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Gene expression profiling studies are usually performed on pooled samples grown under tightly controlled experimental
conditions to suppress variability among individuals and increase experimental reproducibility. In addition, to mask unwanted
residual effects, the samples are often subjected to relatively harsh treatments that are unrealistic in a natural context. Here,
we show that expression variations among individual wild-type Arabidopsis thaliana plants grown under the same macroscopic
growth conditions contain as much information on the underlying gene network structure as expression profiles of pooled plant
samples under controlled experimental perturbations. We advocate the use of subtle uncontrolled variations in gene expression
between individuals to uncover functional links between genes and unravel regulatory influences. As a case study, we use this
approach to identify ILL6 as a new regulatory component of the jasmonate response pathway.

INTRODUCTION

A classical dogma in systems biology states that in order to
study a biological system, one needs to systematically perturb
the system, measure the response, and construct a model that
predicts the outcome of future perturbations (Ideker et al., 2001).
For instance, molecular biologists often profile the mRNA ex-
pression response to controlled perturbations, such as environ-
mental or chemical treatments or genetic knockouts. Because
reproducibility is a cornerstone of the scientific method, such
experiments are invariably performed in a tightly controlled setup
(Richter et al., 2011). Great care is taken to control the boundary
conditions and to keep unwanted external influences in check.
Variability among individuals is smoothed out by pooling bi-
ological materials and averaging over biological replicates.
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Moreover, in order to overpower any residual uncontrolled effects,
the perturbations applied to the system under study are often rather
harsh, causing the system to operate outside its normal range.

Even when taking such precautions, the reproducibility of
expression profiling experiments is often poor, in part because
reproducing particular experimental conditions is hard even when
detailed information on the original setup is available (Schilling et al.,
2008). To assess the within- and between-lab reproducibility of leaf
growth-related (molecular) phenotypes, Massonnet et al. (2010)
recorded the gene expression profiles of 41 individual leaves at the
same developmental stage (leaf 5, stage 6.0), taken from Arabi-
dopsis thaliana plants of three accessions (Columbia-4, Landsberg
erecta, and Wassilewskija) grown in six different laboratories. De-
spite the fact that the participating labs adhered to a standardized
and very detailed protocol, significant intra- and interlaboratory
variability in gene expression was found. The authors concluded
that small variations in growth conditions within and across labs
may lead to substantially different gene expression profiles.

The key question addressed in this study is whether we can
use such uncontrolled expression variations to our advantage
in a reverse engineering context (i.e., to unravel the wiring of
an organism). We reanalyze the gene expression data set of
Massonnet et al. (2010) and compare its functional prediction
performance to that of same-sized compendia of Arabidopsis
gene expression experiments profiling the response to controlled
perturbations on pooled plant samples. We show that, from a
guilt-by-association perspective, subtle uncontrolled variations
among individual leaves are as informative as experiments moni-
toring more severe controlled perturbations in pooled samples.
Since it is often practically infeasible to define and perform the tens
to hundreds of controlled perturbations needed to unravel (part of)
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a transcriptional regulatory network, our findings may open up
novel avenues to generate sufficient amounts of data for reverse
engineering algorithms.

RESULTS

Residual Gene Expression Differences Yield Biologically
Relevant Expression Modules

The gene expression data set of Massonnet et al. (2010) con-
tains expression profiles of leaves of three accessions grown in
six different labs (see Supplemental Table 1 online), which causes
a substantial proportion of the expression variance among leaves
to result from lab and accession effects (see Supplemental Figure 1
online). Accession, lab, and lab X accession effects explain on
average 14.9, 19.7, and 12.8% of the expression variance of
a single gene, respectively, whereas the residual error contains
52.5% of the variance on average (median values 9.9, 17.0,
11.4, and 53.8%, respectively). Although the variance induced
by lab or accession effects may well contain biologically rele-
vant information, we were primarily interested in analyzing the
gene expression variation among comparable individual plant
leaves grown under comparable macroscopic growth conditions.
Substantial lab and accession effects, by virtue of not being in-
dependent and highly redundant across the leaves profiled, are
expected to largely overpower the residual variation of interest
when calculating coexpression links (see below). Therefore, we
used a two-way unbalanced design analysis of variance (ANOVA)
model to remove lab, accession, and lab X accession effects
from the data set (see Methods). The residuals of this ANOVA
analysis (i.e., the unexplained expression differences among the
41 individual leaves, further referred to as the residuals data set)
are the basis of all following analyses.

We used the ENIGMA algorithm (Maere et al., 2008) to cal-
culate expression modules from the residuals data set and 1000
randomly assembled compendia of 41 gene expression profiles
of controlled perturbational treatments on pooled Arabidopsis
leaf or shoot material (referred to as the sample data sets; see
Methods). The log-scaled residuals data set is best fit by a
Student’s t location-scale distribution with a df parameter of
3.70, whereas the sample data sets exhibit a t distribution with
df in the range 1.41 to 2.31, indicating that the log ratio dis-
tributions of the sample data sets contain somewhat heavier
tails (i.e., more expression values that are substantially up- or
downregulated with respect to the normal expectation) (see
Supplemental Figure 2 online). This may not come as a surprise
given that the sample data sets include experiments profiling
gene expression responses to major-effect perturbations, as
opposed to the residuals data set. The ENIGMA algorithm re-
quires discretization of expression values into the categories
“upregulated,” “downregulated,” and “unchanged” (or “undecided”)
(Maere et al., 2008). The algorithm was originally intended for
detecting significant “co-differential expression,” a hybrid mea-
sure between coexpression and differential expression that es-
sentially indicates whether two genes are significantly up- or
downregulated together over at least a subset of the conditions
profiled. The underlying rationale is that simple coexpression

measures, such as Pearson’s correlation, may be misleading in
cases Where coregulated genes respond qualitatively the same,
but quantitatively different to a series of different regulatory in-
puts. Discretization of the gene expression response into up/
down/unchanged removes some of the quantitative disturbances
that may obfuscate coexpression patterns and allows for the use
of combinatorial statistics to assess significant codifferential ex-
pression relationships over part of the condition set instead of the
entire set (Maere et al., 2008). Since statistically motivated dif-
ferential expression P values can only be computed for pertur-
bational data sets with biological replicates, such as the sample
data sets, but by design not for the residuals data set, we used
a uniform log ratio threshold instead to define up- and down-
regulated gene expression values in all data sets. Therefore,
“differential” expression in this context is not motivated in terms
of statistically rigorous differential expression P values, but merely
serves as a means to discretize the expression values for ENIGMA
analysis and to separate noise (technical noise and some forms
of intrinsic stochastic noise) from potentially valuable signal. All
mentioning of “differential” expression in the remainder of the
article should be interpreted accordingly. For thresholds in the
appropriate range (i.e., before the distribution tails start flatten-
ing out), the residuals and sample data sets contain numbers of
differential log ratio expression values in the same range. We
fixed the log, ratio threshold at 0.3498 (i.e., the standard de-
viation of the residuals data set), corresponding to a fold change
threshold of 1.274 (see Supplemental Figure 3 online).

