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Abstract

Curation and interpretation of copy number variants identified by genome-wide testing is challenged by the large number
of events harbored in each personal genome. Conventional determination of phenotypic relevance relies on patterns of
higher frequency in affected individuals versus controls; however, an increasing amount of ascertained variation is rare or
private to clans. Consequently, frequency data have less utility to resolve pathogenic from benign. One solution is disease-
specific algorithms that leverage gene knowledge together with variant frequency to aid prioritization. We used large-scale
resources including Gene Ontology, protein-protein interactions and other annotation systems together with a broad set of
83 genes with known associations to epilepsy to construct a pathogenicity score for the phenotype. We evaluated the score
for all annotated human genes and applied Bayesian methods to combine the derived pathogenicity score with frequency
information from our diagnostic laboratory. Analysis determined Bayes factors and posterior distributions for each gene. We
applied our method to subjects with abnormal chromosomal microarray results and confirmed epilepsy diagnoses gathered
by electronic medical record review. Genes deleted in our subjects with epilepsy had significantly higher pathogenicity
scores and Bayes factors compared to subjects referred for non-neurologic indications. We also applied our scores to
identify a recently validated epilepsy gene in a complex genomic region and to reveal candidate genes for epilepsy. We
propose a potential use in clinical decision support for our results in the context of genome-wide screening. Our approach
demonstrates the utility of integrative data in medical genomics.
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Introduction

Interpretation of high-resolution array comparative genomic

hybridization (aCGH) data is made challenging by the large

number of copy number variation (CNV) events identified in each

individual. Analogous problems arise in interpretation of deep

sequencing data where the number of variants rapidly outstrips the

capacity for manual curation. Moreover, because of the recent

expansion of human populations, most variation in an individual

genome is rare and restricted among family lineages, making

distinction between rare and pathogenic variation difficult [1].

Given the scale of variation and the challenge of profile

interpretation, a number of groups have developed and utilized

computational and machine learning tools to prioritize genetic

data [2,3]. Huang and colleagues analyzed the characteristics of a

group of genes and their protein products known to cause

phenotypes in the haploinsufficient state and compared them to

those that were repeatedly deleted in a control population of

apparently healthy individuals (i.e. those haplosufficient) [4]. The

differences between these groups of genes were used to develop a

general quantitative model to predict whether a gene deletion is

likely to be deleterious. While there is broad applicability to such a

prioritization scheme, it provides little guidance to help a clinician

determine whether a given deletion has a role in a specific

phenotype in an individual patient. Other studies assigned genes to

networks based upon particular disease phenotypes, and while

useful for directing further studies, these approaches did not

attempt to quantify the likelihood of a gene’s appropriate

assignment to a given disease trait or its propensity for actually

contributing to disease [5–7]. Other researchers have developed a

computational model that takes into account genomic structure

and functional elements to predict whether a given CNV is

associated with intellectual disability (ID) [8]. This algorithm

represents an excellent tool, however, it does not specifically
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predict or rank which gene(s) within the CNV are most dosage-

sensitive or likely to be relevant to the phenotype. Such specific

predictions are necessary to inform clinical interpretation and to

aid the development of disease-centered diagnostics. Moreover,

none of these tools use comparative variant frequency information

between affected phenotypes in a large database to inform the

scoring and prioritization schemes.

Epilepsy is a common neurological disorder for which improved

computational tools could be extremely beneficial. With over 50

million individuals affected, the prevalence of epilepsy ranges from

0.2 to 2% depending on the population studied [9]. In the United

States, the overall prevalence is approximately 0.5%, with a

disproportionate number of cases in infants, children, and the

elderly [10]. The epilepsies are currently grouped into genetic,

structural/metabolic, or unknown etiologies [11]. To date, only a

fraction of patients with suspected genetic forms of epilepsy have

an etiological diagnosis, meaning accurate recurrence risk,

prognosis, and disease-specific surveillance and treatment infor-

mation are rarely available. The lack of specific diagnoses is at

least partly due to the complex inheritance, variable expressivity,

and incomplete penetrance of many forms of epilepsy; although

some examples of Mendelian segregation are recognized [12].

The role of CNVs in common neurological diseases has become

increasingly clear, and there are well-studied CNVs that cause

isolated or syndromic disorders including ID [13], autism

spectrum disorders (ASDs) [14,15], and schizophrenia [16–18].

Although each CNV itself is rare among individuals with a given

disease, when considered as a group, structural variation of the

genome is a common cause of such phenotypes. A number of well-

described syndromic disorders with epilepsy are caused by CNVs,

including chromosome 1p36 deletion syndrome, Angelman

syndrome, and MECP2 duplication syndrome. A number of

studies testing large cohorts of individuals have demonstrated that

various CNVs are associated with a wide range of epilepsy

phenotypes including non-syndromic idiopathic epilepsy [19–22].

We hypothesized that information about individual

genes gleaned from large-scale knowledge sources could be

integrated into an epilepsy-specific pathogenicity score. We further

hypothesized that these scores could be combined with frequency

information of gene disruption among individuals with epilepsy to

prioritize candidate genes and interpret variants identified in

personal genomes. We used a fixed set of training genes previously

published as variant in Mendelian epilepsies to determine training

patterns for epilepsy genes in these high dimensional data types

and subsequently developed a score matching the training set for

each available gene in each knowledge source. To utilize variant

frequency information together with our pathogenicity scores, we

took advantage of a Bayesian approach in which the gene

pathogenicity scores were used to develop informative prior

probabilities for the expected increase in the frequency of variants

in an epilepsy population as compared to non-neurologic controls.

This statistical analysis determined Bayes factors as further scores

we used to rank and prioritize genes.

We then applied these gene-level scores to characterize CNVs

harbored by individuals in a well-defined cohort of subjects with

epilepsy identified by electronic medical record (EMR) review, and

used this analysis of CNVs to assess our pathogenicity score. We

also evaluated the Bayes factors comparing the results of our

epilepsy cohort to a matched cohort with non-neurologic

indications, and used this method to explore a possible role of

multiple genes disrupted within the genome of a single individual

with epilepsy. Finally, we examined the possible utility of our

scheme as a clinical decision support tool for patients undergoing

genome-wide testing.

