

MarA such that it was the same for all networks when the systems

were uninduced (0 mM salicylate). This was achieved by

modifying the transcription rate and MarA degradation rates,

maintaining the parameters in realistic ranges. Specifically, the

differences between the four alternatives are: (i) Wildtype: The

operator region contains two identical binding sites for MarR2 and

one for MarA. A total of six promoter states are modeled with

distinct association and dissociation rates (see promoter dynamics

above). (ii) Only Positive: Both binding sites for MarR2 are

eliminated (kr = 0). Thus, only the promoter states P00 and P10

are included in this model. (iii) Only Negative: The binding site for

MarA is eliminated (ka = 0). The promoter states P00, P01, and P02

remain. (iv) No Feedback: The system has basal, constitutive

expression (kr and ka = 0). P00 is the only promoter state available.

Details on parameters are given in Text S1.

Heat maps of cost and noise strength
For all heat maps, the positive feedback loop strength and the

negative feedback loop strength were systematically varied by

modifying ka and kr in a range wide enough to include slow and

fast transitions between promoter states. For each point, we

calculated the noise strength and cost, using the average of six

independent replicates.

The cost and noise strength were calculated based on MarA

levels, using data generated after the initial system transients. The

cost was calculated by using the function from [5] (given by MCost

below), calculating equivalent salicylate to MarA levels using data

from the Hill function in Fig. S4.

Number of MarA pulses
To calculate the number of pulses in MarA, we used the

following heuristic: a pulse was defined as a period when MarA

levels exceeded 2/3 of the 90th percentile of the number of

molecules for at least 20 minutes. Pulses separated by less than

15 minutes were combined into a single pulse.

Reduced noise variant
We created a variant with the same MarA expression for all

salicylate concentration, but which had reduced noise compared to

the Wildtype network. To achieve this, the inhibition constants,

cInh1 and cInh2, were decreased, causing higher minimum MarR2

levels, increasing the probability of binding to the promoter and

stopping the pulse at an earlier stage. In contrast to the Wildtype

model, independent binding by MarA and MarR2 at the promoter

is modeled, allowing MarR2 to bind easily when MarA is bound to

the promoter. The parameters modified for this variant are

detailed in Table S3.

Stochastic competitive growth assay
To compare the two variants (Wildtype and Reduced Noise) in a

head-to-head fashion, we simulated a competitive growth envi-

ronment in the presence and absence of antibiotics. The following

procedure was used to model competitive growth:

Step 1. Allow cells to grow without competition for an

initialization period. Step 2: Simulate all individual cells for a

fixed time, given an identical antibiotic time course. Step 3:

Calculate the cost using the MarA levels for the cell. The cost of

growing for the cell is the sum of the cost of expressing the

resistance machinery, measured as a function of salicylate, and the

cost of growing with the antibiotic, minus their product (Bliss

independence is assumed [5]). The effective concentration of the

antibiotic is inversely related to the concentration of salicylate [5].

For our experiments we used an compound that has the same cost

for the cell as tetracycline and induces MarA with the same

strength as salicylate, where both relations are defined in [5]. Cells

with costs above a threshold are determined to be dead and

eliminated from the competition. Competitive growth results are

not sensitive to the exact value of this threshold. Step 4: Calculate,

for each cell, the number of replications and replace under-

performing cells with those that are growing well. Here, we take

into account cell growth and division such that cells with lower

costs are more prevalent than those with high costs. The number

of daughter cells for each variant is obtained and the ratio between

variants is calculated. This ratio is used to set the proportion

between variants in the new population. In other words, dead and

underperforming cells are replaced by healthy cells such that the

new proportion between populations is the same as the proportion

between the growth of the old populations. This allows us to

maintain a constant number of cells, while at the same time

representing the growth of the total population. This process is

then repeated by returning to Step 2 until a variant overtakes the

population or a predetermined maximum number of rounds is

reached. Further details are provided in Text S1.

Three competitive growth simulations were performed: (1)

Growth in a fluctuating environment: After the initialization

period, an antibiotic profile is selected randomly. At each round,

the antibiotic was either ‘‘on’’ or ‘‘off’’, with the probability of
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antibiotic being present equal to 0, 0.25, 0.5, 0.75, or 1 for different

simulations. A round corresponds to 540 min in the absence of

antibiotic and 75 minutes in its presence. If the antibiotic was ‘‘on’’,

concentrations were selected randomly using an exponential

distribution with a mean of 3 mM and maximum concentration

of 4.5 mM. (2) Growth in a constant environment: The antibiotic

concentration was kept fixed for both the initialization period and

the competition simulations. (3) Fraction of surviving cells after a

pulse of antibiotic: Only Steps 1, 2, and 3 of the algorithm described

above are performed. After an initialization period in the absence of

antibiotic, a pulse of antibiotic is introduced. The number of

surviving cells, as measured by calculating those with cost of MarA

and antibiotic to be below the predetermined threshold, are

calculated for each simulation. Further details on the growth assay

simulations are given in Text S1.