Interestingly, we observed that the residuals data set still
provides enough signal to discriminate biologically relevant ex-
pression modules (Figure 1; see Supplemental Data Sets 1 and
2 online). Sister plants (same lab, same ecotype) often exhibit
different residual expression responses in a given module (i.e.,
the module genes are upregulated in one sibling plant and
downregulated in another; Figure 1), indicating that the modules
are not formed by lingering lab or accession effects that were
not removed by ANOVA analysis (i.e., effects that are nonlinear
on log scale; see Methods), in contrast with many of the mod-
ules learned from the original data set (see Supplemental Data
Sets 3 and 4 online). The set of modules learned from the re-
siduals data set contains modules that are significantly enriched
in, among other processes, photosynthesis, ribosome and chro-
matin assembly, proteolysis, secondary metabolism, response to
wounding, bacteria, chitin and jasmonic acid (JA) stimulus, re-
sponse to temperature, water, and nutrient levels, and starch
catabolism (see Methods and Supplemental Data Set 2 online).
The fact that the recovered modules are enriched for a variety of
biological processes indicates that the residuals are not merely
noise, but are to a large extent defined by genuine differences
in the expression response of particular regulons, presumably
caused by subtle uncontrolled variations in the growth con-
ditions of individual plants (see below).

Gene Function Prediction Performance

The co-differential expression networks obtained in the first step
of the ENIGMA algorithm were used to assess the gene function
prediction performance of the residuals and sample data sets.
Topologically, the residuals network and the sample networks
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Figure 1. Co-differential Expression Module Enriched for Response to JA Stimulus Genes, Obtained with ENIGMA (Maere et al., 2008) on the Residuals

Data Set.

Yellow/blue squares indicate up-/downregulated gene expression with respect to the baseline leaf expression of the gene concerned. The bottom
matrix contains the expression profiles of the module genes, while the top matrix contains the expression profiles of predicted regulators of the module.
Significant co-differential expression links between the regulators and the module genes are indicated in the green matrix to the right. Genes highlighted
in red are regulators that are part of the module. Genes indicated as core genes belong to the original module seed, and other genes were accreted by
the seed in the course of module formation (Maere et al., 2008). Gene annotations for enriched GO categories are indicated in the orange matrix to the
right. Sister plants (same lab, same ecotype, indicated by red arcs for the first two condition leaves) often end up in different condition leaves in the
module, indicating that expression variations between individual plants, and not residual lab or accession effects, are responsible for the formation of

the module.

contain comparable numbers of genes and co-differential ex-
pression links (edges) and a similar network density and clus-
tering coefficient (Table 1). Forty-eight genes in the residuals
network are not observed in any sample network, but there is no
obvious functional theme among them. For most Gene Ontology
(GO) (Ashburner et al., 2000) categories, the residuals network
contains similar numbers of annotated nodes as the average
sample network (see Supplemental Data Set 5 online), but
the residuals network contains a significantly higher fraction of
genes which are not annotated in the GO database (Table 1).
Well-represented categories in the residuals network (relative to
the sample networks) include categories related to secondary
and lipid metabolism, cell wall biogenesis, and pollination. Several
photosynthesis- and amino acid metabolism-related categories
are relatively poorly represented (see Supplemental Data Set 5
online).

The presence of a particular gene or biological process in
a network does not automatically indicate that the network pro-
vides biologically relevant connections for that gene/process. To
evaluate the function prediction performance of the residuals and
sample networks, we predicted the function of all genes based on

the function of their network neighbors and used the available GO
annotations as a gold standard to score precision (proportion of
predictions that are true positives) and recall (proportion of known
annotations recovered by the predictions) for each network over
the prediction false discovery rate (FDR) threshold range 10e-2
to 10e-11 (see Methods). The F-measure (harmonic mean of pre-
cision and recall) was used as a single integrated measure of
prediction performance. An unavoidable pitfall in this approach
is the occurrence of false positive and false negative functional
annotations in the GO reference set, undermining its use as
a gold standard. Although the calculated precision and recall
values may therefore deviate from the real values, our approach
is still useful for comparative purposes, since similar biases pre-
sumably exist for all networks. If any differential bias would exist,
one may be inclined to think it might be a bias favoring the sample
networks, since comparatively more of the existing GO annota-
tions and supporting experimental evidence can be assumed to
derive from major effect perturbations on pooled plant samples,
as in the sample data sets, than from minor effect perturbations
on individual plants, as in the residuals data set. The fact that
significantly more functionally nonannotated genes are recovered
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Table 1. Topological Parameters for the Residuals and Sample Co-differential Expression Networks

Topological Parameters Residuals Network Sample Networks P Value
No. of nodes 11,474 10,695 * 2,606 0.409
No. of edges 165,455 152,017 = 156,476 0.314
Network density 0.0025 0.0021 = 0.0012 0.240
Clustering coefficient 0.2388 0.2111 = 0.0371 0.211
Unannotated gene fraction 0.2210 0.1841 = 0.0139 0.005

For the sample networks, mean values * 1 sp are indicated. Approximate P values are based on the rank of the residuals network relative to the 1000

sample networks.

in the residuals network than in the average sample network
(Table 1) may point in this direction, but this can hardly be taken
as solid evidence for a differential bias.