Results

Principles of variant prioritization
Genes involved in the same disease are often similarly annotated

in knowledge databases, are expressed in similar tissues or have

gene products that physically interact [2]. We hypothesized that

genes involved in epilepsy would show such characteristics.

Indeed, analysis of a set of 83 genes with known epilepsy

associations reveals that epilepsy genes form highly connected

networks in multiple datasets (Figure 1). Thus, we concluded that

it would be reasonable to interrogate these knowledge sources to

identify as-of-yet unknown genes associated with the phenotype by

correlating the features of the training genes with those of all other

RefSeq genes. To improve our prioritization, we sought to include

information about how often a given gene was mutated among

individuals with epilepsy compared with a background population

(Figure 2). These complementary strategies and their integration

are described below.

Epilepsy pathogenicity score
We hypothesized that a bioinformatic approach could consol-

idate information from multiple biological fields into an integrated

score of pathogenicity on a genome-wide scale. To this end, we

validated six ‘‘features’’ (see methods) using biological information

from large-scale knowledge sources and comparing known

epilepsy genes, including 20 recognized as causative by the

International League Against Epilepsy [23] (Table S1), to all

annotated RefSeq genes. We considered Gene Ontology (GO) and

Mouse Genome Informatics (MGI) phenotype annotation, pro-

tein-protein interaction (PPI) data, human tissue expression

patterns, micro RNA (miRNA) targeting, and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway data to

develop an omnibus epilepsy pathogenicity score to predict

whether loss of function of a given gene might be relevant to the

phenotype. To determine the efficacy of our scoring mechanism in

an unbiased way, we cross-validated our approach. We removed

each of the training genes and recalculated genome-wide

Author Summary

Improvements in sequencing and microarray technologies
have increased the resolution and scope of genetic testing.
As a result, millions of variations are identified in each
personal genome of unrelated individuals. In the context
of testing for genetic diseases, identifying the variant or
variants contributing to illness among such a large number
of candidates is difficult. Conventional studies to identify
causative variants have relied on patterns of higher
frequency in affected patients compared with individuals
that are well. However, it is often the rarest variations that
cause human disease, making frequency information alone
less useful. Many groups have turned to computational
analysis to aid in interpretation of genetic variants.
Epilepsy is a disease where such tools would be useful,
as only a fraction of patients with suspected genetic
epilepsy have a specific genetic diagnosis. To help improve
variant interpretation in epilepsy, we used computational
analysis to combine knowledge about genes from large
cloud information sources with mutation frequency from
our diagnostic laboratory to score all genes as to how
likely they are to be associated with epilepsy. We use these
scores to identify possible candidate genes in epilepsy,
and explore other downstream applications.

Knowledge Fusion Prioritizes CNVs in Epilepsy
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pathogenicity scores based on the remaining training genes; we

then evaluated the procedure on the gene excluded from training.

The composite result is presented in Figure S1. The cross-

validation demonstrates that individual feature scores as well as the

composite mean pathogenicity score detect known epilepsy genes

more efficiently than random chance. The PPI score is the most

efficient feature, with an area under the curve (AUC) of 0.84. The

AUC of the composite score is 0.86. The individual feature scores

and composite mean pathogenicity scores of some well-known

genes are presented in Table 1. Table S2 provides scores for all

RefSeq genes.

Correlation of pathogenicity with epilepsy phenotype
Having concluded that our pathogenicity score is capable of

differentiating known epilepsy genes from other genes throughout

the genome, we hypothesized that pathogenicity scores among

genes deleted in individuals would correlate with an epilepsy

phenotype. We theorized that patients with non-neurologic

phenotypes would be less likely to harbor CNVs containing genes

with high pathogenicity scores, while patients with epilepsy would

have CNVs harboring genes with higher scores. To increase the

likelihood of identifying an effect, we investigated the CNVs of a

well-described ‘‘analysis cohort’’ of subjects with epilepsy identified

from unbiased independent review of EMRs (see methods). We

compared their CNVs to those of a matching analysis cohort of

subjects referred to our diagnostic center for non-neurologic

indications. We computed the maximum pathogenicity score

among genes varying in copy number for each subject, filtering

erroneous calls (see methods). Considering all CNVs – both gains

and losses – across the two analysis cohorts, the total pathogenicity

burden is not significantly different between subjects with epilepsy

and subjects without neurological disease (data not shown).

However, considering only genes harbored within genomic

deletions reveals that the maximum scoring gene of deletion

CNVs is significantly higher (Wilcox Signed Rank Test,

p,5.261024) in patients with epilepsy (Figure 3A). The

maximum scoring genes of genomic duplications are not

significantly different between the two patient groups (Figure 3B).

To exclude the possibility that the variation observed in patient-

wide pathogenicity scores was due to known epilepsy genes, we

elected to remove the training epilepsy genes (Table S2) from our

calculations. In support of our findings, the maximum score of

genes disrupted among patients with epilepsy remains statistically

greater than those with non-neurologic indications (Wilcox Signed

Rank Test, p,0.011, Figure 4A).

Integration of gene knowledge and frequency
Having evidence that our pathogenicity score is correlated with

epilepsy phenotype at the patient level, we sought to further

improve our gene-based prioritization by including gene deletion

frequency among a large cohort. This step is important because

the pathogenicity score is uninformed about mutation or variant

frequency of genes. To accomplish this integration, we took

advantage of a Bayesian approach coupled with CNV data

collected among 23,578 individuals referred to our diagnostic

center for genome wide CNV testing because of a variety of

phenotypes. We computationally identified individuals with

indications for diagnostic test consistent with epilepsy (n = 1616)

and those consistent with disease, but of non-neurologic etiology

(n = 2940, see methods). This resulted in two matched ‘‘frequency

cohorts’’ of individuals distinct from our well-phenotyped ‘‘analysis

cohorts.’’ We determined the observed deletion frequency for each

gene as described above.

