Skip to main content
. 2013 Sep 27;4:646. doi: 10.3389/fpsyg.2013.00646

Table D2.

Gamble problems used in Experiment 2 and the obtained choice proportions.

Choice difficulty, domain Gamble A Gamble B EV ratio Choice proportions for gamble A (in %)
Easy, gains 3, 0.17; 0, 0.83 56.7, 0.05; 0, 0.95 5.6 32.5
3, 0.29; 0, 0.71 56.7, 0.09; 0, 0.91 5.9 51.3
56.7, 0.05; 0, 0.95 3, 0.17; 0, 0.83 5.6 70.0
56.7, 0.09; 0, 0.91 3, 0.29; 0, 0.71 5.9 55.0
5.4, 0.52; 0, 0.48 56.7, 0.29; 0, 0.71 5.9 15.0
3, 0.94; 0, 0.06 56.7, 0.29; 0, 0.71 5.8 32.5
31.5, 0.29; 0, 0.71 3, 0.52; 0, 0.48 5.9 89.7
56.7, 0.29; 0, 0.71 5.4, 0.52; 0, 0.48 5.9 82.5
3, 0.94; 0, 0.06 31.5, 0.52; 0, 0.48 5.8 10.0
5.4, 0.94; 0, 0.06 56.7, 0.52; 0, 0.48 5.8 22.5
31.5, 0.52; 0, 0.48 3, 0.94; 0, 0.06 5.8 72.5
56.7, 0.52; 0, 0.48 5.4, 0.94; 0, 0.06 5.8 77.5
Easy, losses 0, 0.83; −3, 0.17 0, 0.95; −56.7, 0.05 5.6 61.6
0, 0.71; −3, 0.29 0, 0.91; −56.7, 0.09 5.9 57.5
0, 0.95; −56.7, 0.05 0, 0.83; −3, 0.17 5.6 32.5
0, 0.91; −56.7, 0.09 0, 0.71; −3, 0.29 5.9 27.5
0, 0.48; −3, 0.52 0, 0.71; −31.5, 0.29 5.9 82.1
0, 0.06; −3, 0.94 0, 0.71; −56.7, 0.29 5.8 80.0
0, 0.71; −31.5, 0.29 0, 0.48; −3, 0.52 5.9 18.0
0, 0.71; −56.7, 0.29 0, 0.48; −5.4, 0.52 5.9 17.5
0, 0.06; −3, 0.94 0, 0.48; −31.5, 0.52 5.8 87.5
0, 0.06; −5.4, 0.94 0, 0.48; −56.7, 0.52 5.8 80.0
0, 0.71; −56.7, 0.29 0, 0.06; −3, 0.94 5.8 15.4
0, 0.48; −31.5, 0.52 0, 0.06; −3, 0.94 5.8 12.5
Difficult, gains 17.5, 0.52; 0, 0.48 56.7, 0.17; 0, 0.83 1.1 72.5
9.7, 0.52; 0, 0.48 31.5, 0.17; 0, 0.83 1.1 77.5
5.4, 0.29; 0, 0.71 9.7, 0.17; 0, 0.83 1.1 57.5
31.5, 0.29; 0, 0.71 56.7, 0.17; 0, 0.83 1.1 70.0
3, 0.29; 0, 0.71 5.4, 0.17; 0, 0.83 1.1 67.5
3, 0.52; 0, 0.48 9.7, 0.17; 0, 0.83 1.1 65.0
17.5, 0.17; 0, 0.83 3, 0.94; 0, 0.06 1.1 22.5
9.7, 0.17; 0, 0.83 5.4, 0.29; 0, 0.71 1.1 35.0
56.7, 0.17; 0, 0.83 17.5, 0.52; 0, 0.48 1.1 27.5
9.7, 0.17; 0, 0.83 3, 0.52; 0, 0.48 1.1 23.1
5.4, 0.17; 0, 0.83 3, 0.29; 0, 0.71 1.1 30.0
31.5, 0.17; 0, 0.83 5.4, 0.94; 0, 0.06 1.1 20.0
Difficult, losses 0, 0.48; −3, 0.52 0, 0.83; −9.7, 0.17 1.1 43.6
0, 0.71; −5.4, 0.29 0, 0.83; −9.7, 0.17 1.1 55.0
0, 0.48; −17.5, 0.52 0, 0.83; −56.7, 0.17 1.1 45.0
0, 0.71; −9.7, 0.29 0, 0.83; −17.5, 0.17 1.1 61.5
0, 0.06; −5.4, 0.94 0, 0.83; −31.5, 0.17 1.1 37.5
0, 0.06; −3, 0.94 0, 0.83; −17.5, 0.17 1.1 40.0
0, 0.83; −9.7, 0.17 0, 0.71; −5.4, 0.29 1.1 42.5
0, 0.83; −17.5, 0.17 0, 0.48; −5.4, 0.52 1.1 65.0
0, 0.83; −17.5, 0.17 0, 0.71; −9.7, 0.29 1.1 42.5
0, 0.83; −56.7, 0.17 0, 0.48; −17.5, 0.52 1.1 61.5
0, 0.83; −5.4, 0.17 0, 0.71; −3, 0.29 1.1 57.5
0, 0.83; −31.5, 0.17 0, 0.48; −9.7, 0.52 1.1 47.5

As an illustration of the priority heuristic and cumulative prospect theory predicting opposite choices in these gamble problems, take the first problem, A (3, 0.17; 0, 0.83) vs. B (56.7, 0.05; 0, 0.95). The priority heuristic would base a choice on the probability of the minimum outcomes (as the minimum outcomes do not discriminate) and predict the choice of gamble A because it has the lower probability of yielding the minimum outcome. Cumulative prospect theory (based, for instance, on the parameter set by Tversky and Kahneman, 1992) would assign a subjective valuation of 0.634 to gamble A and a subjective valuation of 4.597 to gamble B. Therefore, cumulative prospect theory predicts the choice of gamble B.