Overall, the residuals network produces slightly more predictions
for slightly more genes than the average sample network at each
FDR threshold (see Supplemental Figure 4 online). For more
stringent FDR thresholds, the resulting number of predictions per
predicted gene is substantially larger for the residuals network
than for the average sample network, reaching the 90th sample
networks percentile at FDR = 10e-11. The prediction performance
of all networks was assessed for a wide range of GO categories
(see Supplemental Figure 5 online), which were classified in five
performance categories depending on their F-measure scores for
the residuals network relative to the sample networks over the
entire prediction FDR range (see Methods). Performance plots for
some representative GO categories are depicted in Figure 2 (see
Supplemental Data Set 6 and Supplemental Figure 5 online for
other categories). The residuals network outperforms the ma-
jority of the sample networks for functional categories, such as
response to wounding, defense response, response to fungus,
drought and salt stress responses, response to JA, abscisic acid
(ABA), and ethylene stimulus, cell communication, lipid and car-
bohydrate metabolism, and leaf development. On the other hand,
the residuals network scores comparatively worse for categories
such as response to light intensity, desiccation, insect, virus, UV
and DNA damage, photosynthesis, responses to auxin and bras-
sinosteroids, cell cycle, cell differentiation, tropic responses, and
root and flower development. Other categories such as oxida-
tive stress, temperature and starvation responses, response to
bacteria, salicylic acid-mediated signaling, translation, and sec-
ondary metabolism score average. A noticeable trend for many
GO categories is that for more stringent FDR thresholds, the
function prediction performance of the residuals network in-
creasingly improves relative to that of the sample networks (see,
for example, “response to mechanical stimulus” in Figure 2).

Next to the process-centric performance assessment de-
scribed above, we used a gene-centric method to score the
overall gene function prediction performance of all networks
(see Methods; Figure 3). Recall values for the residuals network
are situated around the 50th percentile of the sample networks
over the entire FDR range, but precision scores generally stay
below the 25th percentile. The lower precision values of the
residuals network with respect to the sample networks may be
taken to indicate a genuinely larger amount of false positive
gene function predictions. Alternatively, given the incompleteness
of the Arabidopsis GO annotation (Lamesch et al., 2012), it could

conceivably be caused by the positive identification of a larger
amount of false negative functional annotations in the GO refer-
ence set, in particular if, as hypothesized above, there were a bias
of known GO annotations toward predictions made by the sam-
ple data sets, which remains to be proven. As a result of the lower
precision values, the global gene function prediction performance
of the residuals network at FDR = 10e-2 scores below the 27th
percentile of the sample networks (Figure 3), but as was the case
for many individual GO categories, the residuals network perfor-
mance increases relative to that of the sample networks for more
stringent FDR thresholds, culminating in an F-measure equal to
the 55th sample network percentile for FDR = 10e-11. A relative
increase of the residuals performance with respect to the sample
networks for more stringent FDR thresholds may be expected
if there were a bias of the existing GO annotations toward the
sample data set predictions. In that case, one would expect
a more fair performance balance between the residuals and
sample networks for the most confident predictions (which are
arguably the most likely to be recovered from any data set) and
an increasing bias for predictions at the higher end of the FDR
range, as observed in Figure 3. But again, despite being sug-
gestive, this can hardly be taken as solid evidence for the exis-
tence of any bias.

JA Signaling Case Study

Response to JA stimulus (GO:0009753) is one of the best scoring
functional categories in the functional prediction performance
assessment described above. To assess whether the residuals
data set can be used to successfully predict the involvement of
novel genes in this process, we screened all networks for novel
candidate genes that are a priori annotated as biological regu-
lators (GO:0065007) but are not known to be involved in the JA
signaling response (see Methods). ILL6 came out as the top
predicted novel candidate regulator in the residuals network (P =
3.33e-09), with a substantial lead over other candidate genes
(see Supplemental Table 2 online). The ILL6 prediction was
supported by 598 out of 1000 sample networks and ranked as
the top prediction in 285 of those networks. At least one other
computational study also predicted ILL6 to be involved in the
response to JA stimulus (Heyndrickx and Vandepoele, 2012),
but hard experimental evidence has been lacking until now.
We took a reverse-genetics approach to investigate the pos-
sible role of ILL6 in jasmonate signaling. Two homozygous T-DNA
insertional mutant lines, ill6-1 and ill6-2, were identified in which
no full-length transcript of ILL6 was detectable by RT-PCR (see


http://www.plantcell.org/cgi/content/full/tpc.113.112268/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112268/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112268/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112268/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112268/DC1

Micro-Environmental Expression Variation 2869

response to jasmonic acid stimulus

qrT T T . response to salt stress/water deprivation/wounding,
hyperosmotic response, response to fungus,
response to ABA/JA/ethylene stimulus,
hormone-mediated signaling pathway, intracellular signal transduction,
two-component signal transduction system (phosphorelay),
lipid metabolic process

F-measure

defense response, regulation of defense response,
cell communication,
response to endoplasmic reticulum stress,
leaf development/morphogenesis,
shoot/phyllome development,
carbohydrate metabolic process

response to mechanical stimulus response to heat/cold /bacterium/
. i T 717 I T I T I mechanical stimt_JIus/c?xidative stress/.starvation/
1 topologically incorrect protein,
ER-nucleus signalling pathway,
E salicylic acid mediated signalling pathway,
regulation of response to biotic stimulus,
| [ post-embryonic development, cell growth,
Lrr1r111 biosynthetic/catabolic process, translation,
e protein/secondary metabolic process, transport
flower development

Function
Prediction
Performance

>
<
0]
=
[
Q
m
F-measure

|
R

:U'%i
o | =
m Ly

i
i
l
ety

G g

oo ' response to oxygen levels/hypoxia,
embryo/flower development,
cellular component organization

e o oe mnnen 10

F-measure

b

response to dessication/DNA damage stimulus/virus/
insect/UV/blue light/red or far-red light/light intensity/gravity/karrikin,
response to auxin/brassinosteroid stimulus, photoperiodism,
:| photosynthesis, cell cycle, cell differentiation, cell death, reproduction,
1 cellular homeostasis, (gravi)tropism, root development, cell surface
receptor signaling pathway, epigenetic regulation of gene expression,
Ij:'l regulation of signal transduction, cellular protein modification process,
DNA metabolic process, generation of precursor metabolites and energy

F-measure

Figure 2. Process-Specific Function Prediction Performance.