We then parameterized a family of gamma prior distributions

that modeled the baseline deletion frequency for each gene by

setting the mean of the distribution equal to the observed deletion

Figure 1. Network analysis of genes associated with epilepsy. Circos plots are drawn with the positions of a set of 83 training genes indicated
along the circumference of the circles. A. Blue edges are drawn between genes if a given pair of genes shares an annotation to the same rare MGI
knockout mouse phenotype mapped to the human orthologue. Rare annotations are defined as being annotated to 200 or fewer genes. B. Red
edges are drawn between pairs of genes if their respective protein products physically interact or interact though exactly one intermediate interactor.
doi:10.1371/journal.pgen.1003797.g001

Knowledge Fusion Prioritizes CNVs in Epilepsy
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rate in the non-neurologic frequency cohort. Figure 4 demon-

strates this processes for KCTD15, with the baseline distribution

shown in grey. We then allowed the prior mean of the gamma

distribution of each gene to increase based on its epilepsy-specific

pathogenicity score, while the variance was constrained to be a

constant multiple of the mean. This approach resulted in a second

family of prior rate distributions informed not only by gene

knowledge but also background deletion frequency (Figure 4,

pink distribution). Next, we computed the total probability of the

observed rate of deletions for each gene among the 1,616 subjects

in the epilepsy frequency cohort (Figure 4, red line) under the

background model (grey distribution) and the pathogenicity

informed prior (pink distribution). We calculated the ratio of

these probabilities, called the Bayes factor, for each gene to allow

us to further prioritize genes associated with the epilepsy

phenotype. Table 2 lists the 10 RefSeq genes with the highest

Bayes factors, presenting only the maximum scoring gene for

recurrent deletions with multiple high scoring genes. Table 3 lists

10 additional genes with high Bayes factors but without known

associations with epilepsy. Finally, we computed posterior rate

distributions for each gene, taking into account gene knowledge

from the pathogenicity score, background deletion frequency from

the non-neurologic cohort as well as the observed rate in the

epilepsy frequency cohort (Figure 4, blue distribution). Table S2

Figure 2. Concept of gene and variant prioritization. Top Left. Phenotype specific knowledge about each individual RefSeq gene is gained by
comparing the features of the gene to a set of known ‘‘training genes’’ based on Gene Ontology annotation, knockout mouse phenotypes mapped
to human orthologues, tissue expression patterns, protein-protein interactions, micro RNA targeting, and pathway membership information. Top
right. Relevance to epilepsy is assessed by comparing the frequency of gene disruption among individuals with epilepsy to the frequency of
disruption among a background population. Bottom. These two sources of information, gene knowledge and variant frequency, are combined using
Bayesian methods to arrive at a Bayes factor and a posterior rate distribution to prioritize individual genes for phenotypic relevance.
doi:10.1371/journal.pgen.1003797.g002

Knowledge Fusion Prioritizes CNVs in Epilepsy
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Table 1. Individual feature and composite pathogenicity scores of selected genes.

Symbol Chr GO MGI KEGG Exp PPI miRNA Mean

BRCA1 17 0.77 20.48 20.11 20.32 21.00 0.04 20.18

CS 12 0.8 - 20.11 20.31 20.98 0.47 20.03

C3 5 20.38 20.79 0.33 1.66 20.19 20.64 20.003

DMD X 2.57 20.96 20.11 1.58 20.38 20.35 0.39

ERBB4 2 0.89 3.28 1.12 1.59 0.62 0.3 1.30

MECP2 X 20.49 2.77 - 1.57 0.37 6.62 1.91

KCNQ3 8 5.32 3.2 - 1.24 2.00 20.2 2.49

SCN1A 2 4.52 2.26 - 1.59 0.06 7.74 3.23

doi:10.1371/journal.pgen.1003797.t001

Figure 3. Epilepsy pathogenicity score correlates with epilepsy phenotype. A. The pathogenicity score of the highest scoring gene deleted
is significantly higher in patients with epilepsy than those with non-neurologic indications (Wilcox Signed Rank Test, p = 5.261024). This difference
remains significant even when the training genes (Table S1) are not considered (Wilcox Signed Rank Test, p = 0.011). B. Genes contained within
genomic duplications are not significantly different.
doi:10.1371/journal.pgen.1003797.g003

Knowledge Fusion Prioritizes CNVs in Epilepsy
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lists the frequencies, Bayes factors and posterior rate distribution

parameters for each RefSeq gene.

Epilepsy gene load among subjects with epilepsy
Having designed Bayes factors to more robustly prioritize

candidate epilepsy genes, we revisited our analysis cohort of

subjects with epilepsy that we previously analyzed with the

pathogenicity score alone. Using a method analogous to our

previous analysis performed at the level of subjects, we calculated

the maximum Bayes factor among genes deleted in each

individual. Because the deletion of a gene in a given subject with

epilepsy necessarily influences the Bayes factor of that gene, we

used a cross-validation approach, and recalculated the genome

wide Bayes factors for each subject leaving out their contribution

to the frequency data. We discovered that the cross-validated

maximum Bayes factors were significantly higher among subjects

with epilepsy than those referred for non-neurologic indications

(Wilcox signed rank test p,1.161026, p,9.461026 without

training genes Figure 5A). Given that many of our features

preferentially identify genes that are more highly expressed in the

brain (not the least of which being the gene expression feature,

data not shown), we were concerned that our Bayes factors might

be identifying genes associated with neurologic phenotypes rather

than epilepsy in particular. To examine this, we generated a

cohort of individuals referred for ASDs and not epilepsy who also

had abnormal aCGH studies. In keeping with the Bayes factor

Figure 4. Bayesian integration of pathogenicity scores and mutation frequency for the KCTD13 gene. We parameterized a prior gamma
distribution that models the baseline deletion frequency by setting the mean equal to the observed deletion rate in a background population
referred for non-neurologic indications (grey distribution). We then varied the mean of a second gamma distribution based on the pathogenicity
score (pink distribution). Next, we computed the probability of the observed rate (red line) of deletions among our subjects with epilepsy under the
background and pathogenicity-informed models to arrive at the Bayes factor. Finally, we determined the posterior rate distribution (blue
distribution), taking into account gene knowledge from the pathogenicity score, background deletion frequency from the non-neurologic cohort, as
well as the observed rate among subjects with epilepsy.
doi:10.1371/journal.pgen.1003797.g004

Knowledge Fusion Prioritizes CNVs in Epilepsy
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score as specific for epilepsy, the maximum Bayes factor is higher

among subjects with epilepsy than those referred for ASDs (Wilcox

signed rank test p,6.561025, p,2.161029 without training

genes Figure 5A).