Cost of growing with MarA
The cost of growing with salicylate is defined in [5] as:

MCost~Machinery cost~
Sal½ �

Sal½ �zKi
, where Ki~6mM:

From the Hill function shown in Fig. S4 we obtain a relationship

between MarA and salicylate concentration. Organizing the terms

and assuming a maximum MarA concentration of 10,000

molecules/cell we find:

Sal½ �~ 1:087

1:208: 10000
MarA

� �
{1

� � 1=0:815ð ÞmM

These two equations are combined to obtain the machinery cost.

Cost of growing in the presence of antibiotics
Expression of the mar regulon genes provides antibiotic

resistance, an effect that can be modeled as a reduction of the

intracellular concentration of antibiotic:

Intracellular antibiotic½ �~ Extracellular antibiotic½ �
1zB Salð Þ

where B(Sal) is defined as in [5]:

B Salð Þ~bmax
Sal½ �

Ksalz Sal½ � , with Ksal~0:8mM and bmax~6mM:

The cost of growing in the presence of antibiotic is modeled as

in [5]:

ACost~Antibiotic cost~
Intracellular antibiotic½ �n

Intracellular antibiotic½ �nzKn
tet

,

with n~1:9 and Ktet~0:41:

In our computations, a compound with the same cost function

as tetracycline was used. This function is similar for chloram-

phenicol, with n = 1.97 and Kc = Ktet [5].

Total cost
The total cost is assumed to be Bliss independent, as described

in [5]:

Total cost~ACostzMCost{ACost:MCost

Supporting Information

Figure S1 Stability analysis from the deterministic model. (A)

Nullclines showing dMarA/dt = 0 and dMarR2/dt = 0 for 0, 1,

2.5, and 5 mM salicylate. (B) Stability of the equilibrium point at

0 mM salicylate and (C) 5 mM salicylate as a function of feedback

loop strengths. Note that the equilibrium point is stable for all

values of ka and kr shown.

(EPS)

Figure S2 Mean MarA levels as a function of salicylate

concentration for the four feedback variants. The Only Positive

and No Feedback systems are not responsive to salicylate as they lack

negative feedback and their lines fall on top of each other. The

Wildtype and Only Negative systems are responsive to salicylate and

their lines coincide. Error bars show standard deviation over 100

simulations.

(EPS)

Figure S3 MarA histograms for the four feedback variants and

the Reduced Noise network.

(EPS)

Figure S4 MarA as a function of salicylate concentration.

Experimental data from [5,12] were used to tune the salicylate

inhibition rate in the model and data were fit to a Hill function, as

shown. The Hill function shown follows the equation:

Normalized MarA~
1:208

1z 1:087
Sal½ �

� �0:815
molecules=cell

.

(EPS)

Figure S5 Parametric sensitivity analysis. For each parameter,

simulations were run with that parameter at 1/2 the nominal value

or 2 times the nominal value, with 0 and 5 mM salicylate. (A)

Number of MarA pulses in 3000 minute simulations and the (B)

noise strength of MarA. Sensitivity analysis for ‘‘kr and k-r’’and ‘‘ka

and k-a’’ vary both parameters together, such that their ratio

remains constant. Error bars shown standard deviation over 5

simulations in (A) and 50 simulations in (B).

(EPS)

Figure S6 Stochastic simulations of the (A) uninduced Wildtype

network and (B) uninduced Reduced Noise network. (C) MarA mean

levels as a function of salicylate for the two networks. (D)

Coefficient of variation and (E) noise strength of MarA for the two

networks. Note the decrease in CV and noise strength for the

Reduced Noise network relative to Wildtype. Error bars in (C)–(E)

show standard deviation over 100 simulations.

(EPS)

Figure S7 Explicit cell growth and division model. (A) Number

of proteins. The sharp drops correspond to cell division events. (B)

Protein concentration given by number of proteins normalized by

cell volume. Simulations show the Wildtype network with 0 mM

salicylate.

(EPS)

Table S1 Model parameters.

(PDF)
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Table S2 Modified parameters for the four feedback variants.

(PDF)

Table S3 Modified parameters for Wildtype and Reduced Noise

networks.

(PDF)

Text S1 Supplementary information.

(PDF)
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