Biological processes were subdivided into five performance categories based on the average deviation of the residuals network F-measure from the
25th, 50th, and 75th percentiles of the sample network F-measures over the entire FDR range (very good = above the 75th percentile on average;
good = on average between the 50th and 75th percentile but closer to the 75th percentile; average = closest to the 50th percentile on average; poor =
on average between the 25th and 50th percentile but closer to the 25th percentile; very poor = below the 25th percentile on average; see Methods). An
F-measure versus -log(P) (FDR threshold) plot is shown for one representative process per category. Box-and-whisker plots indicate the F-measure
distribution over all 1000 sample networks at any given FDR threshold, and the solid line depicts the F-measure trend for the residuals network. Boxes
extend from the 25th to the 75th percentile, with the median indicated by the central black line. Whiskers extend from each end of the box to the most
extreme values within 1.5 times the interquartile range from the respective end. Data points beyond this range are displayed as little black circles. The
categorization of other processes is shown on the right (see Supplemental Data Set 6 online for performance plots and Supplemental Figure 5 online for
a depiction of the tested categories in their GO context). Categories related to environmental stress factors that cannot easily be homogenized across
plants generally score above average, as well as the corresponding hormonal responses, while categories related to stresses that are largely absent
under lab growth conditions score below average.
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Plots in (A) to (D) depict the performance of the residuals network (open circles and solid line) and the sample networks (box-and-whisker plots) based
on the use of a gene-centric method (Deng et al., 2004) to score the recall and precision of function predictions across all genes in a given network.
Boxes extend from the 25th to the 75th percentile, with the median indicated by the central black line. Whiskers extend from each end of the box to the
most extreme values within 1.5 times the interquartile range from the respective end. Data points beyond this range are displayed as little black circles.

(A) Recall as a function of the prediction FDR threshold.
(B) Precision versus prediction FDR threshold.
(C) Precision-recall curve.

(D) F-measure as a function of the FDR threshold. Whereas the recall values for the residuals network are situated around the 50th percentile of the
sample networks, precision values are generally below the 25th percentile. The combined F-measure score of the residuals network ranges from the
27th sample network percentile for FDR = 10e-2 to the 55th percentile for FDR = 10e-11.

Supplemental Figure 6 online). To examine the mutants’ sen-
sitivity to the hormone, these plant lines and the wild-type,
Columbia-0 (Col-0), were grown on various concentrations of methyl
jasmonate (MeJA), and the root lengths and shoot weights were
determined (Figures 4A and 4B). Analysis of these data indicate
that the roots of ill6-1 and ill6-2 are significantly shorter and the
rosettes weigh significantly less than those of the wild type
across all levels of MeJA treatment (P = 0.0011 and P < 0.0001,
respectively; see Methods for details on statistical analyses).
There is also a slight but significant (P = 0.0298) genotype X
MeJA treatment effect in terms of shoot weight response to
MeJA. Thus, the mutants are slightly but significantly more sen-
sitive to exogenous jasmonate than the wild type. Furthermore,
liquid chromatography-tandem mass spectrometry analysis re-
vealed that the two mutants both accumulate substantially more
wound-induced jasmonoyl-lle (JA-lle) than the wild type (Figure
4C; P = 0.0001 for the genotype effect and P = 0.0003 for the
genotype X time interaction effect). Together, these data are
consistent with ILL6 acting as a negative regulator of the jasm-
onate response. It is an attractive hypothesis that ILL6 could be
a JA-lle hydrolase, cleaving the JA-lle amide bond in vivo and
releasing lle and molecularly inactive JA. ILL6 is a member of
a family of proteins whose founding member, ILR1, has been

characterized as an auxin-Leu hydrolase (Bartel and Fink, 1995),
while a second member, IAR3, is known to be an auxin-Ala hy-
drolase in Arabidopsis (Davies et al., 1999). Furthermore, the IAR3
homolog from Nicotiana attenuata, Na IAR3, was recently shown
to be a JA-lle hydrolyzing enzyme (Woldemariam et al., 2012). We
expressed a recombinant ILL6 protein in Escherichia coli, but to
date we have not detected any JA-lle hydrolase activity from this
protein, nor have we seen in vitro activity on several other tested
JA-amino acid conjugates.

To address the in vivo activity of this protein, we examined the
metabolic fate of exogenously applied radiolabeled JA-lle (see
Methods). JA-[“C]lle was applied to individual leaves of wild-
type and ill6 mutant plants, and after 24 h, ethanolic extracts of
these treated leaves were separated by thin layer chromatogra-
phy (Figure 4D). Autoradiographic detection revealed that whereas
boiled leaf controls produced no detectable radiolabeled metabolic
products of JA-['“C]lle, ~20% of the radioactivity applied to the
wild-type Col-0 was released as free ['*C]lle. This result was in
marked contrast to either ill6 mutant, in which only 4% of applied
radioactivity was released as ['“Cllle (Figure 4E; log,-transformed
one-way ANOVA F-test P < 0.0001). Next, for a complementation
test, we crossed ill6-2 as the pollen donor to both Col-0 and ill6-1.
In the F1 hybrids between the mutant and wild type, we observed
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Figure 4. ILL6 Negatively Regulates JA Response and Wound-Induced JA-lle Accumulation, Likely through Hydrolysis of JA-lle.

(A) Response of mutant and wild-type Arabidopsis seedlings’ root length to exogenous MeJA. Seedlings were exposed to media containing 0, 1, 10, or

100 yM MeJA for 8 d (n = 16 seedlings).
(B) The rosettes of the plants in (A) were excised from the roots and weighed (1 = 16 seedlings).
(C) Time course of wound-induced JA-lle accumulation. Plants were wounded and damaged leaves were harvested at the indicated time points after

wounding and JA-lle accumulation was analyzed by liquid chromatography-tandem mass spectrometry (n = 6 plants across two independent ex-

periments).
(D) Representative in vivo JA-['*C]lle hydrolysis assay. JA-['“C]lle was applied to individual plant leaves of the indicated genotype, and extracts were

separated by thin layer chromatography and visualized by autoradiography.
(E) In vivo hydrolysis of JA-['“Cl]lle in ill6 mutants and the wild type. Autoradiograms were quantified by densitometry (n = 9 plants across five

independent experiments).
(F) ill6-1 and ill6-2 are allelic mutations. The two F1 hybrids indicated were subjected to an in vivo hydrolysis assay as in (D) and (E) (n = 3 plants).