We were also interested to explore whether the Bayes factors of

more than one gene deleted in each individual subject might be

correlated with phenotype, thus suggesting a digenic or oligogenic

effect. To this end, we performed the same cross-validation

calculation, but excluded the contribution of the genes with the

single highest Bayes factor from each patient. Notably, the genes

with the second highest Bayes factors are significantly higher

among subjects with epilepsy compared with individuals referred

for non-neurologic indications (Wilcox signed rank test,

p,2.161025, p,5.161025 without training genes, Figure 5B).

Such a comparison considering the third highest scoring gene and

excluding the two highest scoring genes also results in a significant

difference (Wilcox signed rank test, p,5.461026, p,1.861026

without training genes, Figure 5B).

Assessment of pathogenicity scores and Bayes factors in
a published epilepsy gene set

As additional assessment of the utility of our scoring method, we

calculated the scores of genes published as potentially related to

epilepsy by Lemke et al [24]. Because the training genes are by

definition higher scoring, we elected to exclude them from this

analysis. Genes in the published list but not included in the

epilepsy training genes (n = 263) have significantly higher patho-

genicity scores than the genome wide average (Wilcox signed rank

test, p,0.014). The same genes also have significantly higher

Bayes factors (Wilcox signed rank test, p,7.6610212).

Prioritization of candidate genes at a locus with known
epilepsy association

Another potential use of our Bayes factor scoring metric is in the

identification of candidate epilepsy genes at regions with known

associations but no known causative gene [25]. As a proof of

principle, we analyzed the 34 RefSeq genes harbored in the

recurrent, low-copy repeat mediated 16p11.2 deletion. No training

gene was identified from this region because no definitive

association has been made between a gene and epilepsy, although

approximately 24% of patients with 16p11.2 deletions experience

seizures [26]. If we use frequency data among subjects with

epilepsy and those referred for non-neurologic indications alone,

little information can be gained because of the recurrent nature of

the deletion (Figure 6). In fact, because of recent advances in

oligonucleotide aCGH probe design, over time additional probes

have been placed in regions closer to the flanking LCRs that

mediate the CNV formation. Because of this technical artifact,

more subjects with epilepsy were calculated to have deletions of

SLC7A5P1 than those subjects with non-neurologic indications.

However, if we instead use Bayes factors, taking into account both

frequency and gene knowledge, the highest scoring gene is

identified as KCTD13 (Figure 6). Dosage of this gene has recently

been shown to correlate reciprocally with the phenotype of head

size in a Zebrafish model, a hallmark of the 16p11.2 deletion and

duplication syndromes [27]. The same authors report a patient

with a complex rearrangement of KCTD13 with many of the

features of 16p11.2 deletion syndrome. Nonetheless, given the

high scores of both DOC2A and TAOK2, it is not unreasonable to

hypothesize that one or more other genes in the region might also

contribute to the epilepsy seen in these subjects. Figure S2
presents similar analyses of other loci with recurrent deletions

associated with epilepsy.
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Bayes factors to discriminate epilepsy phenotype
Given that our data are derived from diagnostic testing, we were

interested to explore our composite Bayes factor result as a

possible clinical decision support tool to aid in discrimination of an

epilepsy phenotype. Figure 7 shows the sensitivity and specificity

of the maximum Bayes factor among deleted genes in an

individual subject when used as a binary decision rule to

discriminate between epilepsy and non-neurologic phenotypes

across a range of Bayes factor cut-off values. These parameters are

relevant for subjects with abnormal aCGH tests and no neurologic

indications other than epilepsy. As an example, having a deleted

gene with a Bayes factor of greater than 1 discriminates with a

sensitivity and specificity of 0.62 and 0.60, respectively. These

statistics are highly influenced by recurrent deletions at the

Velocardiofacial locus with a maximum Bayes factor of 2.87.

Choosing a cut off of 2.88 (thus excluding the effects of the

Velocardiofacial region) results in a sensitivity and specificity of

0.37 and 0.84, respectively. Given the imperfection of our

indication and coding data, such a cut off rule would suggest

16% of patients with non-neurological indications should receive

increased suspicion based on their CNV data. We also attempted

to construct a decision rule based upon the contribution of

multiple genes deleted in a given patient, but concluded the single

highest scoring gene produced the best results (data not shown).

Discussion

Rapid expansion of the human population [28] together with

relaxed negative selective pressures secondary to increased food

supplies and improved medical care [1] as well as the possible

influence of higher mutation rates [29] have skewed much of the

allele frequency spectrum of human genomic variation toward

rare or private variants. Purifying selection is expected to eliminate

highly deleterious alleles from a population over time [30], yet it is

precisely the new and rare variations that contribute to human

disease. We should expect that novel rare and private variants will

continuously be discovered, and there are a nearly infinite number

of possible variants and combinations of variants that can occur.

Thus, a fundamental shift in the approach to variant interpretation

must occur from simple cataloging of variants at a locus to

prediction of the possible effects of highly rare or newly identified

variants by integrating the state of knowledge about genes and

disease processes. We contend that effective diagnostics must

ultimately incorporate some aspects of discovery, inferring the

relevance of new and arcane genomic variants for patient

phenotypes by leveraging known information and multiple sources

of evidence.

In essence, our approach seeks to automate aspects of expert

interpretation processes that are currently undertaken by clinical

molecular geneticists and diagnostic laboratories on a daily basis.

These professionals consider what is known about mutated

genes—for example whether they are expressed in effected tissues

or if their protein products are involved in applicable pathways.

They then consider the frequency of mutations both among

normal individuals and patients with similar and related pheno-

types. Together with other information and years of experience,

the geneticist combines these data into an assessment of variant

relevance. Although our computational method cannot be as

effective as an experienced human at interpretation of an

individual variant in a single patient, it does have the advantage

of scalability to many variants and to large cohorts of individuals

with different phenotypes. Moreover, this approach and others like

it can help to facilitate the interpretation of an expert by providing

additional triage of large-scale variant data.

Our method comprises two integrated steps: phenotype specific

pathogenicity scoring and Bayesian analysis using frequency data.

