Table D2.
Choice difficulty, domain | Gamble A | Gamble B | EV ratio | Choice proportions for gamble A (in %) |
---|---|---|---|---|
Easy, gains | 3, 0.17; 0, 0.83 | 56.7, 0.05; 0, 0.95 | 5.6 | 32.5 |
3, 0.29; 0, 0.71 | 56.7, 0.09; 0, 0.91 | 5.9 | 51.3 | |
56.7, 0.05; 0, 0.95 | 3, 0.17; 0, 0.83 | 5.6 | 70.0 | |
56.7, 0.09; 0, 0.91 | 3, 0.29; 0, 0.71 | 5.9 | 55.0 | |
5.4, 0.52; 0, 0.48 | 56.7, 0.29; 0, 0.71 | 5.9 | 15.0 | |
3, 0.94; 0, 0.06 | 56.7, 0.29; 0, 0.71 | 5.8 | 32.5 | |
31.5, 0.29; 0, 0.71 | 3, 0.52; 0, 0.48 | 5.9 | 89.7 | |
56.7, 0.29; 0, 0.71 | 5.4, 0.52; 0, 0.48 | 5.9 | 82.5 | |
3, 0.94; 0, 0.06 | 31.5, 0.52; 0, 0.48 | 5.8 | 10.0 | |
5.4, 0.94; 0, 0.06 | 56.7, 0.52; 0, 0.48 | 5.8 | 22.5 | |
31.5, 0.52; 0, 0.48 | 3, 0.94; 0, 0.06 | 5.8 | 72.5 | |
56.7, 0.52; 0, 0.48 | 5.4, 0.94; 0, 0.06 | 5.8 | 77.5 | |
Easy, losses | 0, 0.83; −3, 0.17 | 0, 0.95; −56.7, 0.05 | 5.6 | 61.6 |
0, 0.71; −3, 0.29 | 0, 0.91; −56.7, 0.09 | 5.9 | 57.5 | |
0, 0.95; −56.7, 0.05 | 0, 0.83; −3, 0.17 | 5.6 | 32.5 | |
0, 0.91; −56.7, 0.09 | 0, 0.71; −3, 0.29 | 5.9 | 27.5 | |
0, 0.48; −3, 0.52 | 0, 0.71; −31.5, 0.29 | 5.9 | 82.1 | |
0, 0.06; −3, 0.94 | 0, 0.71; −56.7, 0.29 | 5.8 | 80.0 | |
0, 0.71; −31.5, 0.29 | 0, 0.48; −3, 0.52 | 5.9 | 18.0 | |
0, 0.71; −56.7, 0.29 | 0, 0.48; −5.4, 0.52 | 5.9 | 17.5 | |
0, 0.06; −3, 0.94 | 0, 0.48; −31.5, 0.52 | 5.8 | 87.5 | |
0, 0.06; −5.4, 0.94 | 0, 0.48; −56.7, 0.52 | 5.8 | 80.0 | |
0, 0.71; −56.7, 0.29 | 0, 0.06; −3, 0.94 | 5.8 | 15.4 | |
0, 0.48; −31.5, 0.52 | 0, 0.06; −3, 0.94 | 5.8 | 12.5 | |
Difficult, gains | 17.5, 0.52; 0, 0.48 | 56.7, 0.17; 0, 0.83 | 1.1 | 72.5 |
9.7, 0.52; 0, 0.48 | 31.5, 0.17; 0, 0.83 | 1.1 | 77.5 | |
5.4, 0.29; 0, 0.71 | 9.7, 0.17; 0, 0.83 | 1.1 | 57.5 | |
31.5, 0.29; 0, 0.71 | 56.7, 0.17; 0, 0.83 | 1.1 | 70.0 | |
3, 0.29; 0, 0.71 | 5.4, 0.17; 0, 0.83 | 1.1 | 67.5 | |
3, 0.52; 0, 0.48 | 9.7, 0.17; 0, 0.83 | 1.1 | 65.0 | |
17.5, 0.17; 0, 0.83 | 3, 0.94; 0, 0.06 | 1.1 | 22.5 | |
9.7, 0.17; 0, 0.83 | 5.4, 0.29; 0, 0.71 | 1.1 | 35.0 | |
56.7, 0.17; 0, 0.83 | 17.5, 0.52; 0, 0.48 | 1.1 | 27.5 | |
9.7, 0.17; 0, 0.83 | 3, 0.52; 0, 0.48 | 1.1 | 23.1 | |
5.4, 0.17; 0, 0.83 | 3, 0.29; 0, 0.71 | 1.1 | 30.0 | |
31.5, 0.17; 0, 0.83 | 5.4, 0.94; 0, 0.06 | 1.1 | 20.0 | |
Difficult, losses | 0, 0.48; −3, 0.52 | 0, 0.83; −9.7, 0.17 | 1.1 | 43.6 |
0, 0.71; −5.4, 0.29 | 0, 0.83; −9.7, 0.17 | 1.1 | 55.0 | |
0, 0.48; −17.5, 0.52 | 0, 0.83; −56.7, 0.17 | 1.1 | 45.0 | |
0, 0.71; −9.7, 0.29 | 0, 0.83; −17.5, 0.17 | 1.1 | 61.5 | |
0, 0.06; −5.4, 0.94 | 0, 0.83; −31.5, 0.17 | 1.1 | 37.5 | |
0, 0.06; −3, 0.94 | 0, 0.83; −17.5, 0.17 | 1.1 | 40.0 | |
0, 0.83; −9.7, 0.17 | 0, 0.71; −5.4, 0.29 | 1.1 | 42.5 | |
0, 0.83; −17.5, 0.17 | 0, 0.48; −5.4, 0.52 | 1.1 | 65.0 | |
0, 0.83; −17.5, 0.17 | 0, 0.71; −9.7, 0.29 | 1.1 | 42.5 | |
0, 0.83; −56.7, 0.17 | 0, 0.48; −17.5, 0.52 | 1.1 | 61.5 | |
0, 0.83; −5.4, 0.17 | 0, 0.71; −3, 0.29 | 1.1 | 57.5 | |
0, 0.83; −31.5, 0.17 | 0, 0.48; −9.7, 0.52 | 1.1 | 47.5 |
As an illustration of the priority heuristic and cumulative prospect theory predicting opposite choices in these gamble problems, take the first problem, A (3, 0.17; 0, 0.83) vs. B (56.7, 0.05; 0, 0.95). The priority heuristic would base a choice on the probability of the minimum outcomes (as the minimum outcomes do not discriminate) and predict the choice of gamble A because it has the lower probability of yielding the minimum outcome. Cumulative prospect theory (based, for instance, on the parameter set by Tversky and Kahneman, 1992) would assign a subjective valuation of 0.634 to gamble A and a subjective valuation of 4.597 to gamble B. Therefore, cumulative prospect theory predicts the choice of gamble B.