For all plots, data represent mean = sk, and asterisks indicate significance of genotype effects: *P =< 0.05, **P = 0.01, and ***P = 0.001. The plus sign
indicates P = 0.05 for the genotype X MeJA interaction effect in (B), and three plus signs indicates P = 0.001 for the genotype X time interaction effect

in (C) (see Methods for details on statistical analyses).

residuals network. In fact, for most of the categories we screened,
there are barely any residuals predictions that are not sup-
ported by at least one sample data set (e.g., there are only two
such predictions out of 31, for “response to JA stimulus;” see
Supplemental Table 2 online), showing that the residuals data
set does generally not make predictions that are beyond the
reach of any other data set. Although high-confidence residuals
predictions that are made by a higher number of randomly sam-
pled compendia, such as the ILL6 prediction, may to some extent
be viewed as being more supported and may be prioritized as
such for wet-lab testing, residuals predictions that are rarely
recovered by the sample data sets may, if validated, point to
specific advantages of profiling uncontrolled expression variation

arelease of 12% of applied radioactivity as ['“C]lle, whereas in the
F1 hybrids between the two mutants, we observed little release of
['4Cllle, similar to both mutant parents (Figure 4F; t test on log, -
transformed data, P = 0.0067). This complementation test thus
indicates that the biochemical defect in JA-['“C]lle hydrolysis is
due to the ill6 mutant lesions. Collectively from these data, we
conclude that ILL6 is a negative regulator of jasmonate accumu-
lation and response, likely through its role as an amidohydrolase
of JA-lle, though formally we cannot exclude the possibility that
ILL6 acts on an in planta—produced derivative of JA-lle.

Literature Screen for Direct and Indirect Evidence

Supporting the Top 10 Residuals Predictions for Various
GO Categories in the “Very Good” Performance Class

Above, we provide evidence validating the functional prediction
of a gene (/LL6) that is also predicted to be involved in the JA
signaling response by the majority of sample networks and that
as such cannot be regarded as a prediction that is unique to the

across individuals.

To investigate the added value of profiling expression respon-
ses to micro-environmental variability among individuals in more
detail, we screened literature for direct or indirect evidence sup-
porting the top 10 novel predictions for six GO categories that
were classified in the “very good” prediction performance category,
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namely, the response to JA, ABA, and ethylene stimulus, re-
sponse to fungus, response to salt stress, and response to
water deprivation. Although literature screens can arguably never
be all-encompassing, we did find reports describing direct (in-
direct) experimental evidence for one (two) JA predictions, three
(one) ABA predictions, one (two) ethylene predictions, two (two)
response to fungus predictions, one (0) response to salt stress
predictions, and 0 (one) response to water deprivation predictions
out of the top 10 for each category (see Supplemental Tables 2 to
7 online). As for the direct evidence, these are essentially earlier
findings that have not yet been incorporated in the GO database,
and our associated predictions can as such not really be re-
garded as novel, although supported. The indirect evidence ref-
erences given in Supplemental Tables 2 to 7 online link the
predicted gene to a process or pathway related to the target
process or describe direct evidence for a homolog of the pre-
dicted gene in another species. Although more than half (10/16) of
the top 10 residuals predictions for which we recovered sup-
porting experimental evidence in literature are also predicted by
a sizeable proportion of sample networks (14.6 to 41.7%), we did
find a substantial number (6/16) of supported residuals pre-
dictions that are only predicted by <10% of the sample networks,
in particular among the indirectly supported predictions (4/8, as
opposed to 2/8 for directly supported predictions). Directly sup-
ported residuals predictions that are uncovered by <10% of the
sample networks include the involvement of AZF1 (3.8%) in the
response to ABA stimulus (Kodaira et al., 2011) and TGA5 (0.3%)
in ethylene signaling (Zander et al., 2010) (humbers in parenthe-
ses indicate sample network prediction percentages). Indirectly
supported residuals predictions include the involvement of APK1
(8.8%) in JA signaling, MPK1 (0.7%) and JAZ1 (7.0%) in ethylene
signaling, and CRT3 (1.6%) in the response to water deprivation.
APK1 was previously reported to be involved in the synthesis of
glucosinolates and sulfated 12-hydroxyjasmonate (Mugford et al.,
2009). MPK1 activity was shown earlier to be repressed by the
ethylene response regulator CTR1, but the physiological rele-
vance of MPK1 downregulation for ethylene signaling responses
is still unclear (Yoo et al., 2008). JAZ1 was reported to interact with
and repress the ethylene-stabilized transcription factors EIN3
and EIL1 (Zhu et al., 2011). And a putative ortholog of CRT3 in
wheat (Triticum aestivum) was previously shown to be involved
in drought stress response (Jia et al., 2008). Although we do not
claim that the residuals data set is superior for all functional
prediction purposes, these results suggest that the residuals
data set can produce valid novel predictions that are seldom
recovered from randomly sampled perturbational data sets.

DISCUSSION

We reanalyzed a set of gene expression profiles of single wild-
type Arabidopsis leaves of three accessions grown in tightly
controlled growth room conditions across six labs. We focused
on the residual expression differences that remain among the pro-
filed leaves after controlling for lab and/or accession-dependent
gene expression effects. Intriguingly, these residuals, generally
considered experimental noise, still harbor a remarkable amount
of biologically relevant expression variation, comparable to the

information content of same-sized expression compendia in-
corporating traditional large-effect perturbations on pooled plant
samples. Our analyses show that the expression variations among
the individual plants are not random, but most likely reflect subtle
differences in their growth environment, in spite of the detailed
protocol used to control the experimental growth conditions
(Massonnet et al., 2010). In support of this notion, many of the
stress responses to environmental factors that are difficult to
rigorously homogenize in even the best of experimental setups,
such as salt, water, and infestations by fungi, score above av-
erage in our gene function prediction performance assessment,
while responses to factors that are more easily controlled or
homogenized across plants in lab conditions, such as oxygen
levels, light intensity, UV, and insects, score below average. In
between these extremes are responses to factors that may have
been controlled to an intermediate extent in the original setup,
such as temperature, oxidative stress, mechanical stimulus (e.g.,
through plant handling), and starvation (Massonnet et al., 2010).
Responses to relatively harsh stresses, such as desiccation,
which arguably did not impact the lab-grown plants in the original
experiment (Massonnet et al., 2010), score comparatively worse
than responses to milder or more generally defined stresses, such
as water deprivation. In addition, processes that are thought to
have a low impact on gene expression in fully expanded leaves as
profiled in the original study (Massonnet et al., 2010) (e.g., cell
cycle, cell differentiation, and auxin and brassinosteroid signaling)
are generally not well represented in the gene network learned
from the residuals data set, whereas several hormone signaling
pathways associated with responses to various biotic and abiotic
stresses (JA, ABA, and ethylene) score well above average.