The pathogenicity scoring approach provides a quantitative

method to evaluate genes with respect to a fixed phenotype using

known phenotype specific disease genes as a target, leveraging

many sources of knowledge. However, since the model depends

highly on the ‘‘epilepsy genes’’ (Table S1), the choice of the

training genes themselves inherently introduces the bias of past

knowledge. Moreover, the training genes were not otherwise sub-

structured to consider their distinct functions or roles in epilepsies

with diverse etiology; this simplification was mirrored in the EMR

review, where we made binary decisions about the appropriateness

of the epilepsy assignment without consideration of natural history

data that might otherwise inform or refine the interpretation of

genetic data. Our simplified initial approach might be improved

by future methods better informed by sub-classifying the training

genes and refined consideration of the phenotype data.

Another facet of past knowledge bias is that the computation

relies on available gene data from the literature and public

databases. Thus, the pathogenicity score is only as effective as the a

priori knowledge for each individual gene. If little or no information

is known about a gene, or worse yet if a gene is not annotated in

the RefSeq, the algorithm cannot accurately calculate a score. To

overcome this limitation we attempted to incorporate less biased

Table 3. Bayes factors of interesting novel candidate genes in epilepsy.

Symbol Locus Pathogenicity Score Scaling Factor Epilepsy Subjects
Non-Neurologic
Subjects Bayes Factor

MDGA2 14q21.3 0.81 4.39 3 1 7.52

BHLHE22 8q12-q13 1.82 5.22 1 0 6.62

KCTD5 16p13.3 0.70 5.22 2 0 4.93

HCRTR1 1p35.2 0.97 5.22 1 0 4.57

DYX1C1 15q21.3 0.43 5.22 6 0 4.45

GRM5 11q14 0.83 5.22 1 0 4.13

KCTD14 11q14.4 0.79 5.22 1 0 3.99

GRIK4 11q23.3 0.76 5.22 1 0 3.93

STAC 3p22.3 0.76 5.22 1 0 3.92

PAX1 20p11.22 0.75 5.22 1 0 3.87

doi:10.1371/journal.pgen.1003797.t003
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information such as gene expression data and other types of

genome wide scores, such as miRNA target prediction. In cases

where genes were missing features–such as lack of MGI phenotype

data—we attempted to impute missing values using linear

regression and other methods. Ultimately, we concluded that

restricting analysis to the available reported data provided better

results than statistical imputation (data not shown). More work in

this area is warranted. Likewise, the knowledge sources we utilized

are themselves imperfect. In ontological systems, the failure to

annotate a gene to a category can represent an unobserved value

in the annotation system, such as a phenotypic assay that was not

performed, and not evidence of a negative annotation. This

property is often summed up as: ‘‘the absence of evidence is not

evidence of absence.’’ While this issue is an important limitation

that requires further study, we believe data will improve over time,

making ontological systems progressively more informative as

annotations become more comprehensive genome-wide.

A key advantage of our method is incorporation of observed

variant frequency data from over 20,000 genome-wide assays

performed by high-resolution aCGH at out diagnostic lab in

addition to the computational gene scoring approach. The

epilepsy cohorts and comparator non-neurologic cohorts were

comprised of phenotypically affected individuals with segmental

findings. Our approach was to model the differential frequency of

CNVs affecting each gene between these two groups using our

pathogenicity score to inform the rate distribution. Subsequently,

we are able to use the machinery of Bayesian model comparison to

compute those genes where the epilepsy scoring improved the fit

from what would be expected without this phenotype-based

knowledge. The Bayes factor summaries allowed us to rank

Figure 5. Epilepsy gene load is higher among subjects with epilepsy. A. Analogous to pathogenicity scores alone, the maximum Bayes
factor of deleted genes was significantly higher among subjects with epilepsy versus non-neurologic comparators (Wilcox signed rank test,
p,1.161026). Bayes factors are also higher among subjects with epilepsy compared with those referred for autism spectrum disorders (Wilcox signed
rank test, p,6.461025). B. We performed the same calculation but excluded the contribution of the gene with the single highest Bayes factor from
each patient. Genes with the second highest Bayes factors are significantly higher among subjects with epilepsy compared with individuals referred
for non-neurologic indications (Wilxcox signed rank test, p,2.161025). A similar test for the third highest are genes was also significant.
doi:10.1371/journal.pgen.1003797.g005
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individual genes using the computational score, but the real

frequency data—which are driven by molecular mutation events

in actual human populations—necessarily incorporate structural

and genomic feature information that are not part of the

pathogenicity score. By exploiting variant frequency in actual

subjects, our approach utilizes this genomic information without

requiring us to explicitly model or otherwise include the complex

biological processes underlying mutation.

Using this approach at the genome and cohort-wide level, our

analysis was able to highlight a number of potentially novel genes

as relevant to epilepsy. The highest scoring candidate gene

identified by our method is ERBB4, encoding a member of the

ErbB subfamily of tyrosine kinases that functions as a neuregulin

receptor [31]. Rare variants of ERBB4 have been associated with

increased risk for schizophrenia [32]; an intronic deletion between

exons 7 and 8 was also identified in a patient with an ASD [33];

and a patient with a de novo reciprocal translocation

t(2;6)(q34;p25.3), apparently disrupting the ERBB4 gene, was

identified with early myoclonic encephalopathy [34]. Recent

experiments also showed that Erbb42/2 mice exhibit increased

susceptibility to chemically induced seizures [35]. This evidence

taken together with our analysis suggests that mutations of ERBB4

may be associated with a number of epileptic phenotypes.

Given the sizable mutation frequency difference of ERBB4

between the epilepsy and non-neurologic cohorts, identification of

the gene would have likely been possible using frequency

information alone. However, our method is also able to call

attention to genes that, although rarely mutated, are highly similar

to the training genes. A number of the genes listed in Table 3
exemplify this principle. For example, although GRM5, encoding

the metabatropic glutamate receptor 5, was identified as deleted in

only one subject, it’s Bayes factor is in the 98th percentile among

genes deleted at least once in any cohort. This gene is interesting

because Grm52/2 mice have increased susceptibility to pharma-

cologically induced seizures and the human protein product is

highly connected to the epilepsy training genes. Such information

could easily be overlooked given the subject’s (3.6 Mb) deletion

also includes 17 other RefSeq genes.

Prioritization of rarely mutated genes that are novel to the

epilepsy cohort is an important aspect of our approach. Notably

the exclusion of an individual’s mutations from the frequency data

for the Bayes factor calculation prevents contribution of such genes

to our analysis cohort assessment, lowering our statistical power.

Given the observation of rare variation in human disease, it is

likely that some of these variants contribute to patients’ seizures.

Additional studies will be required to validate the associations of

these genes with epilepsy.

In addition to the prioritization of individual genes, our method

also naturally lends itself to calculation of multi-variant genetic

load, and we were able to evaluate evidence for digenic and

oligogenic effects in our analysis cohort. We saw that not only was

the maximum Bayes factor among deleted genes significantly

higher in the epilepsy cohort versus non-neurologic comparators,

but we also observed significant differences in the second and third

highest scoring genes. Previous analysis of a large set of CNV data

has suggested that copy number changes of multiple genes at

distant loci but in similar networks may compound at the

molecular level to contribute to phenotypic variation seen with

well-known recurrent genomic disorders [36]. This previous study

relied on relatively more common recurrent CNVs together with

second site mutations. In contrast, our method collapses different

deletion alleles at the gene level and then more globally for the

phenotype by scoring variants. This allows us to identify

differences at the cohort level generally rather than considering

individual pairs of variants for which there is very little statistical

power given their rarity. Our data suggest that, at least in some

Figure 6. Prioritization of candidate genes at the 16p11.2 locus. Bottom. 34 RefSeq genes located within the 16p11.2 recurrent deletion.
Middle. Ratio of deletion frequency of subjects with epilepsy to those referred for non-neurologic indications for each gene. The gene with the
highest calculated ratio, SLC7A5P1, is highlighted in pink. Top. Bayes factors for each gene; the highest scoring gene, KCTD13, is highlighted in blue.
doi:10.1371/journal.pgen.1003797.g006

Knowledge Fusion Prioritizes CNVs in Epilepsy

PLOS Genetics | www.plosgenetics.org 10 September 2013 | Volume 9 | Issue 9 | e1003797



patients, the deleterious effects of mutations in two or more genes

involved in similar processes may interact on the molecular,

cellular, or organism level to results in seizures. In other patients,

genomic structural abnormalities may have little influence.

Previous studies of sequence variant load in epilepsy failed to

identify differences between subjects with epilepsy and control

individuals [37]; however, this analysis focused entirely on channel

genes whereas our method was intentionally designed to be broad

and to include many gene families known to be involved in

epilepsy.

Because of the strong correlation of Bayes factors with epilepsy

phenotype, we investigated sensitivity and specificity of our score

as a clinical decision support tool as a natural extension of our

integrated analysis. Our approach was to discriminate individuals

with epilepsy from those with non-neurologic indications based on

their maximum Bayes factors. The difficulty experienced by

physicians making use of genome wide tests represents a major

limitation in clinical practice [38]. However, if genome wide

results can be condensed into a quantitative score and studied

epidemiologically, as are other quantitative test results (i.e. serum

Troponin-I), the results may be made more accessible for

physicians to interpret and guide management. For example, if a

patient had a high epilepsy-specific Bayes factor but was not

known to experience seizures, it might be reasonable to modify

patient care. Such information could alert the clinician to provide

counseling about seizure signs, symptoms, and first aid. In some

instances, the prescription of an emergency abortive medication

might be indicated. Neurologists are frequently asked to discern

whether a patient’s spells are epileptic or non-epileptic in nature;

when the pre-test probability for seizures is high due to known

genetic risk factors, then clinical decisions such as ordering

an electroencephalogram (EEG) or longer-term video EEG

Figure 7. Measures of performance of the Bayes factor to discriminate epilepsy phenotype. The graphic shows the sensitivity and
specificity of the Bayes factor to identify patients with epilepsy versus those referred for non-neurologic indications. The sensitivity, or the probability
of having a positive test given the phenotype, is shown in black. The specificity, or the probability of a negative test given no phenotype, is shown in
red. The minimum Bayes factor for a gene or patient is 1 by definition (dotted line).
doi:10.1371/journal.pgen.1003797.g007
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monitoring or making the decision to start a medication to treat

epilepsy could be impacted. While the Bayes factor score certainly

does not capture the subtle differences in phenotypes caused by

different alleles at various loci, this approach and extensions of it

might in the future be helpful for front-line providers to identify

which colleagues can provide useful insight into a particular

patient’s treatment or augment the clinical decision making

process.

Because of its modular nature, our scoring mechanism can be

recalculated at any time as more confirmed epilepsy genes are

discovered, other loci throughout the genome are annotated and

more fully characterized, and as additional variant frequency data

are constantly recruited into our clinical genomic database.

Although our model was designed to prioritize genes varying in

dosage among samples tested by aCGH, the data and computa-

tional framework are not specifically tied to haploinsufficiency.

Therefore, the pathogenicity scores and Bayes factors presented in

Table S2 may be applicable to a wide variety of data sets. With

the decreasing cost of genome-wide sequencing strategies, analysis

of patient genomes in epilepsy will likely result in an explosion of

sequence variants of uncertain significance [39]. We hypothesize

that together with improved algorithms designed to predict the

effect of nucleotide changes on protein function, such pathoge-

nicity scores and Bayesian methods should facilitate prioritization

of sequence variants.

Overall, this study represents a step towards a quantitative

framework of phenotype-specific variant interpretation. We

suggest our method could be utilized for any other phenotype

for which a sufficiently broad set of training genes can be

generated; and although we restricted our analysis to copy number

variants, this approach could be fruitfully applied to sequence

variants as well. Our results have highlighted novel candidates in

epilepsy and have provided further evidence of oligogenic

inheritance in human disease. We believe that integrative

approaches such as ours will become more accurate and useful

with improved knowledge about genes and the molecular basis of

disease as well as with the increased availability of genome wide

profiles.