In addition to assessing its capacity to recapitulate known gene
functions, we used the residuals data set to predict the involvement
of novel genes in regulating six of the best performing processes
in our prediction performance screen, and we sought to experi-
mentally validate the top predicted novel regulator of the JA
signaling response, ILL6. We found increased phenotypic sensi-
tivity to exogenous jasmonate, increased wound-induced JA-lle
accumulation in ill6 mutants versus wild-type plants, and a de-
creased capacity to release lle from exogenously applied JA-lle,
consistent with a negative regulatory role of ILL6 in the jasmonate
response. These results highlight the role of jasmonate as a sen-
tinel of environmental stress and, more generally, show that ex-
pression responses to uncontrolled subtle variations in plant
growth conditions can be used effectively to point to novel reg-
ulatory relationships.

Noisy gene expression caused by variability in environmental
parameters or intracellular stochastic effects is often considered
a nuisance, although some authors have recently used intrinsic
expression noise propagation to decipher regulatory influences
in single-celled organisms (Dunlop et al., 2008; Munsky et al.,
2012; Stewart-Ornstein et al., 2012). It is currently impossible
to assess which proportion of the residuals is due to true sto-
chastic variation emanating from the stochastic nature of cellular
processes, instead of micro-environmental variation, as the two
are impossible to separate in the setup used by Massonnet et al.
(2010). Even if it were possible to separate inherent stochastic
effects from micro-environmental effects, it is unclear to what
extent inherent stochastic variations on the cellular level, if they
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would propagate through the cellular regulation network, would
contribute to coordinated expression variation across genes in
the context of a multicellular organism, as they would likely be
averaged out to some degree across all cells in an individual
plant or leaf. As outlined above, our results suggest that the
observed residual expression variation derives mostly from subtle
variations in the micro-environmental growth conditions of in-
dividual plants and that this expression “noise” contains valuable
information on the wiring of biological networks, on par with the
amount of information that can be extracted from controlled
perturbations. In the prevailing perception of the scientific method,
the stochastic features of uncontrolled experimental setups could
be considered diametrically opposed to the experimental design
features needed to ensure reproducibility. In the classical view,
reproducibility is understood as the capacity to obtain the same
results under the same controlled conditions. But from a sys-
tems biology perspective, reproducibility may be assessed on
a different level. Reproducibility of a reverse-engineered gene
network entails that the same interconnections among genes
can be recovered from comparable data sets, which in this
context are not necessarily copies that are systematically gen-
erated under exactly the same conditions. In fact, for large-scale
gene network inference, the exact nature of the experimental
conditions is secondary in importance to the requirement that
similar conditions occur across the condition set when perform-
ing repeat experiments. In this respect, profiling the expression
response of individuals to uncontrolled conditions can be re-
garded as sampling from a multivariate probability distribution,
with each dimension being a random environmental factor. Given
a large enough sample size, the effect size distributions in
uncontrolled expression profiling experiments should therefore
essentially be reproducible and so should the gene networks
recovered from them.

The data set reanalyzed here contained only a limited sample
of 41 individuals, resulting in poor function prediction F-measures
in the range 0 to 0.4. In addition, the data set was suboptimal
because of the multiple ecotypes and labs involved in the original
study (Massonnet et al., 2010), leading to systematic biases that
may not have been pruned out entirely by ANOVA analysis.
Nevertheless, it is clear that the uncontrolled residuals contain
a significant amount of information on the underlying gene network
structure. The results presented here suggest that expression
profiling of wild-type individuals under uncontrolled conditions
should be considered as an alternative data generation strategy
for unraveling the wiring of biological networks. Algorithms used
for this purpose are notoriously data-demanding, to the extent
that unraveling a substantial part of an organism’s transcrip-
tional wiring easily requires hundreds of independent, controlled
perturbations (Hughes et al., 2000; Chua et al., 2004; Ma et al.,
2007; He et al., 2009; Lee et al., 2010). Given the substantial
resource and time expenditure associated with controlling growth
conditions and treatments, generating mutant lines, and profiling
biological replicates, profiling uncontrolled individuals may prove
more cost-effective for generating sufficient amounts of data for
large-scale reverse engineering efforts.

In addition, uncontrolled data sets are fundamentally different
from traditional data sets with respect to the perturbation struc-
ture across experimental conditions. In traditional data sets, only
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a single major perturbation is usually applied in any given ex-
periment, while in an uncontrolled data set, multiple unidentified
(mild) perturbations may impact the expression profile of an in-
dividual simultaneously. For instance, an individual plant may
have been subjected to both watering and temperature con-
ditions that are subtly different from its neighbors. This multifac-
torial setup is exactly the setup encountered by plants in the field,
where they are irregularly and often simultaneously impacted by
several abiotic and biotic stresses, the responses to which often
operate in synergistic or antagonistic interaction to modulate plant
fitness. In this respect, uncontrolled field data sets screening
multifactorial phenotypic responses under natural variation in the
growth environment may prove useful to identify and quantify
crosstalk between pathways, an issue that is not easily tackled
in a lab environment but is of paramount importance for predicting
the phenotypic effects of candidate yield or stress tolerance-
enhancing mutations in the field. Although the use of natural
variation on the genotype level has become mainstream in recent
years, e.g. in genome-wide association studies and expression
quantitative-trait-locus (eQTL) analyses (Kliebenstein, 2009; Nayak
et al., 2009; Chan et al., 2011; Cubillos et al., 2012; Weigel, 2012),
the potential use of natural variation in gene expression triggered
by variations in environmental conditions has only recently begun
to gather attention (Nagano et al., 2012; Richards et al., 2012). In
most species, natural variation other than on the genotype level is
still considered a nuisance rather than a potential asset. However,
our results suggest that sampling natural environmental variation
may be of general use for reverse engineering genetic networks,
not only in plants, but also in species such as human, for which
uncontrolled environmental variation is largely unavoidable and
controlling experimental conditions and treatments is often im-
possible due to ethical constraints.