Materials and Methods

Epilepsy training genes
We developed a training set of clinically accepted genes that,

when altered, result in epilepsy (Table S2), by searching the

Online Mendelian Inheritance in Man (OMIM) database for all

entries containing the words ‘‘epilepsy’’ or ‘‘seizure.’’ All genes

matching these criteria were then manually curated based on

published evidence that alterations in a given gene cause or

increase susceptibility to epilepsy. Gene alterations that cause

syndromes in which epilepsy is poorly penetrant, for which

suspected pathogenicity is based on only a few poorly character-

ized patients, or for which statistically significant association was

not demonstrated in at least one study were excluded. Manual

review resulted in the identification of 83 epilepsy training genes

and included the twenty epilepsy genes recognized by the ILAE

[23]. We chose not to exclude or differentially weight genes

associated with autosomal recessive or x-linked epilepsy as to have

a more broadly defined pathogenicity score. This aspect is an area

for further research.

Feature design
Individual features were designed by comparing the epilepsy

training gene set to every RefSeq gene based on Gene Ontology

[40], MGI phenotypes [41], miRNA targeting [42], KEGG

molecular interaction network data [43], GeneAtlas expression

distribution [44], and PPI networks [45]. For the GO, MGI

phenotypes, KEGG, and microRNA targeting data, gene level

feature scores were determined by a four-step process. First, we

identified annotations in each ontological system that are enriched

among the set of epilepsy training genes. We used p-values for

enrichment, odds ratios and number of training genes annotated

to select categories; the cut-off values used to define enrichment for

each annotation system are listed in Table S3. Second, we used a

novel scoring method to quantify each gene’s annotation match to

the training genes. For detailed descriptions and formulae, see

Text S1. We used these scores to determine a pair of empirical

distributions, one for the training genes and one for the

background genes; for each gene we computed the fraction of

genes (training and all other RefSeq separately) found to have

scores equal to or higher than the index gene’s score. The

logarithm of the ratio of these probabilities served as the metric for

each gene. The log-ratio was transformed by subtracting the mean

and dividing by the standard deviation and served as a

standardized score for a given gene in a given annotation system.

Table S2 lists all annotation system scores for each RefSeq gene.

For gene expression we used the GeneAtlas data to identify

those tissues where the epilepsy training genes were most highly

expressed and where they were least expressed. Then, for each

gene, we determined a score motivated by the T-statistic to

measure the difference between high vs. low tissue expression. We

again used the probability ratio and transformation approach to

determine a score for each gene (Table S2).

For PPI data, we used a measure based on network

communicability between each gene’s protein product and those

of the epilepsy training genes as our feature. Communicability

measures the total number of paths that connect pairs of nodes in a

network scaled by the length of each path [46]. This concept takes

into account the principal that the existence or non-existence of a

direct interaction between proteins does not capture fully how

connected two gene products are. For example, if a pair of proteins

shares a number of interacting partners, they should be considered

closer than two proteins that are only connected via a single

sequence of interactors of the same length. Given the scale and

connectedness of the PPI network, we chose to consider all paths

of length six or less (see Text S1). As before, we used the

probability ratio and transformation approach to determine a

score for each gene (Table S2).

Composite pathogenicity scores were generated from the mean of

all 6 features. When data were missing because feature information

was not present for a given gene in a given annotation system, we

calculated the mean of the available features (Table S2). Genes for

which no data was available in any feature received a zero score.

Cross-validation of the scoring procedure
To establish the performance of our scoring procedure, we

performed leave-one-out cross validation. We sequentially

dropped one gene out and established the pathogenicity scores

for all sources of information (GO, MGI, KEGG, miRNA,

expression, and PPI) using the remaining training genes and the

RefSeq complement of the full training set. Then, for the omitted

training genes, we determined the individual ratios and the mean

of ratios across the features. Finally, we compiled the cross-

validated results and determined the percentages of epilepsy

training genes that met or exceeded each percentile cutoff.

Ethics
Approval to conduct retrospective analyses of clinical laboratory

data and clinical records from the Baylor College of Medicine
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(BCM) Molecular Genetics Laboratory (MGL) databases and the

Texas Children’s Hospital (TCH) electronic medical record

(EMR) using protocol H-27825 was obtained from the institutional

review board for BCM and affiliated hospitals.

Analysis cohorts
Our goal was to identify all local patients with an epilepsy

diagnosis who had a clinical aCGH study performed at our

institution. We searched the TCH EMR using ICD-9-CM codes

333.2, 345, 649.4, 780.39 and their respective subordinate four

and five digit codes, where applicable, in order to identify patients

with an epilepsy diagnosis who were seen at TCH between

February 2004 and April 2011. We then identified the subset of

these patients who had a clinical aCGH study in the MGL

database. In an attempt to detect additional patients with epilepsy

who had aCGH performed but for whom the clinician may not

have properly coded the epilepsy diagnosis in the EMR, we also

searched the MGL database referral indications using the search

terms ‘‘epilepsy’’, ‘‘seizure’’, ‘‘infantile spasm’’, ‘‘convulsion’’, and

variations thereof. In total, we identified 1,641 local patients with

evidence of an epilepsy diagnosis who also had aCGH performed

during the queried period of time.

Medical records for patients with abnormal aCGH test

interpretations were reviewed by a diplomate of the American

Board of Psychiatry and Neurology with Special Qualification in

Child Neurology. Patients for whom a diagnosis of epilepsy

(defined as recurrent unprovoked seizures) could not be confirmed

were excluded. This resulted in a set of 295 patients with abnormal

aCGH results and confirmed epilepsy. 84 of patients were tested

by BAC arrays or with other manufacturers’ array platforms that

were incompatible with assessment across cohorts and thus were

excluded, leaving 211 patient with EMR confirmed epilepsy and

genome-wide results.

For comparison purposes, we also generated an analysis cohort

of patients with an abnormal aCGH report from a comparable

array version but no neurological referral indications or ICD-9-

CM codes consistent with neurological disease. Because patients

without any neurologic indication or diagnosis comprise a

considerable minority of our aCGH database, we were forced to

expand our search to patients referred from outside hospitals. A list

of included and excluded indication and code classes are listed in

Table S4. We also generated a comparator cohort of subjects

with indications consistent with autism but not epilepsy by

searching indications for the word ‘‘autism’’ and removing any

subjects in the epilepsy cohort.

Array CGH
Array CGH was performed on genomic DNA extracted from the

patients’ peripheral blood lymphocytes using various versions of

oligonucleotide microarrays depending on the date of submission.

Each oligonucleotide array was custom designed by the MGL at

BCM (Houston, TX, USA) and manufactured by Agilent Tech-

nologies (Santa Clara, CA, USA). Data were analyzed utilizing a

custom designed BCM statistical analysis package implemented in

the R programming language (R Core Development Team).

Analysis cohort pathogenicity scores
Segments of each analysis cohort individual’s genome poten-

tially varying in copy number were determined from oligonucle-

otide log2 patient vs. control intensities as previously described

[11,47]. To select calculated intervals representing true positives,

we limited our analysis to intervals smaller than 15 Mb, with at

least 4 variant probes, and a mean log2 ratio ,20.3 or .0.21.

Gene lists were calculated by selecting RefSeq genes for which any

part of the annotated sequence is contained within the minimum

interval defined by the first and last deleted or duplicated

oligonucleotide probe for each interval. The maximum composite

pathogenicity score was then computed for each patient.

Frequency cohorts
To inform our analysis using frequency information, we

generated gene deletion frequency data from our clinical database.

Because observed frequency rates may be influenced by changes to

the microarray design, we elected to limit our analysis to 23,578

patients tested by the BCM version 8 array series. We selected

individuals based on their indication for procedure as described in

the analysis cohort section. This process resulted in 1,616

individuals with indications consistent with epilepsy and 2,940

individuals with indications consistent with disease but of non-

neurologic etiology. These frequency cohorts fundamentally differ

from the analysis cohorts in that they also contain CNVs from

individuals that did not have clinically abnormal array CGH

findings. Because 73 individuals in the epilepsy analysis cohort

were tested by version 8 arrays, they occur in both the analysis and

frequency cohorts.

Bayesian analysis
For each RefSeq gene, we parameterized a prior gamma

distribution with a mean equal to the observed rate of deletion

CNVs among subjects referred to our diagnostic center for non-

neurologic indications and variance constrained to be a constant

multiple of the mean. If no deletion CNV was observed, we

supplied a rate of 0.085 deletions per thousand subjects, equal to

1/4th the lowest observed rate. We then parameterized a second

gamma distribution by allowing the mean parameter to increase

for genes with positive mean pathogenicity scores by scaling the

mean as an increasing function of the pathogenicity score. To also

take into account the rarity of the variant in question, we

developed a scaling function that adjusted the influence of the

pathogenicity score inversely with variant frequency in the control

population (see Text S1 and Figure S3). Variants commonly

seen in the population would be expected to have less rate change

among subjects with epilepsy. Conversely, rarely variant genes in

the control population with high pathogenicity scores would be

modeled to be more highly variant in epilepsy. This process

resulted in two prior gamma distributions for each gene, one

informed only by frequency in a non-neurologic cohort and one

informed both by frequency and gene knowledge as encoded in

our pathogenicity score. For genes where the pathogenicity score

was negative, we retained the same prior distribution for the non-

neurologic cohort. Next we calculated the probability of the

observed rate of deletion CNVs among the epilepsy frequency

cohort (see Text S1) under the two gamma distributions. The

ratio of these probabilities, the Bayes factor, served as an overall

score for each gene. Finally, we calculated the posterior rate

parameters for each gene taking into account background

frequency, pathogenicity, and the observed rate among subjects

with epilepsy. Table S2 lists the Bayes factors and posterior rate

parameters for each RefSeq gene.

Analysis cohort Bayes factors
We calculated lists of genes disrupted by deletions in each

individual for all members of the autism, epilepsy and non-

neurologic cohorts as described above. Because 73 members of the

analysis cohort are part of the frequency cohort, their personal

contribution to frequency data artificially inflates the Bayes factor

score by definition. To avoid this inflation, we recalculated the

genome-wide Bayes factors again, but removing their contribution

Knowledge Fusion Prioritizes CNVs in Epilepsy
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to the frequency data. We then selected genes with Bayes factors

greater than 1 and sorted them in decreasing order. We performed

statistical analysis on the first, second, and third highest scoring

genes for each individual. Table S5 lists the top three genes and

their Bayes factors for each individual.

Supporting Information

Figure S1 Efficiency of genome-wide pathogenicity scores. Each

curve represents cross validation performance (see methods) of a

given feature to detect 83 known epilepsy genes. Each of the

colored lines represents a single feature. The bold black line

represents the composite total score based on the mean of gene

ontology, MGI phenotype, pathway membership, expression,

miRNA, and protein-protein interaction data. The pathogenicity

score is much more efficient than random chance (dotted black

diagonal line) with an AUC of 0.86.

(PDF)

Figure S2 Prioritization of candidate genes at various loci with

known associations to epilepsy. Top. 1q36. Center. 2q23.1.

Bottom. 16p13.11. Candidate genes with higher scoring Bayes

factors are highlighted in blue.

(PDF)

Figure S3 Pathogenicity score scaling factor for low frequency

variants. The graph shows the relative influence of a gene’s

pathogenicity score on its informative prior and Bayes factor

calculation as a function of background deletion frequency. The red

dashed line indicates the lowest frequency rate provided (i.e. those

genes not identified as deleted in the non-neurologic population).

The dashed blue line indicates the frequency of one subject with a

deletion. The dashed green line indicates a frequency of 7 subjects

among 2940 (2.4 per thousand subjects), the frequency of 16p11.2

deletions in our non-neurologic cohort. For a gene with a unit

pathogenicity score and an observed frequency of one in the non-

neurologic cohort, the scaling function determines an approximate

4.5 fold increase in rate in the epilepsy cohort.

(PDF)

Table S1 Epilepsy training genes.

(XLS)

Table S2 Pathogenicity scores, Bayes factors and posterior rate

distribution parameters for each RefSeq gene.

(XLS)

Table S3 Cut-off values for determining enrichment in each

annotation scheme.

(XLS)

Table S4 Included and excluded indications for the definition of

a non-neurologic cohort.

(XLS)

Table S5 Genes contributing to the maximum Bayes factor

analysis in each analysis cohort patient.

(XLS)

Text S1 Supplementary methods describing bioinformatic

analysis.

(DOCX)
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