METHODS

Data Sets and Extraction of Codifferential Expression Networks

Raw microarray data for 41 individual Arabidopsis thaliana leaves (Massonnet
et al., 2010), profiled using the AGRONOMICS1 microarray platform
(Rehrauer et al., 2010), were obtained from the AGRON-OMICS re-
pository (http://www.agron-omics.eu/). The raw data were RMA nor-
malized using the Bioconductor R package, version 2.5 (Gentleman et al.,
2004). We retained only the Affymetrix ATH1 probe sets present on the
AGRONOMICSH1 array for calculating gene expression levels (using the
agronomics1_ath1probes.cdf file), to facilitate comparisons between this
data set and the sampled data sets for pooled plants (see below). The log-
transformed expression profiles were subjected to gene-specific ANOVA
models of the form:

E,]'k:/.L+Lf+Ak+(LA)jk+8ijk (1)

with i (= 1..41) indexing the number of expression values obtained per
gene, u the baseline expression level of a given gene, L; the lab effect (j =
1..6), A the accession effect (k = 1..3), LA, the lab X accession interaction,
and g, the residual error on the log expression level. The residuals e, were
used for all further analyses. Supplemental Table 1 online indicates the
numbers of samples on which unbalanced design ANOVA estimation
of lab, accession, and lab X accession effects was based. Although
the overall number of data points is limited, the numbers of leaves are
fairly balanced across labs and accessions, and with one exception,
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there are always three data points to estimate a particular interaction
effect.

To construct same-sized sample data sets on perturbed and pooled
plants, 688 Affymetrix ATH1 microarray experiments profiling the response
to various perturbations on leaf and shoot tissues were extracted from the
CORNET database (De Bodt et al., 2010), and the resulting compendium
was randomly sampled without replacement to obtain 1000 data sets
containing 41 experiments each. These were preprocessed as described
above, and expression ratios (perturbations versus their respective control
conditions) for 19,937 Arabidopsis genes were obtained using a custom cdf
file designed to minimize cross-hybridization effects (Casneuf et al., 2007).
In all data sets, only the 19,760 nuclear genes in common between the
AGRONOMICS1 and ATH1 cdf files were retained for further analysis.

Co-differential expression networks and expression modules for the
residuals data set and sample data sets were obtained using ENIGMA 1.1
(Maere et al., 2008). ENIGMA requires the definition of up- and down-
regulation thresholds, either based on differential expression P values or
expression log ratio thresholds. Since differential expression P values can
by design only be computed for the sample data sets, but not for the
residuals data set, we standardized the treatment of all data sets using
a log ratio threshold of 0.3498 to define up- and downregulation of gene
expression (see Results). Note that the residuals can also be considered
log ratios with respect to the baseline expression level of a gene over all
leaves after correcting for lab and accession effects (Equation 1). The FDR
level for detecting significant codifferential expression links was set to
0.01. For functional annotation on the level of expression modules, GO
ontology information and annotations for Arabidopsis were obtained from
the GO database (www.geneontology.org, annotation version 10/23/2012),
and annotations with nonexperimental evidence codes IEA, ISS, and RCA
were discarded. GO enrichment of gene modules was assessed using
hypergeometric tests, and the resulting P values were corrected for multiple
testing using the Benjamini and Hochberg FDR correction at FDR = 0.05.
Potential regulators of a module were predicted from the set of genes
annotated to “biological regulation” in GO (GO:0065007) at FDR = 0.01. The
remaining ENIGMA parameters were set to default values. For use in gene
function predictions, negative correlation edges were removed from the
codifferential expression networks. Basic network topology parameters
(network density and clustering coefficient for the major connected compo-
nent of each network) were obtained using NetworkX 2.6.4 (http://networkx.
github.com/).

Gene Function Prediction

We predicted the function of a given gene from a given network by per-
forming GO enrichment analysis on its network neighborhood using a
custom-tailored derivative of PINGO, a software tool to screen biological
networks for genes that may be involved in a process of interest (Smoot
et al., 2011). Gene functions were predicted with hypergeometric tests,
and the resulting P values were corrected (per network) with the Benjamini
and Hochberg multiple testing correction. The resulting GO predictions
were then compared with the known GO annotations, and precision, recall,
and F-measure (harmonic mean of precision and recall) were scored for
every network for a wide array of GO categories (see Supplemental Figure 5
online) at prediction FDR thresholds ranging from 10e-2 to 10e-11. For
every functional category, the relative prediction performance of the residuals
network with respect to the sample networks was classified as very good,
good, average, poor, or very poor (see Figure 1 legend) based on the root
mean square deviation of the residuals network F-measures from the 25th,
50th, and 75th percentiles of the sample network F-measures over the FDR
subrange in which the residuals network exhibited defined F-measures, with
deviations normalized to the square root of the residuals F-measure.

The global function prediction performance of a given network was
calculated using a gene-centric method described by Deng et al. (2004),
based on assessing the overlap between predicted and annotated GO

functional paths for a given gene (i.e., the path from an annotated or
predicted GO term to the root of the GO hierarchy), while taking into
account the depth of predictions and annotations in the hierarchical GO
structure. Recall and precision were calculated for every gene as de-
scribed (Deng et al., 2004). The overall prediction recall and precision
score of an entire gene network are then defined as the arithmetic mean
of the recall and precision values across all genes. Recall, precision, and
F-measure were calculated for every network at prediction FDR thresh-
olds ranging from 10e-2 to 10e-11.

JA Signaling Response Gene Prediction

PiINGO (Smoot et al., 2011) was used to screen all networks for known
regulators that are potentially involved in the JA signaling response.
To obtain high-confidence functional predictions, computationally derived
GO annotations with evidence codes IEA, ISS, and RCA were discarded.
The set of 19,760 genes present in all data sets was used as the reference
set. “Biological regulation” (GO:0065007) was set as the “start” GO
category, while “response to JA stimulus” (GO:0009753) was used as the
“target” and “filter” GO category. P values were calculated with hyper-
geometric tests and corrected with the Benjamini and Hochberg multiple
testing correction at FDR = 0.01. The same protocol was used for pre-
dicting novel regulators for the other processes listed in Supplemental
Tables 3 to 7 online, with the “target” and “filter” GO categories defined
accordingly.

Plant Material, Growth Conditions, and Genetic Analysis

Plants were grown at 22°C in Sunshine Mix LC1 potting soil (wounding
experiments) or Jiffy 7 peat pellets (in vivo hydrolysis assays; Jiffy Products)
and 10 h (wounding, in vivo hydrolysis assays) or 16 h (growth inhibition
assay) of light at 100 to 120 pymol/photons/m?2/s. Arabidopsis accession
Col-0 was obtained from the ABRC (ABRC stock CS70000). The ill6
mutant lines were derived from ABRC stocks Salk_024894C (jll6-1) and
CS852193 (ill6-2), both in the Col-0 background. To identify homozygous
T-DNA insertion mutants, genomic DNA of individual plants of these lines
was used as template in a three-primer PCR reaction. ILL6 transcript
accumulation in these lines was examined by RT-PCR. The sequences
of primers used in these analyses are included in Supplemental Table 8
online.

Growth Inhibition Assay

Surface-sterilized and cold-stratified seeds were plated on half-strength
Murashige and Skoog media, pH 5.8, containing 0.8% Suc, 0.8% agar,
and 0.5 g/L MES. After 3 to 4 d, seedlings of equal root length (~1 cm)
were transferred to plates of the same media containing various con-
centrations of MeJA or an equal volume of carrier (DMSO); to reduce in-
terassay variability, these plates were always allowed to air-dry in a laminar
flow hood for exactly 1 h. Each plate contained an equal number of
seedlings of all three genotypes. In the data presented in Figures 4A
and 4B, the seedlings were transferred to three replicate plates per
concentration of MeJA and each replicate was placed on a separate
shelf of a plant growth chamber. After 8 d on JA-containing media, the
length of the primary root of each seedling was measured, and the shoot
tissue was removed and weighed. A minimum of 16 seedlings was an-
alyzed for each genotype at each concentration.

A linear mixed model was fitted to the data and analyzed using the
residual maximum likelihood method. The model included fixed effects
due to genotype, MeJA concentration, their interaction, and random effects
due to the replicate plate and shelf. The significance of fixed effects was
judged by F-test. Differential sensitivity of the mutants’ root elongation and
shoot weight were seen in other independent experiments.
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Wounding Treatments and JA-lle Analysis

Thirty-day-old plants of Col-0, ill6-1, and ill6-2 were wounded evenly with
a hemostat twice across the width of each of three fully expanded leaves,
crushing 40 to 50% of the leaf surface area. At various time points after
wounding, 200 to 300 mg of damaged leaves from two individual plants
was harvested together and immediately frozen in liquid nitrogen and
stored at —80°C until jasmonate extraction.

Extraction and quantification of endogenous JA-lle from plant tissue
were according to previously described methods (Koo et al., 2009, 2011).
A known amount of ['3C4]JA-lle was added to the frozen samples at the
beginning of extraction as an internal standard. Compounds were sep-
arated on an Ascentis C18 column (1.7 pM, 2.1 X 3 X 50 mm) using
an Acquity ultraperformance liquid chromatography system (Waters).
A Quattro Premier XE tandem quadrupole mass spectrometer (Waters)
was used in an electrospray negative mode to detect JA-lle (322 — 130)
and ['3C¢]JA-lle (328— 136).

The data from two independent experiments were analyzed together. A
linear mixed model was fitted to the data and analyzed using residual
maximum likelihood, including fixed effects due to genotype, time, their
interaction, and random effects due to the replicated experiments. The
significance of fixed effects was judged by F-test.

JA-['“C]lle Synthesis and in Vivo Hydrolysis Assay

JA was obtained by base-catalyzed hydrolysis (Farmer et al., 1992) of
MeJA (Bedoukian Research) and purified by reverse-phase HPLC (Fonseca
etal., 2009). For synthesis of JA-['*C]lle, JA (14 mg), L-lle (8 mg), and L-["*C]lle
(5.5 pCi, specific activity 55 mCi/mmol; American Radiolabeled Chemicals)
were coupled and purified by open-column silica chromatography as
detailed (Suza et al., 2010). For plant treatments, 50,000 dpm of JA-['4C]
lle in an aqueous 20% DMSO solution was applied in a single 10-p.L drop
to individual leaves of individual plants. After 24 h, leaves were excised
and extracted individually in 4 mL of 95% ethanol at 70°C for 45 min.
These extracts were dried under a stream of nitrogen, resuspended in
50 pL of 95% ethanol, and separated by thin layer chromatography (silica
gel 60; EMD Millipore) in chloroform:methanol:acetic acid (70:30:2, v:v:v).
Radioactivity was detected with a Typhoon FLA 7000 phosphor imager
(GE Healthcare Life Sciences). Images were background subtracted and
bands quantified using Imaged (Schneider et al., 2012). ['*C]lle was
identified by cochromatography with an authentic standard. The log,-
transformed data of Figure 4E were analyzed by one-way ANOVA, and the
significance of the genotype effect was judged by F-test. The log,,-
transformed data of Figure 4F were analyzed by Student’s t test.

Accession Number

Sequence data from this article can be found in the Arabidopsis Ge-
nome Initiative or GenBank/EMBL data libraries under accession number
At1944350/NM_103546.3 (ILL6) and in Supplemental Tables 2 to 7 online.
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The following materials are available in the online version of this article.

Supplemental Figure 1. Effect Size of Accession, Lab, Lab X Accession,
and Residual Effects in the Massonnet et al. (2010) Data Set.

Supplemental Figure 2. Distributional Characteristics of Log-Ratio
Expression Values in the Residuals and Sample Data Sets.

Supplemental Figure 3. Numbers of “Differential” Expression Values
in the Residuals and Sample Data Sets, for the Purpose of ENIGMA
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in the Response to Water Deprivation Based on the Residuals
Co-differential Expression Network.
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Annotations for All Modules in Supplemental Data Set 1.

Supplemental Data Set 3. Module Figures for All Modules Learned
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Effects.

Supplemental Data Set 4. Excel File Containing Predicted GO
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Supplemental Data Set 6. Category-Specific Function Prediction
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